初中数学竞赛必备定理汇总
初中数学竞赛几何中常用的24个必备定理

初中数学竞赛几何中常用的24个必备定理1. 同位角定理:同位角互相相等或互补。
2. 对顶角定理:对顶角相等。
3. 同旁内角定理:同旁内角互补。
4. 外角定理:与一个多边形任意一内角相对的外角相等。
5. 内角和定理:n边形的内角和为180度×(n-2)。
6. 相关角定理:相邻角互补,对顶角互相相等。
7. 垂直直角定理:垂线与直线相交,形成直角。
8. 垂线定理:直线上任意一点向另一直线作垂线,垂线所在直线与原直线垂直。
9. 三角形内角和定理:三角形内角和为180度。
10. 等腰三角形定理:等腰三角形的底角相等。
11. 等边三角形定理:等边三角形的三个内角均为60度。
12. 直角三角形性质:直角三角形斜边平方等于其他两条边平方和。
13. 等角定理:两角相等的两个三角形全等。
14. 外接圆定理:三角形三个顶点到外接圆圆心的距离相等。
15. 中线定理:连接三角形两边的中线相等。
16. 中位线定理:连接三角形两边中点的线段平分第三边。
17. 高线定理:连接三角形顶点与对边垂直的线段相交于三角形内心。
18. 海伦公式:用三角形三条边的长度求其面积:S=sqrt[p(p-a)(p-b)(p-c)],其中p=(a+b+c)/2。
19. 正多边形内角定理:正n边形的内角和为(180度×(n-2))/n。
20. 球面三角形定理:球面三角形三个顶点到球心的距离相等。
三条边为大圆弧。
21. 圆周角定理:圆周角等于对应的弧所夹的圆心角。
22. 切线定理:切线相切于圆,与该切点相切的直线垂直于切线。
23. 弦长定理:在同一圆上,两条弦所夹的圆心角相等,则它们的弦长相等。
24. 弧长定理:同一圆上,两个相等的圆心角所对应的弧长相等。
初中数学竞赛中常用重要定理

初中数学竞赛中常用重要定理1、 梅涅劳斯定理:假如在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、 E 、F 且D 、E 、F 三点共线,则FB AF EA CE DC BD ••=12、 梅涅劳斯定理的逆定理:假如在△ABC 的三边BC 、CA 、AB 或其延长线上 有点D 、E 、F ,且满足FB AF EA CE DC BD ••=1,则D 、E 、F 三点共线。
3、 塞瓦定理:设O 是△ABC 内任意一点,AO 、BO 、CO 分别交对边于N 、P 、 M ,则1=••PACP NC BN MB AM4、 塞瓦定理的逆定理:设M 、N 、P 分别在△ABC 的边AB 、BC 、CA 上,且满足1=••PA CP NC BN MB AM ,则AN 、BP 、CM 相交于一点。
5、 广勾股定理的两个推论:推论1:平行四边形对角线的平方和等于四边平方和。
推论2:设△ABC 三边长分别为a 、b 、c ,对应边上中线长分别为m a 、m b 、m c则:m a =2222221a c b -+;m b =2222221b c a -+;m c =2222221c b a -+ 6、 三角形内、外角平分线定理:内角平分线定理:如图:假如∠1=∠2,则有AC AB DC BD =外角平分线定理:如图,AD 是△ABC 中∠A 的外角平分线交BC 的延长线与D , 则有ACAB DC BD =7、 托勒密定理:四边形ABCD 是圆内接四边形,则有AB ·CD+AD ·BC=AC ·BD8、 三角形位似心定理:如图,若△ABC 与△DEF 位似,则通过对应点的三直线AD 、BE 、CF 共点于P9、 正弦定理、在△ABC 中有R C c B b A a 2sin sin sin ===(R 为△ABC 外接圆半径) 余弦定理:a 、b 、c 为△ABC 的边,则有:a 2=b 2+c 2-2bc ·cosA; b 2=a 2+c 2-2ac ·cosB; c 2=a 2+b 2-2ab ·cosC;10、西姆松定理:点P 是△ABC 外接圆周上任意一点,PD ⊥BC ,PE ⊥AC , PF ⊥AB ,D 、E 、F 为垂足,则D 、E 、F 三点共线,此直线称为西姆松线。
初中数学竞赛几何主要定理

1 几个重要定理
1.正弦定理 △ABC 中,设外接圆半径为R ,则
2.余弦定理 △ABC 中,有关系
a2=b2+c2-2bccosA ; a=ccosB+bcosC ; b2=c2+a2-2cacosB ; 有时也用它的等价形式 b=acosC+ccosA ; c2=a2+b2-2abcosC ; c=acosB+bcosA.
3.梅涅(Menelaus)劳斯定理(梅氏线)
直线截△ABC 的边BC ,CA ,AB 或其延长线于D 、E 、F. 则
4.塞瓦定理(Ceva) (塞瓦点)
设O 是△ABC 内任意一点,AB 、BO 、CO 分别交对边于D 、E 、F ,
则
5.塞瓦定理逆定理
在△ABC 三边所在直线BC 、CA 、AB 上各取一点D 、E 、F ,
若则AD 、BE 、CE 平行或共点。
6.斯特瓦尔特定理
在△ABC 中,若D 是BC 上一点,且BD=p ,DC=q ,AB=c ,AC=b
,则
7.托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆 BD AC AD BC CD AB ∙=∙+∙的充要条件是共圆ABCD
8.西姆松(Simson)定理(西姆松线)
从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。
初中数学竞赛25个定理

初中数学竞赛25个定理
初中数学竞赛25个定理1. 勾股定理:直角三角形斜边的平方等于两腰的平方和。
2. 余弦定理:在任意三角形ABC中,有c²=a²+b²-2abcosC。
3. 正弦定理:在任意三角形ABC中,有a/sinA=b/sinB=c/sinC。
4. 相似三角形的性质:对应角相等,对应边成比例。
5. 平行四边形法则:平行四边形两对邻边互相平分、互为反向共线向量。
6. 向量加减法则:向量之间可以进行加减运算,并且满足交换律、结合律和分配律。
7. 向量数量积公式:设向量a=(x₁,y₁,z₁)和b=(x₂,y₂,z₂),则
a·b=x₁x₂+y₁y₂+z₁z₂。
8. 圆周率π的计算方法及其性质
9. 等差数列通项公式an=a1+(n-1)d
10. 等比数列通项公式an=a1*q^(n-1)
11. 数列求和公式Sn=n(a1+an)/2
12. 柿子(二次根号不含整系数)判别法
13 .一元二次方程求解公式 x=(-b±√(b^2-4ac))/2a
14 .勾股数存在条件与构造方法
15 .正多面体表面积与体积计算公式
16 .圆锥侧面积与体积计算公式
17 .球表面积与体积计算公式
18 .立体图像展开后各部位长度关系推导方法
19 .概率基本定义及常见问题解决思路
20 .排列组合基础知识点总结
21 .函数定义域、值域以及单调性研究方法
22 .极坐标下曲线参数化表示方式
23 .复杂图案拼接技巧总结
24 .代数恒等变换规律总结
25 .空间几何证明题目思考策略。
初中几何常用定理(竞赛)

1已知:AD为BC边上的中线结论:(2)垂线定理已知:AD为BC边上的高结论:(3)梅涅劳斯定理已知:一条直线与△ABC三边或其延长线交于R、Q、P(4)塞瓦定理已知:三角形内部一点O,延长AO、BO、CO交三边于X、Y、Z(5)角平分线定理已知:AD为∠BAC平分线(6)斯特瓦尔特定理已知:D为BC边上一点结论:7结论:(8)外森皮克不等式已知:三角形的面积为S结论:(9)西姆松定理已知:过△ABC外接圆上一点P作三边或其延长线的垂线结论:三个垂足M、N、Q共线(10)海伦公式已知:△ABC三边分别为a、b、c其中(11)燕尾定理已知:△ABC中,AD、BE、CF相交于OAA12已知:△ABC外接圆半径为R,三顶点A、B、C所对的边为a、b、c结论:(13)余弦定理已知:△ABC三顶点A、B、C所对的边为a、b、c结论:(14)张角定理已知:D是△ABC中BC上一点(15)托勒密定理已知:四边形ABCD为圆内接四边形结论:(任意凸四边形ABCD,必有,当且仅当ABCD四点共圆时取等)(16)九点圆定义:三角形三边的中点MHG,三条高的垂足DEF和各顶点与垂心连线的中点PNQ,九点共圆。
结论:①九点圆的半径是三角形外接圆半径的一半;②九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;③九点圆与三角形的内切圆,三个旁切圆均相切(费尔巴哈定理)DFB CCAAB17已知:M是弦AB中点,任意两条弦CD、EF过点M,DE、CF交AB于P、Q(18)欧拉线定义:三角形的外心O、重心G、九点圆圆心V和重心H,依次位于同一直线上,这条直线即欧拉线(19)弦切角定理已知:PA切圆于点A(20)圆幂定理已知:弦AB与弦CD交于点P结论:已知:PQ切圆于Q,割线PB、PD交圆于A、CDAB CPDPB21结论:已知:P是矩形内任意一点结论:(22)维维亚尼定理已知:P是等边△ABC内任意一点,P到三边的距离分别是,h1、h2、h3,等边△ABC的高为H(23)莫利定理已知:△ABC各内角的三等分线交点为D、E、F结论:△DEF为等边三角形(24)笛沙格定理已知:△ABC和△A1B1C1中,AA1、BB1、CC1交于一点P结论:AB与A1B1交点D,BC与B1C1交点E,AC与A1C1交点F,三点共线B DABBCB CB25定义:三角形内到三个顶点距离之和最短的点结论:①若三角形有一个内角≥120°,则此内角的顶点为费马点;②若三角形三各内角均小于120°,以三角形三边向外作等边△ABE、等边△BCF、等边△ACG,AF、BG、CE交于一点P,点P为费马点,此时(26)婆罗摩笈多定理已知:圆内接四边形的对角线互相垂直相交结论:从交点向某一边所引垂线的反向延长线必经过这条边对边的中点(G为AD中点)E。
初中数学竞赛知识点归纳(定理)

1.中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)初中竞赛需要,重要2.托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC初中竞赛需要,重要3.梅涅劳斯定理:设△ABC的三边BC、CA、AB或其延长线和一条不经过它们任一顶点的直线的交点分别为P、Q、R则有BPPC×CQQA×ARRB=1初中竞赛需要,重要4.梅涅劳斯定理的逆定理:(略)初中竞赛需要,重要5.梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q、∠C的平分线交边AB于R,、∠B的平分线交边CA于Q,则P、Q、R 三点共线。
不用掌握6.梅涅劳斯定理的应用定理2:过任意△ABC的三个顶点A、B、C作它的外接圆的切线,分别和BC、CA、AB的延长线交于点P、Q、R,则P、Q、R三点共线不用掌握7.、塞瓦定理:设△ABC的三个顶点A、B、C的不在三角形的边或它们的延长线上的一点S连接面成的三条直线,分别与边BC、CA、AB或它们的延长线交于点P、Q、R,则BPPC×CQQA×ARRB()=1.初中竞赛需要,重要8.塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中心M不用掌握9.塞瓦定理的逆定理:(略)初中竞赛需要,重要10.塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点这个定理用塞瓦定理来证明将毫无几何美感,应该用中位线证明才漂亮11.塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点。
不用掌握12.西摩松定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线)初中竞赛的常用定理13.西摩松定理的逆定理:(略)初中竞赛的常用定理14.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角15.圆的外切四边形的两组对边的和相等16.弦切角定理弦切角等于它所夹的弧对的圆周角 第一角元形式的梅涅劳斯定理 且因为AF=BF 所以AF/FB必等于1 所以AF=FB 所以三角形三条中线交于一点 此外,可用定比分点来定义塞瓦定理: 在△ABC的三边BC、CA、AB或其延长线上分别取L、M、N三点,又分比是λ=BL/LC、μ=CM/MA、ν=AN/NB。
初中数学竞赛公式及定理精简版

一般定理及公式1、多边形内角和定理、多边形内角和定理 n n 边形的内角的和等于(边形的内角的和等于(n-2n-2n-2)³180° )³180°2、推论、推论 任意多边的外角和等于360° 360° 提供以交流互动的形式学习数学相3、等腰梯形性质定理、等腰梯形性质定理 等腰梯形在同一底上的两个角相等等腰梯形在同一底上的两个角相等4、等腰梯形的两条对角线相等、等腰梯形的两条对角线相等5、等腰梯形判定定理、等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形在同一底上的两个角相等的梯形是等腰梯形6、梯形中位线定理、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半并且等于两底和的一半 L= L=(a+b a+b))÷2 S=L³h 7、比例的基本性质、比例的基本性质 如果a:b=c:d,a:b=c:d,那么那么ad=bc ad=bc 数如果ad=bc,ad=bc,那么那么a:b=c:d8、合比性质、合比性质 如果a /b=c b=c//d,d,那么(a±b)/b=(c±d)/那么(a±b)/b=(c±d)/那么(a±b)/b=(c±d)/d d9、等比性质、等比性质 如果a /b=c b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a /d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a /d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a1010、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值1111、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值1212、相交弦定理、相交弦定理、相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等圆内的两条相交弦,被交点分成的两条线段长的积相等1313、如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项、如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项、如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项1414、切割线定理:、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项长的比例中项1515、从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等、从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等、从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等1616、如果两个圆相切,那么切点一定在连心线上、如果两个圆相切,那么切点一定在连心线上、如果两个圆相切,那么切点一定在连心线上1717、①两圆外离、①两圆外离、①两圆外离 d d d>>R+r R+r ②两圆外切②两圆外切②两圆外切 d=R+r d=R+r d=R+r 数③两圆相交③两圆相交 R-r R-r R-r<<d <R+r(R R+r(R>>r) ④两圆内切④两圆内切④两圆内切 d=R-r(R d=R-r(R d=R-r(R>>r) r) ⑤两圆内含⑤两圆内含d <R-r(R R-r(R>>r)1818、相交两圆的连心线垂直平分两圆的公共弦、相交两圆的连心线垂直平分两圆的公共弦、相交两圆的连心线垂直平分两圆的公共弦1919、定理、定理、定理 正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形个全等的直角三角形2020、正三角形面积√3a/、正三角形面积√3a/、正三角形面积√3a/4 4 4 ,,a 表示边长表示边长2121、弧长计算公式:、弧长计算公式:、弧长计算公式:L=n L=n πR /180 180 4 a3 ~0 @/ M/ q. B4 p7 O2222、扇形面积公式:、扇形面积公式:、扇形面积公式:S S 扇形扇形=n =n πR 2/360=LR 360=LR//2 2 数学论坛2323、内公切线长、内公切线长、内公切线长= d-(R-r) = d-(R-r) = d-(R-r) 外公切线长外公切线长外公切线长= d-(R+r) = d-(R+r)三角函数定理及公式两角和公式sin(A+B)=sin A sin(A+B)=sin A²²cos B+cos A cos B+cos A²²sin B sin(A-B)=sin A sin B sin(A-B)=sin A²²cos B-sin B cos B-sin B²²cos A cos(A+B)=cos A cos(A+B)=cos A²²cos B-sin A cos B-sin A²²sin B cos(A-B)=cos A sin B cos(A-B)=cos A²²cos B+sin A cos B+sin A²²sin B tan(A+B)=(tan A+tan B)/(1-tanAtanB) tan(A-B)=(tan A-tan B)/(1+tan A ²tan B) cot(A+B)=(cot A cot(A+B)=(cot A²²cotB-1)/(cot B+cot A) cot(A-B)=(cot A cotB-1)/(cot B+cot A) cot(A-B)=(cot A²²cot B+1)/(cot B-cot A)倍角公式倍角公式tan 2A=2tan 2A=2²²tan A/(1-tan 2A) cot 2A=(cot 2A-1)/2tan A/(1-tan 2A) cot 2A=(cot 2A-1)/2²²cotAcos 2a=cos 2a-sin 2a=2cos 2a=cos 2a-sin 2a=2²²cos 2a-1=1-2cos 2a-1=1-2²²sin 2a半角公式半角公式sin(A/2)=√((1sin(A/2)=√((1-cos A)/2) sin(A/2)=--cos A)/2) sin(A/2)=--cos A)/2) sin(A/2)=-√((1√((1√((1-cos A)/2) -cos A)/2)cos(A/2)=√((1+cos(A/2)=√((1+cos A)/2) cos(A/2)=-cos A)/2) cos(A/2)=-cos A)/2) cos(A/2)=-√((1+√((1+√((1+cos A)/2) cos A)/2)tan(A/2)=√(((1tan(A/2)=√(((1-cos A)/(1+cos A)) tan(A/2)=--cos A)/(1+cos A)) tan(A/2)=--cos A)/(1+cos A)) tan(A/2)=-√((1√((1√((1-cos A)/(1+cos A)) -cos A)/(1+cos A)) cot cot(A/2)=√((1+cos (A/2)=√((1+cos (A/2)=√((1+cos A)/((1-cos A)/((1-cos A)) cot(A/2)=-A)) cot(A/2)=-A)) cot(A/2)=-√((1+cos √((1+cos √((1+cos A)/((1-cos A))和差化积和差化积2sin A 2sin A²²cos B=sin(A+B)+sin(A-B) 2cos A cos B=sin(A+B)+sin(A-B) 2cos A²²sin B=sin(A+B)-sin(A-B)2cos A 2cos A²²cos B=cos(A+B)-sin(A-B) -2sin A cos B=cos(A+B)-sin(A-B) -2sin A²²sin B=cos(A+B)-cos(A-B)sin A+sin B=2sin((A+B)/2)cos((A-B)/2 cos A+cos B=2cos((A+B)/2)sin A+sin B=2sin((A+B)/2)cos((A-B)/2 cos A+cos B=2cos((A+B)/2)²²sin((A-B)/2)tan A+tan B=sin(A+B)/cos A tan A+tan B=sin(A+B)/cos A²²cos B tan A-tan B=sin(A-B)/cos A cos B tan A-tan B=sin(A-B)/cos A²²cos Bcot A+cot B cot A+cot B²²sin(A+B)/sin A sin(A+B)/sin A²²sin B -cot A+cot B sin B -cot A+cot B²²sin(A+B)/sin A sin(A+B)/sin A²²sin B某些数列前n 项和项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 -1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n313+23+33+43+53+63+…n3=n2(n+1)2/4 =n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3一些平面几何的著名定理1、勾股定理(毕达哥拉斯定理)、勾股定理(毕达哥拉斯定理)2、射影定理(欧几里得定理)、射影定理(欧几里得定理)3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分的两部分4、四边形两边中心的连线的两条对角线中心的连线交于一点、四边形两边中心的连线的两条对角线中心的连线交于一点5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。
初中数学竞赛定理奥赛知识点汇总

初中数学竞赛定理奥赛知识点汇总1、勾股定理(毕达哥拉斯定理)2、射影定理(欧几里得定理)3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分4、四边形两边中心的连线的两条对角线中心的连线交于一点5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。
6、三角形各边的垂直一平分线交于一点。
7、从三角形的各顶点向其对边所作的三条垂线交于一点8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足不L,则AH=2OL9、三角形的外心,垂心,重心在同一条直线上。
10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上12、库立奇*大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。
13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)ss 为三角形周长的一半14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC217、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,21、爱尔可斯定理1:若△ABC和三角形△都是正三角形,则由线段AD、BE、CF的重心构成的三角形也是正三角形。