圆中最值问题10种求法
有关圆的最值问题几种类型及方法

有关圆的最值问题几种类型及方法圆形是初中数学中常见的图形,它有很多特殊的性质。
其中一项重要性质就是它具有最小和最大值。
在圆形的几何学中,有不同的最值问题类型,本文将介绍其中几种类型和解决方法。
问题类型1. 半周长最大问题描述:在一个固定的圆中,找到一个周长为定值的最大圆。
解决方法:利用相似三角形比值和性质,通过求出最大圆的半径得出周长最大的圆。
2. 面积最大问题描述:在一个固定的圆中,找到面积最大的圆。
解决方法:通过对已知条件进行约束,运用微积分的极值问题求解最大面积圆的面积。
3. 离心率最大问题描述:在一个固定的圆中,找到一点使得其到圆的距离与到圆心的距离之比最大。
解决方法:通过对于点到圆心的距离公式的推导,结合相关性质,使用数学分析方法解决问题。
4. 切线长度最短问题描述:如何从一个外圆割出一个内接圆的形状,且切线的长度最短。
解决方法:通过运用切线长度公式和勾股定理,推导出最短切线的长度公式,通过微积分求解最小值。
解决方法方法1:运用几何知识在解决这些最值问题时,通过几何知识、特殊性质、面积比和相似性质等直观的方法,可以解决一些简单的最值问题。
例如,第一类问题可以通过找到两个相似三角形的比值,解出最大圆的半径;第二类问题可以通过勾股定理求出直角三角形的面积比例。
方法2:微积分方法对于一些复杂的最值问题,采用微积分的方法计算可能更为简便。
通过设出方程,运用微积分的极值问题方法求出函数的最值点,并验证其确为最值点,就可以直接求解最大或最小值。
例如,第二类问题就是一个极大值问题,可以通过设定面积函数,求该函数的一阶和二阶导数,分析得出最大值点的位置和最大面积值。
方法3:从物理学的角度出发物理学的一些基本定理也可以用来解决圆的最值问题。
例如,第一类问题中,最大圆对应的角速度是圆心角的一半,这是由圆周运动的基本物理定律所得。
将圆周运动和相似三角形的比例性质联系起来,可以解出最大圆的半径。
圆是初中数学中比较基础的图形,但在解决圆的最值问题时,需要综合运用几何知识、微积分知识和物理学知识等多方面的知识。
一道圆最值问题的十种解法

本题是一道数 学竞赛题, 适 合于初 中生与 高 中 生 .初 审 此 题 , 我 们 很 自然 地 想 到 要 用 到 圆的几何性质来解 决此题. 最 小值 问题 比较 简 单 ,当 点 P在 圆 上 运 动 的 时 候 , 我 们 会 发 现 如 果 点 P异 于 、B两 点, 则P AB可组 成 一个 三角形, 此时 PA+ P B>A B.因此最 小值是 当点 P在点 或者点 B时取 到, 长度 为 6 . 求 最大值是一个难 点, 是 我们 本次研究 的 主题 . 笔者 就求 最大 值 问题给 出了 1 0种 解 法 . 这1 0 种 解 法 涉 及 到 了 平 面 几 何 、 三 角 、 解 析 几何 、函数 、微积分 、不等式等领域 . 本题 是 个很 好 的载体, 有助于我t r J ) J n 深对数学思想 及 方 法 的认 识 . 几 何 方 法 解 法 一 :由观 察 ,我 们 猜 想 点 J F ) 在 图1 所 示 点 Q位 置 ( 即弦A B 的中垂 线与优 弧 A召的 交 点) 时, P +P B取得 最大 值. 这样 猜想 的 直 观 依 据 是 点 P在 、B 时 取 得 最 小 值 ,由 圆
弧 AQ且 J F ) A < QA = QB < P B 的情况 ( 不
满足 此 条 件 的J F ) 显然 无 需 考 虑) . 延 长 P 到
点 , 使得 C = A Q, 连 结 Q.在 BP上 取
一
一
、
点 D, 使得 BD = B Q. 连 结 DQ.由辅助线
我f 门有 尸A + J F ) B = QA + QB — CP + DP,
数 学教 学
5 一
线互相 垂直 的四边形.我们 知道, 这种 四边形 有 一 个 几 何 性 质 :四边 的平 方 和等 于 8 R2 或 者 说对 角线 被分成 的四部 分 的平方 和等 于 4 R . 因此我们有 A C 2 +BC2 +p i C2 +pC2 :4 R2 , 则
借助几何性质解决圆中的最值问题

类型四 利用“数形结合方法”解决直线与圆的问题
例4 已知圆C:(x+2)2+y2=1,P(x,y)为圆C上任一点. (1)求xy--21的最大、最小值; 解 法一 设 k=xy--21, 则 y-2=kx-k,即 kx-y+2-k=0. ∵P(x,y)为圆 C 上任一点, ∴圆心(-2,0)到直线 kx-y+2-k=0 的距离 d=|-2k1++2k-2 k|=|21-+3kk2|≤1,
索引
∴3t++1t=-12.∴t=-73, ∵CA= 1+4= 5, ∴直线 l 被圆 C 截得的弦长的最小值为 2 9-5=4.
索引
思维升华
当直线与圆相交时,弦长最短,需使弦心距最大,然后根据垂径定理由垂直 得中点,进而利用弦长的一半,圆的半径及弦心距构造直角三角形,利用勾 股定理解决问题.
索引
借助几何性质解决圆中的最值问题
索引
高中数学中,在研究圆的相关问题时,最值问题又是研究的重点和热点,现把 常见的与圆相关的最值问题总结如下.希望对学生有些启发.
索引
类型一 “圆上一点到直线距离的最值”问题
例 1 已知圆 C 经过(2,5),(-2,1)两点,并且圆心 C 在直线 y=21x 上. (1)求圆 C 的方程; 解 点(2,5)与点(-2,1)连线的中点为(0,3),中垂线方程为 y=-x+3,
索引
即|2-3k|≤ 1+k2, 平方得 8k2-12k+3≤0, 解得3-4 3≤k≤3+4 3, 故xy--21的最大值为3+4 3,最小值为3-4 3;
索引
(2)求x-2y的最大、最小值.
解 设b=x-2y,即x-2y-b=0. ∵P(x,y)为圆C上任一点, ∴圆心(-2,0)到直线的距离 d= 12|+-(2--b2| )2=|b+52|≤1,即|b+2|≤ 5, 则-2- 5≤b≤ 5-2,
数学圆和(面积)的最值问题

数学圆和(面积)的最值问题数学圆的最值问题引言数学中,圆是一个重要的几何概念。
在研究圆的性质和应用时,我们经常会遇到关于圆的最值问题,即在一定的条件下,如何找到圆的面积或其他性质的最大值或最小值。
本文将探讨数学圆的最值问题,并介绍一些解决这类问题的方法和策略。
圆的面积最值问题在圆的最值问题中,我们常常涉及到最大面积和最小面积两种情况。
下面分别讨论这两种情况。
圆的最大面积当我们固定圆的半径时,要找到圆的最大面积,需要确定这个半径的取值范围。
根据数学知识,圆的面积公式为:A = πr²,其中π是一个常数,r代表半径。
当半径r取值为正数时,圆的面积是一个关于r的增函数。
因此,我们可以通过求导数的方法来找到最大面积。
具体步骤如下:1.对面积公式A = πr²求导,得到A' = 2πr。
2.令A' = 0,解方程得到r的临界点。
3.将临界点带入面积公式,找到最大面积。
圆的最小面积当我们固定圆的周长时,要找到圆的最小面积,也需要确定周长的取值范围。
根据数学知识,圆的周长公式为:C = 2πr。
由于周长是一个固定值,我们可以将周长公式改写为:r = C / (2π),然后将该式代入圆的面积公式A = πr²中,得到面积的表达式只包含C一个变量。
通过对这个新的面积表达式进行求导和求临界点,可以找到圆的最小面积。
结论数学圆的最值问题是一个有趣且实用的数学问题。
通过应用求导等数学方法,我们可以找到圆的最大面积和最小面积。
在实际应用中,我们可以将这些方法应用于设计圆形物体的最优尺寸、优化圆形线路的长度等问题中,为实际生活带来便利和效益。
参考文献:数学圆的性质与应用,XXX,XX出版社,20XX年。
数学分析教程,XXX,XX出版社,20XX年。
以上是本文对数学圆的最值问题的讨论和总结,希望对读者有所帮助。
初中数学圆中最值定值问题专题(推荐)

初中数学圆中最值定值问题专题(推荐)圆中最值域定值问题研究类型一:例1:在图中,AB是⊙O的直径,AB=10cm,M是半圆AB的一个三等分点,N是半圆AB的一个六等分点,P是直径AB上一动点,连接MP、NP。
求MP+NP的最小值。
例2:已知圆O的面积为3π,AB为直径,弧AC的度数为80度,弧BD的度数为20度,点P为直径AB上任一点。
求PC+CD的最小值。
例3:在菱形ABC中,∠A=60度,AB=3,圆A、圆B的半径为2和1,P、E、F分别是CD、圆A和圆B上的动点。
求PE+PF的最小值。
类型二:折叠隐圆基本原理】:点A为圆外一点,P为圆O上动点,连接AO并延长交圆于P1,则AP的最小值为AP2,最大值为AP1.例1:在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△XXX沿MN所在的直线翻折得到△A′MN,连接A′C,求A′B长度的最小值。
例2:已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(1,1),点B(5,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,则CB’的最小值为多少?例3:在四边形ABCD中,AD∥BC,∠A=90,AD=1,AB=2,BC=3,P是线段AD上一动点,将△ABP沿BP所在直线翻折得到△QBP,则△CQD的面积最小值为多少?类型三:随动位似隐圆例:在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=6,点D是边AC上一点且AD=23,将线段AD绕点A旋转得线段AD′,点F始终为BD′的中点,则将线段CF最大值为多少?分析]:易知D’轨迹为以A为圆心AD为半径的圆,则在运动过程中AD’为定值23,故取AB中点G,则FG为中位线,FG=3,故F点轨迹为以G为圆心,3为半径的圆。
问题实质为已知圆外一点C和圆G上一点F,求CF的最大值。
方法归纳:1.如图,点A和点O1为定点,圆O1半径为定值,P为圆O1上动点,M为AP中点。
与圆有关的最值问题

O B
2
P
r 2 po r (1 2sin ) po 1 1 2( ) po 2 2 2 设po t (t 1) 则PAPB (t 1)(1 t ) t t 3 2 2 3
C O x
3 5. 易得 PM 的最小值为 10
二、利用所求式的几何意义转化为线 性规划问题求最值
例2:若实数x、y满足 x y 2x 4 y 0 求(1)x-2y的最大值.
2 2
y 1 ( 2) x 2
的取值范围。 2 2 ( x 2) ( y 1) 的取值范围。 ( 3) (4) x y 1 的取值范围。
2 2 ( x 2) ( y 1) (3)
表示为圆上任意一点P到点A(2,1)距离的平方
P
因为 所以
PA [CA 5, CA 5]
. C
A(2,1)
PA2 ( x 2)2 ( y 1)2 [50 10 2,50 10 2]
(4) 因为圆上任一点P(x,y)到直线 x y 1 0 的距离
E M A N G C F H O x
解(1)令圆心C到弦EF的距离为 EF+GH 2( 4 d12 4 d 2 2 )
d1,到弦GH的距离为 d2,则
又 d12 d22 CA2 1
4 d12 4 d22 4 d12 4 d22 2 2
(当且仅当 d1 d 2
2 取等号) 2 故EF+GH 2 8 1 14 2
与圆有关的最值问题

与圆有关的最值问题圆是自然界中优美的图形之一,也是数学中的重要研究对象.由于其图形的对称性和完美性,很多与圆有关的最值问题都可以运用圆的图形特点,利用数形结合来求解.当然,我们也会用到函数思想和基本不等式来处理与圆有关的最值问题.在处理与圆有关的最值问题时,应把握两个“思想”:几何思想和代数思想.所谓几何思想,即利用圆心,将最值问题转化为与圆心有关的问题.所谓代数思想,即利用圆的参数方程.【与圆有关的最值类型】①一定点与定圆上动点间距离的最大与最小值.处理方法:利用定点到圆心的距离加(减)圆的半径. ①定直线与定圆上动点间距离的最大与最小值. 处理方法:定点到圆心的距离加(减)圆的半径. ①分别在两定圆上的两动点间距离的最大与最小值. 处理方法:圆心距加(减)两圆的半径.例1.(1)圆x 2+y 2=1上点到直线l :3x +4y -25=0距离的最大和最小值分别是( ).A.6;3.B.6;4.C.5;3.D.5;4.(2)已知点P (a ,b )在圆x 2+y 2-2x +4y -20=0上,则a 2+b 2的最小值是_____. 解:(1)法1.圆心O 到直线的距离为d=25√32+42=5,而圆的半径为1,① 圆x 2+y 2=1上点到直线l :3x +4y -25=0距离的最大和最小值分别是5+1=6和5-1=4.故应选B.法2.设圆x 2+y 2=1上的点P(cos θ,sinθ),点P 到直线l :3x +4y -25=0距离d ′, 则 d ′=|3cosθ+4sinθ−25|5=|sin (θ+φ)−5|,① −1≤sin (θ+φ)≤1,① 圆x 2+y 2=1上点到直线l :3x +4y -25=0距离的最大和最小值分别是6和4.故应选B.(2)法1. ① 圆x 2+y 2-2x +4y -20=0的圆心和半径分别为(1,-2),r=5.而圆心到原点的距离d=√5,① 5−√5≤√a 2+b 2≤5+√5,⇒30−10√5≤a 2+b 2≤30+10√5. 因此,a 2+b 2的最小值是30-10 5.法2. ① 点P (a ,b )在圆x 2+y 2-2x +4y -20=0上,可设P(1+5cos θ,-2+5sin θ), ① a 2+b 2=(1+5cos θ)2+(-2+5sin θ)2=30+10√5sin (θ+φ),① −1≤sin (θ+φ)≤1, ① a 2+b 2的最小值是30-10 5.例2.在圆x 2+y 2=4上且与直线4x+3y -12=0距离最小的点的坐标是( ). A.(85,65). B.( 85,−65). C.( −85,65) D.( −85,−65). 解:法1.过原点且与直线4x+3y -12=0垂直的直线为3x -4y=0, 联立{x 2+y 2=4,3x −4y =0,⇒{x =85y =65或{x =−85y =−65.结合图4.7—1知选A. xyO 4x+3y -12=0CAE FGHxOM N y 图3.7—2法2.由圆的几何性质可知,所求点为与直线4x+3y -12=0平行且与圆x 2+y 2=4相切的切点.设切线方程为4x+3y+c=0,由|c|5=2,⇒c =∓10.结合图3.7—1 知,c=10.联立{4x +3y −10=0,x 2+y 2=4,⇒{x =85y =65, 故应选A. 法3.对于选择题,可结合图形知所求点应在第一象限内,再看选择支,极易确定选A.想一想①:1.圆x 2+y 2=1上与直线4x -3y -12=0距离最短的点坐标是 .2.已知A (0,1),B (2,3).Q 为圆C:(x -3)2+y 2=1上任一点,则S ΔOAB 的最小值为 .3.若实数x 、y 满足x 2+y 2+2x -4y=0,求x -2y 的最大值.例2.(1)已知a 、b 是单位向量且a ①b.若向量c 满足|c -a -b |=1,则|c |的取值范围是 .(2)已知点A(-1,1)和圆C :(x -5)2+(y -7)2=4.一束光线从A 点经过x 轴反射到圆周C 的最短路程是( ).A.10.B.2√6.C.4√6.D.8. 解:(1) ① a 、b 是单位向量且a ①b ,可设a=(1,0),b=(0,1),c=(x ,y),又① |c -a -b |=1,① (x -1)2+(y -1)2=1. ① 原点O 到圆心(1,1)的距离为√2.① |c | =√x 2+y 2∈[√2−1,√2+1].(2)由光学原理知,点A 关于x 轴的对称点A ′(-1,-1)在反射线上,① 光线从A 点经过x 轴反射到圆周C 的最短路程是过A ′且与圆相切的切线段长|A ′T|=√(−1−5)2+(−1−7)2−4= 4√6.应选C.例3.已知圆C :(x+2)2+y 2=4,过点A(-1,0)作两条互相垂直的直线l 1,l 2,l 1交圆C 与E 、F两点,l 2交圆C 与G 、H 两点.(1)EF+GH解:(1)令圆心C 到弦EF 的距离为d 1,到弦GH 则EF +GH =2(√4−d 12+√4−d 22),又d 12+d 22=CA 2=1由:√4−d 12+√4−d 222≤√8−(d 12+d 22)2=√8−12= √142,(当且仅当d 1=d 2= √22取等号).故EF +GH ≤√14. (2)① EF ⊥GH ,① S 四边形EFGH =12EF ×GH =2(√4−d 12√4−d 22 ≤2×8−(d 12+d 22)2=7.(当且仅当d 1=d 2= √22取等号).例4(1)如图3.7—3(1).点A 的坐标为(3,0),点B 为y 轴正半轴上的一点,点C 是第一象限内一点,且AC=2.设tan①BOC=m ,则m 的取值范围是_________.(2)如图3.7—3(2).在边长为1的等边①OAB 中,以边AB 为直径作①D , C 为半圆弧AB 上的一个动点(不与A 、B 两点重合).BC=a ,AC=b ,求a+b 的最大值.(3)如图3.7—3(3).线段AB=4,C 为线段AB 上的一个动点,以AC 、BC 为边作等边①ACD 和等边①BCE ,①O 外接于①CDE ,则①O 半径的最小值为( ). A.4. B. 2√33. C. √33. D.2._ B_y_ COED解:(1)由已知,点C 是第一象限内在圆(x -3)2+y 2=4点,结合图2.8—4(1)知,tan①AOC ∈(0,2√55],∵①AOC 与①BOC 互余,① m ≥√52. (2)① AC 2+BC 2=AB 2,即a 2+b 2=1 由柯西不等式得,(12+12)(a 2+b 2)≥(a+b)2, ① (a+b)≤√2,故 a +b 的最大值为√2.(3)设外接圆的半径为R ,由已知可得∠DOE =600.再由正弦定理知DE=2Rsin600,① R=√33DE .在∆DCE 内由余弦定理可得DE 2=DC 2+CE 2-DC ∙CE =(DC+CE)2-3DC ∙CE =16-3DC ∙CE ≥16-3(DC+CE 2)2=4,即DE ≥2. ① R=√33DE ≥2√33.应选B.想一想①:1.如图3.7—4.①M ,①N 的半径分别为2cm ,4cm ,圆心距MN=10cm .P 为①M 上的任意一点,Q 为①N 上的任意一点,直线PQ 与连心线所夹的锐角度数为α,当P 、Q 在两圆上任意运动时,tan α的最大值为( ).A.√612B.43.C.√33.D.34.2.如图3.7—5.①BAC=600,半径长为1的圆O 与①BAC 的两边相切, P 为圆O 上一动点,以P 为圆心,PA 长为半径的圆P 交射线AB 、AC 于D 、E 两点,连接DE ,则线段DE 长度的最大值为( ). A.3. B.6. C. .3√32.D. 3√3.例5.(1)过点M(−2,,0)的直线l 与曲线y=√4−x 2相交于A ,B 两点,当∆ABO (O 为坐标原点)的面积最大时,直线l 的斜率为 . (2)两个圆C 1:x 2+y 2+2ax+a 2-4=0(a ∈R )与圆C 2:x 2+y 2-2by+b 2-1=0(b ∈R )恰有三条公切线,则a+2b 的取值范围为 . 解:(1) ① 曲线y=√4−x 2的方程可变形为x 2+y 2=4(y ≥0),① 此曲线表示以原点为圆心,2为半径,在x 轴及其上方的半圆,如图3.7—6.① S ∆ABO =12OA ×OB ×sin∠AOB =2sin∠AOB , 当∆ABO 的面积最大时,∠AOB =900,此时∆ABO为等腰直角三角形,① 点O 到直线AB 的距离为√2. 设直线AB 的方程为 y=k(x+2√2),即kx -y+2√2k =0, ①2√2k √1+k 2=√2,解得k=±√33,又由已知k>0,① k= √33.(2) ① 圆C 1的圆心为C 1(-a ,0),半径为2;圆C 2的圆心为C 2(0,b),半径为1.l xy MABO 图3.7—6图3.7—4P QMNA D E BCP. . O图3.7—5由已知两圆外切,① | C 1 C 2|=2+1=3,即a 2+b 2=9.令a+2b=m ,则 √1+4≤3,解得 −3√5≤m ≤3√5,① a+2b 的取值范围为[−3√5,3√5].习题3.71.已知A 、B 两点的坐标分别为(-2,0)、(0,1),①C 的圆心坐标为(0,-1),半径为1,D 是①C 上的一个动点,射线AD 与y 轴交于点E ,则①ABE 面积的最大值是( ).A.3.B. 103. C.103. D.4. 2.圆x 2+y 2-2x -2y+1=0上的点到直线2x y -=距离的最大值是( ).A.2.B.1+√2.C.2+√22. D.1+2√2.3.由直线y=x +1上一点向圆C :(x -3)2+y 2=1引切线,则切线长的最小值为 .4.已知P 为直线y=x +1上一动点,过P 作圆C :(x -3)2+y 2=1的切线PA ,PB(A 、B 为切点),则四边形PACB 面积的最小值为 .5.求过直线2x+y+4=0和圆x 2+y 2+2x -4y+1=0的交点,且满足下列条件之一的圆的方程.①过原点;①有最小面积.6.求圆(x -2)2+(y+3)2=4上的点到直线x -y +2=0最远和最近的距离.7.已知圆M 过两点C(1,-1),D(-1,1),且圆心M 在x+y -2=0上. (1)求圆M 的方程. (2)设P 是直线3x+4y+8=0上的动点,PA ,PB 是圆M 的两条切线,A ,B 为切点.求四边形PAMB 面积的最小值.8.在平面直角坐标系中,M(3,4),P 是以M 为圆心,2为半径的①M 上一动点,A(-1,0)、B(1,0),连接PA 、PB ,求PA 2+PB 2最大值.9.过定点M 的直线l 1:ax+y -1=0与过定点N 的直线l 2:x - ay +2a -1=0交于点P.求|PM|∙|PN|的最大值.【参考答案】想一想①:1. (45,−35). 2.4+√2. 3.10.想一想①:1.D.考虑PQ 为两圆的内公切线时的情形.2.在△ADE 中,由正弦定理得|DE|=2Rsin600,其中R 为△ADE 的外接圆半径.如图2.8—4(3)知,AP 的最大值为|OP|+1=3,① |DE|max =3√3. 故应选D.习题3.71. A.2. B.3. √7.4. √7.5.(1)设圆的方程为x 2+y 2+2x -4y+1+λ(2x +y +4)=0,① 所求圆过原点,得λ=−14. ①x 2+y 2+32x+74y =0为所求.(2)设圆的方程为x 2+y 2+2x -4y+1+λ(2x +y +4)=0,① R 2=D 2+E 2−4F 4=5λ2−16λ+164,① 当 λ=85时R 2最小. ① x 2+y 2+265x −125y +375=0为所求6.7√2−42;7√2+42. 7.(1)设圆M 的方程为:(x -a)2+(y -b)2=r 2(r >0).根据题意得, {(1−a)2+(1+b)2=r 2,(−1−a)2+(1−b)2=r 2,a +b −2=0. 解得a=b=1,r=2.故所求圆M 的方程为(x -1)2+(y -1)2=4.(2)① 四边形PAMB 的面积S=S ①PAM +S ①PBM =|AM|·|PA|+|BM|·|PB|,又|AM|=|BM|=2,|PA|=|PB|,① S=2|PA|,而|PA|=√|PM|2−|AM|2=√|PM|2−4, 即S=2√|PM|2−4.因此要求S 的最小值,只需求|PM|的最小值即可, 即在直线3x+4y+8=0上找一点P,使得|PM|的值最小, ① |PM|min =√32+42=3.因此,四边形PAMB 面积的最小值为S=2√|PM|2−4=2√5.8.设P(3+2cos θ,4+2sin θ),则PA 2+PB 2=60+24cos θ+32sin θ=60+40sin(θ+φ)≤100. ① PA 2+PB 2最大值为100.9. 1. 由已知有,直线l 1过定点M(0,1),直线l 2过定点N(1,2),且|MN|=√2,l 1⊥l 2.由平面几何的知识知,点P 在以MN 为直径的圆上运动.设点P 到MN 的距离为PD ,则有|PM|∙|PN|=|MN||∙|PD| =√2∙|PD|,∴ 当|PD|取最大值√22 时,(|PM|∙|PN|)max =√2∙√22=1.。
圆中最值的十种求法

所以 所以CQ=CP
因为CP是⊙O的动弦 最大值为⊙O的直径
所以CP的最大值为5
此时当点P运动到CP为⊙O的直径时
CQ的最大值为×5=
五、利用弧的中点到弦的距离最大求最值
5.如图:已知⊙O的半径为2,弦BC的长为2,点A为弦BC所对优弧上任意一点,(B、C两点除外),求△ABC面积的最大值.
[分析]:连接AQ、PA,可知AQ⊥PQ. 在Rt△PQA中,PQ=,求PQ的最小值转化为求PA的最小值,根据垂线段最短易求PA的最小值为2.
解 所以PQ⊥AQ
在Rt△APQ中,PQ2=PA2-AQ2
即PQ=
又因为A(-3,-2) ,根据垂线段最短。
所以PA的最小值为2
所以PQ的最小值=
三、利用两点之间线段最短求最值
3.如图:圆锥的底面半径为2,母线PB的长为6,D为PB的中点,一只蚂蚁从点A出发,沿着圆锥的侧面爬行到点D,则蚂蚁爬行的最短路程为( )
A. B.2 C.3 D.3
1
连接PA,过O作OE⊥CD,垂足为E
在△OCD中,因为∠AOC=60° 所以∠D=∠C=30°
在Rt△ODE中 cos30°=
即DE=2×cos30°= 所以CD=2DE=2
即PA+PC的最小值为2.
二、利用垂线段最短求最值
2.如图:在直角坐标系中,点A的坐标为(-3, -2),⊙A的半径为1,P为x轴上一动点,PQ切⊙A于点Q,则PQ长度的最小值为 .
[分析]:因为圆锥的侧面是曲面蚂蚁从A爬行到点D,不好求爬行的最小值,要把立体图形展开为平面图形,再利用两点之间线段最短来解决问题.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆中最值的十种求法
在圆中求最值是中考的常见题型,也是中考中的热点、难点问题,有的学生对求最值问题感到束手无策,主要原因就是对求最值的方法了解不多,思路不够灵活.现对在圆中求最值的方法,归纳如下:
一、利用对称求最值
1.如图:⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值.
[分析]:延长AO交⊙O于D,连接CD交⊙O于P,即此时PA+PC最小,且PA+PC的最小值就等于弦CD的长.
解:延长AO交⊙O于D,连接CD交OB于P
连接PA,过O作OE⊥CD,垂足为E
在△OCD中,因为∠AOC=60°所以∠D=∠C=30°
在Rt△ODE中 cos30°=
即DE=2×cos30°= 所以CD=2DE=2
即PA+PC的最小值为2.
二、利用垂线段最短求最值
2.如图:在直角坐标系中,点A的坐标为(-3,-2),⊙A的半径为1,P为x轴上一动点,PQ切⊙A
于点Q,则PQ长度的最小值为 .
[分析]:连接AQ、PA,可知AQ⊥PQ. 在Rt△PQA中,PQ=,求PQ的最小值转化为求PA的最小值,根据垂线段最短易求PA的最小值为2。
解:连接PA、QA
因为PQ切⊙A于点Q 所以PQ⊥AQ
在Rt△APQ中,PQ2=PA2-AQ2
即PQ=
又因为A(-3,-2) ,根据垂线段最短。
所以PA的最小值为2
所以PQ的最小值=
三、利用两点之间线段最短求最值
3.如图:圆锥的底面半径为2,母线PB的长为6,D为PB的中点,一只蚂蚁从点A出发,沿着圆锥的侧面爬行到点D,则蚂蚁爬行的最短路程为( )
A.B.2 C.3 D.3
[分析]:因为圆锥的侧面是曲面蚂蚁从A爬行到点D,不好求爬行的最小值,要把立体图形展开为平面图形,再利用两点之间线段最短来解决问题.
解:圆锥的侧面展开图如图2,连接AB
根据题意得:弧AC的长为2πr=2π·2=4π,PA=6
因为4π= 所以n=120°即∠APB=60°又因为PA=PB
所以△PAB是等边三角形因为D为PB中点所以AD⊥PB PD=DB=3
在Rt△PAD中,AD=,故选C。
四、利用直径是圆中最长的弦求最值
4.如图:半径为2。
5的⊙O中,直径AB的两侧有定点C和动点P,已知BC:CA=4:3,点P在劣弧AB 上运动,过点C作CP的垂线,与PB的延长线交于点Q,
(1)求∠P的正切值;
(2)当CP⊥AB时,求CD和CQ的长;
当点P运动到什么位置时,CQ取得最大值,并求出此时CQ的长.
[分析]:易证明△ACB∽△PCQ,所以,即CQ=PC。
当PC最大时,CQ最大,而PC是⊙O的动弦,当PC是⊙O的直径时最大。
五、利用弧的中点到弦的距离最大求最值
5.如图:已知⊙O的半径为2,弦BC的长为2,点A为弦BC所对优弧上任意一点,(B、C两点除外),求△ABC面积的最大值。
[分析]:设BC边上的高为h
因为S△ABC=BC h=×2h=h
当h最大时S△ABC最大,当点A在优弧的中点时h最大。
解:当点A为优弧的中点时,作AD⊥BC于D
连接BO 即BD=CD=
在Rt△BDO中,OD2=OB2-BD2=22-()2=1
所以OD=1 所以AD=2+1=3
所以S△ABC=×BC·AD=×2×3=3
即△ABC面积的最大值为3
六、利用周长一定时,圆的面积最大求最值
6.用48米长的篱笆材料,在空地上围成一个绿化场地,现有两种方案:一种是围成正方形的场地,另一种是围成圆形场地,试问选用哪一种方案,围成的场地面积较大?并说明理由.
[分析]:周长一定的几何图形,圆的面积最大.
解:围成圆形场地的面积较大
设S1、S2分别表示围成的正方形场地、圆形场地的面积
则S1=()2=144 S2=π·()2=
因为π<4 所以>
所以>=144 所以S2>S1 所以应选用围成圆形场地的方案面积较大
七、利用判别式求最值
7.如图:在半径为1的⊙O中,AB是弦,OM⊥AB,垂足为M,求OM+AB的最大值。
[分析]:可设AM=x,把OM用x的代数式表示出来,构造关于x的一元二次方程,然后利用判别式来求最值。
解:设AM=x,在Rt△OAM中
OM=
所以OM+AB=+2x=a
整理得:5x2-4ax+(a2-1)=0
因为△=(-4a)2-4×5×(a2-1)≥0
即a2≤5 所以a≤
所以OM+AB的最大值为
八、利用一条弧所对的圆周角大于圆外角求最值
8.如图:海边立有两座灯塔A、B,暗礁分布在经过A、B两点的弓形(弓形的弧是⊙O的一部分)区域
内,∠AOB=80°,为避免触礁,轮船P与A、B的张角∠APB的最大值为。
[分析]:连接AC,易知∠ACB=∠AOB=40°,又因为∠ACB≥∠P,所以∠P的最大值为40°。
解:如图:连接AC,根据圆周角定理可知
∠ACB=∠AOB=×80°=40°
又因为∠ACB≥∠P 即∠APB≤40°
所以∠APB的最大值为40°
九、利用经过⊙O内一定点P的所有弦中,与OP垂直的弦最短来求最值
9.如图:⊙O的半径为5cm,点P为⊙O内一点,且OP=3cm,则过点P的弦AB长度的最小值为 cm。
[分析]:过P作AB⊥OP,交⊙O于A、B,则AB的长最小。
解:在Rt△OAP中,AP=
所以AB=2AP=2×4=8
所以AB的最小值为8
十、利用经过圆外一点与圆心的直线与⊙O的两个交点与点P的距离最大或最小求最值
10.如图:点P为⊙O外一点,PQ切⊙O于点Q,⊙O的半径为3cm,切线PQ的长为4cm,则点P与⊙O上各点的连线长度的最大值为,最小值为 .
[分析]:过P、O两点作直线交⊙O于A、B,则PA的长度最大,PB的长度最小.
解:连接OQ 因为PQ切⊙O于Q
所以OQ⊥PQ
在Rt△PQO中 PQ2+OQ2=OP2
即42+32=OP2 所以OP=5
所以PB=5-3=2 PA=6+2=8
所以点P与⊙O上各点连线长度的最大为8cm,最小值为2cm。