第8课 锐角三角函数(教师版)
初中数学 九年级下册 28-1 锐角三角函数(教学课件)

∵ ∠C=90°,∠A=45°∴ BC=AC=2
由勾股定理得AB=
+ =2 ∴cos A=
=
=
变式2-2 Rt△ABC中,∠C=90°,cosA=,AC=6cm,那么BC等于_____.
在 △ 中,∵ =
∴
,
=
A.
B.
C.
D.
【详解】作AB⊥x轴交x轴于点B,
∵A(3,4),∴AB=4,BO=3,∴AO= AB 2 + BO2 = 42 + 32 =5,
B
AB 4
= .故选C.
AO 5
∴sinα =
变式1-2 把△ABC三边的长度都扩大为原来的3倍,则锐角A的正弦函数值()
A.不变
B.缩小为原来的
在直角三角形中,当锐角 A 的度数一定时,
不管三角形的大小如何,它的对边与斜边的比是一个固定值.
′′
与
’
′′
01
锐角三角函数-正弦
在 Rt△ABC 中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦,记作:sinA.
即 sin A=
∠所对的边
斜边
=
B
斜边
c
a 对边
∠所邻的边
斜边
B
=
斜边
c
A
正弦和余弦的注意事项:
b
邻边
a 对边
C
1.sinA、cosA是在直角三角形中定义的,∠A是锐角(注意数形结合,构造直角三角形)。
2.sinA、cosA是一个比值(数值,无单位)。
《锐角三角函数》教学设计

《锐角三角函数》教学设计一、教学目标:1.了解什么是锐角三角函数;2.掌握正弦、余弦、正切的定义和计算方法;3.掌握锐角三角函数的性质和图像特点;4.能够应用锐角三角函数求解实际问题。
二、教学重点:1.正弦、余弦、正切的定义和计算方法;2.锐角三角函数的性质和图像特点。
三、教学难点:1.锐角三角函数的性质和图像特点。
四、教学过程:1.导入新知识向学生提问:“你们知道什么是三角函数吗?”接着引导学生回忆正弦、余弦、正切的定义和计算方法。
2.学习正弦、余弦、正切的定义和计算方法首先,给出锐角的定义:“锐角是指小于90°的角”。
然后,给出三角函数的定义:正弦(sin):在锐角∠A中,它的对边与斜边的比值叫做∠A的正弦,记作sinA。
余弦(cos):在锐角∠A中,它的邻边与斜边的比值叫做∠A的余弦,记作cosA。
正切(tan):在锐角∠A中,它的对边与邻边的比值叫做∠A的正切,记作tanA。
接着,通过例题进行讲解,让学生掌握如何计算正弦、余弦、正切。
3.学习锐角三角函数的性质和图像特点介绍锐角三角函数的性质:正弦函数的性质:定义域是全体实数,值域在[-1,1]之间,单调递增。
余弦函数的性质:定义域是全体实数,值域在[-1,1]之间,单调递减。
正切函数的性质:定义域是全体非零实数,值域是全体实数,在每个周期内都是振荡的。
然后,通过绘制锐角的基本函数图像,让学生观察锐角三角函数的图像特点。
4.练习运用锐角三角函数设计练习题,让学生运用锐角三角函数求解实际问题,如航空导弹的打击角度、建筑物的高度等。
五、教学总结对本节课的内容进行总结,强调重点。
六、板书设计锐角三角函数正弦:sinA = 对边/斜边余弦:cosA = 邻边/斜边正切:tanA = 对边/邻边锐角三角函数的性质:正弦函数:定义域是全体实数,值域在[-1,1]之间,单调递增。
余弦函数:定义域是全体实数,值域在[-1,1]之间,单调递减。
正切函数:定义域是全体非零实数,值域是全体实数,振荡。
锐角三角函数教学设计

锐角三角函数教学设计一、教学目标:1.理解锐角三角函数的概念和定义。
2.掌握锐角三角函数的计算方法和相互之间的关系。
3.能够应用锐角三角函数解决相关的实际问题。
4.培养学生的逻辑思维和数学推理能力。
二、教学重点:1.锐角三角函数的定义和性质。
2.锐角三角函数之间的关系。
3.锐角三角函数的计算方法。
三、教学难点:1.锐角三角函数的定义和计算方法。
2.锐角三角函数的相互关系和应用。
四、教学内容和教学过程:1.导入(5分钟)引入锐角三角函数的概念,提出锐角三角函数与直角三角函数之间的关系,并通过几个生活中常见的三角形图片引起学生的兴趣。
板书:锐角三角函数的概念。
2.锐角的定义(10分钟)介绍锐角的定义和性质,引导学生理解什么是锐角,并进行举例说明。
板书:锐角定义及性质。
3.锐角三角函数的定义(10分钟)介绍正弦、余弦、正切的定义,并与三角形的边长、角度的关系进行对照说明。
板书:正弦、余弦、正切的定义。
4.锐角三角函数的计算方法(20分钟)a.通过具体的锐角三角函数的计算问题,进行步骤的详细讲解。
b.引导学生理解计算中的基本思路和注意事项。
c.讲解计算中的常用技巧和方法,如利用三角函数的周期性、对称性等进行计算简化。
板书:锐角三角函数的计算方法。
5.锐角三角函数的相互关系(25分钟)a.对正弦、余弦、正切三个函数的性质进行详细说明,引导学生理解它们之间的相互关系。
b.针对特殊角的计算进行实例讲解,引导学生理解锐角三角函数之间的关系。
板书:正弦、余弦、正切的相互关系。
6.锐角三角函数的应用(20分钟)a.通过实际问题的解决,让学生理解锐角三角函数的应用。
b.引导学生利用锐角三角函数去解决各类实际问题,如测量高楼的高度、距离等。
板书:锐角三角函数的应用。
7.拓展与归纳(10分钟)归纳总结锐角三角函数的概念、定义、性质、计算方法和应用,培养学生的逻辑思维能力,并鼓励学生发散性思维进行扩展,如讨论其他角度三角函数的概念和性质。
锐角三角函数教案

第一章 直角三角形的边角关系1.1 锐角三角函数(2)一、知识点1. 认识锐角三角函数——正弦、余弦2. 用sinA,cosA 表示直角三角形中直角边与斜边的比, 用正弦、余弦进行简单的计算. 二、教学目标 知识与技能1. 能利用相似的直角三角形,探索并认识锐角三角函数——正弦、余弦,理解锐角的正弦与余弦和梯子倾斜程度的关系.2. 能够用sinA,cosA 表示直角三角形中直角边与斜边的比,能够用正弦、余弦进行简单的计算. 过程与方法1. 经历类比、猜想等过程.发展合情推理能力,能有条理地、清晰地阐述自己的观点. 2、体会解决问题的策略的多样性,发展实践能力和创新精神. 情感态度与价值观1. 积极参与数学活动,对数学产生好奇心和求知欲,学有用的数学. 2、形成实事求是的态度以及交流分享的习惯. 三、重点与难点重点:理解正弦、余弦的数学定义,感受数学与生活的联系. 难点:体会正弦、余弦的数学意义,并用它来解决生活中的实际问题. 四、复习引入设计意图:以练代讲,让学生在练习中回顾正切的含义,避免死记硬背带来的负面作用(大脑负担重,而不会实际运用),测量旗杆高度的问题引发学生的疑问,激起学生的探究欲望. 五、探究新知探究活动1(出示幻灯片4):如图,请思考: (1)Rt △AB 1C 1和Rt △AB 2C 2的关系是 ; (2)的关系是和222111AB C B AB C B ; (3)如果改变B 2在斜边上的位置,则的关系是和222111AB C B AB C B ; 思考:从上面的问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值__________,根据是______________________________________.B 1B 2AC 1C 2它的邻边与斜边的比值呢?设计意图:1、在相似三角形的情景中,让学生探究发现:当直角三角形的一个锐角大小确定时,它的对边与斜边的比值也随之确定了.类比学习,可以知道,当直角三角形的一个锐角大小确定时,它的邻边与斜边的比值也是不变的.2、在探究活动中发现的规律,学生能记忆得更加深刻,这比老师帮助总结,学生被动接受和记忆要有用得多.归纳概念1、正弦的定义:如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的对边BC与斜边AB的比叫做∠A的正弦,记作sinA,即sinA=________.2、余弦的定义:如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边AC与斜边AB的比叫做∠A的余弦,记作cosA,即cosA=_ _____.3、锐角A的正弦,余弦,正切和余切都叫做∠A的三角函数.温馨提示(1)sinA,cosA是在直角三角形中定义的,∠A是一个锐角;(2)sinA,cosA中常省去角的符号“∠”.但∠BAC的正弦和余弦表示为: sin∠BAC,cos∠BAC.∠1的正弦和余弦表示为: sin∠1,cos∠1;(3)sinA,cosA没有单位,它表示一个比值;(4)sinA,cosA是一个完整的符号,不表示“sin”,“cos”乘以“A”;(5)sinA,cosA的大小只与∠A的大小有关,而与直角三角形的边长没有必然的关系.设计意图:1、类比正切的定义,让学生理解正弦和余弦的含义;2、让学生了解:求一个角的三角函数,是指求这个角的正切、正弦和余弦,不是单指某一个值;3、正弦和余弦容易出现一些不规范的表示方法,在这里先进行明确,可以减少日后不必要的错误.探究活动2:我们知道,梯子的倾斜程度与tanA有关系,tanA越大,梯子越陡,那么梯子的倾斜程度与sinA和cosA有关系吗?是怎样的关系?设计意图:在探究中进一步让学生理解正弦和余弦的含义,体会正弦和余弦的生活意义,避免数学知识的枯燥无味,通过利用正弦和余弦来描述梯子的倾斜程度拓展了学生思维,感受到从不同角度去解释一件事物的合理性,感受数学与生活的联系.探索发现:梯子的倾斜程度与sinA,cosA的关系:sinA越大,梯子;cosA 越,梯子越陡.探究活动3:如图,在Rt△ABC中,∠C=90°,AB=20,,求BC和cosB.BA C通过上面的计算,你发现sinA与cosB有什么关系呢? sinB与cosA呢?在其它直角三角形中是不是也一样呢?请举例说明.小结规律:在直角三角形中,一个锐角的正弦等于另一个锐角的 .设计意图:在探究中进一巩固正弦和余弦的定义,同时发现直角三角形中两个锐角的三角函数值之间存在一定的关系,拓展学生的知识储备.六、归类提升类型一:已知直角三角形两边长,求锐角三角函数值例1、在Rt△ABC中,∠C=90°, BC=3,AB=5,求A的三个三角函数值.类型二:利用三角函数值求线段的长度例2、如图,在Rt△ABC中,∠B=90°,AC=200,sinA= ,求BC的长七、总结延伸1、锐角三角函数定义:sinA= ,cosA= ,tanA= ;2、温馨提示:(1)sinA,cosA,tanA,是在直角三角形中定义的,∠A是锐角(注意数形结合,构造直角三角形);(2)sinA,cosA,tanA是一个完整的符号,表示∠A的正切,习惯省去“∠”号;(3)sinA,cosA,tanA都是一个比值,注意区别,且sinA,cosA,tanA均大于0,无单位;(4)sinA,cosA,tanA的大小只与∠A的大小有关,而与直角三角形的边长没有必然关系;(5)角相等,则其三角函数值相等;两锐角的三角函数值相等,则这两个锐角相等.3、在用三角函数解决一般三角形或四边形的实际问题中,应注意构造直角三角形.设计意图:课堂小结,检查学生掌握情况,同时能对知识进行及时梳理,有利于学生归纳和消化,特别对于重要的方法提示和要注意的细节,能再次呈现,使学生印象深刻..八、 随堂小测1、下图中∠ACB=90° ,CD ⊥AB 指出∠A2、1题中如果CD=5,AC=10,则sin ∠ACD= sin ∠DCB=3、如图:在等腰△ABC 中,AB=AC=5,BC=6.求: sinB,cosB,tanB设计意图:设计各种题型,可以检验学生的方法掌握情况,同时巩固学生的知识,提高学生的运用能力,若时间不允许该部分也可作为课后作业完成.BCABCsin a A c=cos b A c =sin b B c=cos a B c=bABCa┌csinA=cosB ,cosA=sinB (∠A+∠B=90。
《锐角三角函数》课件

正弦函数图像及性质
周期性
振幅
相位
图像特点
正弦函数具有周期性,周期为2π。
正弦函数的相位表示函数在水平方向上的移动,通过调整相位可以得到不同位置的正弦波。
正弦函数的振幅为1,表示函数在垂直方向上的波动范围。
正弦函数的图像是一条连续的、平滑的曲线,呈现周期性的波动。
余弦函数图像及性质
202X
单击此处添加副标题内容
《锐角三角函数》ppt课件
汇报日期
汇报人姓名
目录
锐角三角函数基本概念
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数图像与性质
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数运算规则
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数在实际问题中应用
乘法运算规则
两个锐角三角函数的除法运算,通常转化为同角三角函数的除法运算,再利用同角三角函数的基本关系式进行化简。
除法运算规则
按照先乘除后加减的运算顺序进行乘除混合运算,注意运算过程中的化简和约分。
乘除混合运算规则
复合运算规则
复合函数的定义域
复合函数的值域
复合函数的单调性
复合函数的周期性
01
02
03
钝角三角函数定义
探讨了钝角三角函数的性质,如取值范围、增减性等,以及与锐角三角函数的异同点。
钝角三角函数的性质
介绍了在直角情况下,一些特殊角的三角函数值,如0°、30°、45°、60°、90°等,以及如何利用这些特殊值进行计算和证明。
直角情况下的特殊值
感谢观看
THANKS
渐近线与间断点
02
锐角三角函数教案

锐角三角函数一.知识框架二、知识概念1、正弦,余弦,正切的概念ac 如图,在Rt ABC中,(1)sinA=,bc (2)cosA=,ab (3)tanA=。
2、a sina cosa tana30°12323345°2222160°3212 32. 坡度(坡比)的概念及表示形式如图所示,我们通常把坡面的铅直高度和水平宽度l的比叫做坡度(或坡比),坡度常用字母i表示.斜坡的坡度i 阳坡角的正切值有如下关系:hi tan ,即坡度是坡角的正切值.l1.正切与梯子的倾斜程度的关系:tan A 的值越大,梯子越陡.注意:梯子的倾斜程度与梯子和地面的夹角的大小有关,夹角越大说明梯子越倾斜.2.正弦、余弦与梯子的倾斜程度的关系:sin A 的值越大,梯子越陡;cos A的值越小,梯子越陡.3.解直角三角形:锐角A的正弦,余弦和正切都是∠A的三角函数,直角三角形中,除直角外,共 5 个元素:3 条边和 2 个角.除直角外只要知道其中 2 个元素(至少有 1 个是边),就可利用以上关系求出另外 3 个元素.4.仰角,俯角当从低处观测高处的目标时,视线与水平线所成的锐角,如图所示,为仰角,俯角:当从高处观测低处的目标时,仰角:视线与水平线所成的锐角,如图所示,为俯角,例题:题型一:三角函数的定义例1、(2015?崇左)如图,在Rt△ABC 中,∠C=90°,AB=13 ,BC=12 ,则下列三角函数表示正确的是( A )A.sinA= B.cosA= C.tanA= D.tanB=2=0,则∠C 的大例2、(2015?庆阳)在△ABC 中,若角 A ,B 满足|cosA﹣|+(1﹣tanB)小是( D )A.45°B.60°C.75°D.105°例3、(2015?牡丹江)在△ABC 中,AB=12 ,AC=13 ,cos∠B= ,则BC 边长为( D )A.7 B.8 C.8 或17 D.7 或17【解答】解:∵cos∠B= ,∴∠B=45°,当△ABC 为钝角三角形时,如图1,∵AB=12 ,∠B=45°,∴AD=BD=12 ,∵AC=13 ,∴由勾股定理得CD=5,∴BC=BD ﹣CD=12 ﹣5=7;当△ABC 为锐角三角形时,如图2,BC=BD+CD=12+5=17 ,故选D.题型分析:(1)对于利用三角函数求线段长度的问题,一般要把这条线段放在一个直角三角形中来解决,因此必须先构造出以该条线段为边的直角三角形。
新人教版九年级数学锐角三角函数教案

新人教版九年级数学锐角三角函数教案新人教版九年级数学锐角三角函数教案1一、复习巩固:1、在△ABC中,∠C=90°,∠A=45°,则BC:AC:AB = 。
2、在△ABC中,∠C=90°。
(1)已知∠A=30°,BC=8cm, (2)已知∠A=60°,AC= cm,求:AB与AC的长; 求:AB与BC的长。
二、例题学习:问题1:“五一”节,小明和同学一起到游乐场游玩,游乐场的大型摩天轮的半径为20m,旋转1周需要12min。
小明乘坐最底部的车厢(离地面约0.5m)开始1周的观光,2min后小明离地面的高度是多少(精确到0.1m)?拓展延伸:1、摩天轮启动多长时间后,小明离地面的高度将首次到达10m?2、小明将有多长时间连续保持在离地面20m以上的空中?思考与探索1:如图,东西两炮台A、B相距2000米,同时发现敌舰C,炮台A测得敌舰C在它的南偏东60°的方向,炮台B测得敌舰C在它的正南方,试求敌舰与两炮台的距离。
概念:仰角、俯角的定义如右图,从下往上看,视线与水平线的夹角叫仰角,从上往下看,视线与水平线的夹角叫做俯角。
右图中的∠1就是仰角,∠2就是俯角。
问题2:为了测量停留在空中的气球的高度,小明先站在地面上某点观测气球,测得仰角为30°,然后他向气球方向前进了50m,此时观测气球,测得仰角为45°。
若小明的眼睛离地面1.6m ,小明如何计算气球的高度呢?思考与探索(2):大海中某小岛的周围10km范围内有暗礁。
一艘海轮在该岛的南偏西55°方向的某处,由西向东行驶了20km后到达该岛的南偏西25°方向的另一处。
如果该海轮继续向东行驶,会有触礁的危险吗?三、板演练习1、如图,单摆的摆长AB为90cm,当它摆动到∠BAB'的位置时,∠BAB'=30°。
问这时摆球B'较最低点B升高了多少?2、飞机在一定高度上飞行,先测得正前方某小岛的俯角为30°,飞行10km后,测得该小岛的俯角为60°,求飞机的高度。
锐角三角函数教案

∠A 的对边与临边的比呢?引入新课:锐角三角函数
(2) 二、出示目标: 今天的学习目标是什么呢? 学习目标 1.理解当直角三角形的锐角固定时,它的临边与斜边、对 边与临边的比值都是固定的(即余弦值与正切值不变)。 2.能根据余弦和正切的概念熟练的进行计算。 三、自学指导: 师:怎样才能达到今天的学习目标呢?上节课我们有 了学习正弦的基本方法,相信大家本节课一定能学的更好, 请同学们认真看自学指导: 自学指导 认真看课本(P77-P78 练习前)注意: 1、余弦是直角三角形的哪两个边的比值,它与正弦的 区别与联系是什么? 2、正切是哪两个边的比值? 3、正弦值、余弦值、正切值有单位吗?为什么? 4、仔细琢磨:sinA 为什么是 A 的函数?cosA、tanA 呢? 5、 锐角 A 的锐角三角函数是怎样定义的?
6、思考讨论:根据正弦、余弦的定义,请你说一下它 们的取值范围,正切的范围和正弦、余弦的范围一 样吗?为什么? 8 分钟后,比谁能准确的回答上述问题,然后创造 性地做出例题和与例题类似的习题。 四、先学。 1、学生看书,教师巡视,师督促每一位学生认真的自 学,关注每位学生自学的情况。 2、检测:师:同学们,请停止自学。对自学指导的 问题都会了的请举手。 若都举手,则教师表扬。若有人不举手,则提问:哪 道题不会?请会的同学帮助, 能讲的举手。 让学生说,
(1) 指名回答上述“思考”中的问题; (2) 举手板演“探究”中的问题。 (3) 指名回答“正弦”的定义。 (4)演板 P76 五、后教。 (一)引导学生回答锐角三角函数的表示方法:三个字母 表示角如∠AOB,一个字母表示角如∠A,,具体的角度如 19° 分别表示为:sin∠AOB, sin∠A, sin19° (二)自由更正 请同学们仔细看一看黑板上的板演,发现错误并能 更正的同学请举手。 (三)讨论、归纳。 (1) 求一个角的正弦值时, 必须把这个角放在直角三角形中, 并且求出这个角的对边与斜边。 (2) 当一个锐角固定时,它的正弦值也是固定的。即:某 例 1, P77 练习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.能熟练运用锐角三角函数的概念进行有关计算.
教学过程:
一、阅读课本61-62页内容,回答下列问题:
1.在一个直角三角形中,如果一个锐角A等于30°,那么无论三角形的大小如何,这个角的对边与斜边的比值都等于,也是说,对边比斜边就是一个.
2.如果这个锐角等于45°或60°呢?
3.是不是当锐角A的度数一定时,它的对边与斜边的比也是一个固定值呢?
二、探究:锐角三角函数的定义
1.在△ABC与△A´B´C´中,∠C=∠C´=90°,∠A=∠A,那么, 有什么关系?
因此,当锐角A的度数一定时,无论这个直角三角形大小如何,∠A的对边与斜边的比都是一个.
2.定义:
如下图,在△ABC中∠C=90°,∠A、∠B、∠C的对边分别用a、b、c来表示,则:
(1)把∠A的与的比叫做∠A的正弦,记作sinA,即sinA= =.
(2)类似的,把∠A的与的比叫做∠A的余弦,记作cosA,即cosA= =.
(3)把∠A的与的比叫做∠A的正切,记作tanA,即tanA= =.
2.在Rt△ABC中,∠C=90°,AB=10,sinB= ,求BC的长.
3.如图,若∠ACB=90°,CD⊥AB,AC=5,CD=3,求sinB的值.
注意:
(a)sinA不是一个角,是一个比值;(b)sinA是一个整体,不是sin与A的乘积;
(c)sinA没有单位;(d)若一个角是用三个字母表示的,那么角的符号不能省略,例如:∠ABC的余弦,记做cos∠ABC.
3.如右图,请分别表示出∠B的三角函数.
三、例题1:如图所示,在Rt△ABC中,求:(1)sinA、cosA、tanA的值;(2)sinB、cosB、tanB的值.
四、达标练习:
1.分别求出图中∠A与∠B的三角还数值.
2.在Rt△ABC中,∠C=90°,BC=6,sinA=,求cosA与tanB的值.
3.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,D为AC的中点,求cos∠DBC的值.
五、课堂小结:这节课你收获了什么?
六、作业布置:(任选两题)
1.在等腰△ABC中,AB=AC=5,BC=6,求∠B的三角函数值.