2013年秋苏科版八年级上6.4用一次函数解决问题(1)教学设计
初中数学八年级上册苏科版6.4一次函数的应用教学设计

一、教学目标
(一)知识与技能
1.让学生掌握一次函数的定义,能够准确识别和描述一次函数的一般形式,即y=kx+b(k≠0,k、b为常数),理解其中k、b分别代表的意义。
2.使学生能够运用一次函数解决实际问题,如直线运动物体的速度与时间关系、单价与数量的关系等,提高学生将数学知识应用于实际生活的能力。
c.课堂练习:设计有针对性的练习题,让学生运用一次函数知识解决问题,巩固所学内容。
d.课堂小结:总结一次函数的性质、图像特征,以及解决实际问题的方法。
3.教学策略:
a.关注学生的个体差异,针对不同学生的学习需求,提供个性化的指导。
b.鼓励学生积极参与课堂讨论,培养他们的表达能力、合作精神。
c.及时反馈学生的学习情况,调整教学进度和策略,确保教学效果。
3.小组合作:引导学生相互讨论,共同解决问题,鼓励学生发表自己的观点。
4.汇报:每个小组汇报自己的讨论成果,其他小组进行评价,教师点评并总结。
(四)课堂练习
1.练习题设计:针对一次函数的知识点,设计不同难度的练习题,包括选择题、填空题、解答题等。
2.学生独立完成:要求学生在规定时间内独立完成练习题,巩固所学知识。
1.激发学生兴趣,引导学生主动参与课堂,通过实例分析,让学生体会一次函数在实际生活中的应用。
2.注重培养学生的抽象思维能力,帮助学生将实际问题转化为数学模型,提高学生解决问题的能力。
3.针对学生对截距、斜率等概念的理解困难,设计具有针对性的教学活动,采用直观演示、互动讨论等方式,帮助学生深入理解。
4.鼓励学生积极思考,勇于提问,充分调动学生的学习积极性,提高课堂效果。在此基础上,关注学生的个体差异,给予每个学生个性化的指导,使他们在原有基础上得到提高。
苏科版数学八年级上册6.4 用一次函数解决问题 学案

6.4用一次函数解决问题(1)一、学习目标:1.能根据实际问题中变量之间的关系,确定一次函数关系式;2.会利用一次函数的关系式解决简单的实际问题.二、学习重、难点:体会模型思想,感悟从数学的角度发现问题、提出问题、解决问题.三、预习体验:(一)列函数关系式解决实际问题:⑴某校办工厂现年产值是30万元,如果每增加1000元,投资一年可增加2500元产值,那么总产值y(万元)与增加的投资额x(万元)之间的函数关系式为.⑵某市电话的月租费是20元,可打200分钟免费电话,超过200分钟后,超过部分每分钟0.13元.①每月电话费y (元)与通话时间x(分钟)之间的函数关系式为;②月通话50分钟的电话费是;250分钟的电话费;③如果某月的电话费是27.8元,该月通话的时间是.(二)电脑情境展示:预习书P155“玉龙雪山”问题,试一试按下面思路来解决:(1)写出雪线海拔y(m)关于时间x(年)的一次函数关系式(2)问题中的“几年后”是不是(1)中的x?“雪线----消失”就是y= .既问题可转化为:当x= 时,y= 。
试一试完成解答:设计意图:用生活中的事例情境引入,让学生感受到数学在生活中的应用,数学源自于生活,又服务于生活。
四、问题探究:问题探究一(电脑展示):阅读问题1,你能按上面解题思路分析吗?问题1:某工厂生产某种产品,已知该工厂正常运转的固定成本为每天12000元,生产该产品的原料成本为每件900元.(1)写出每天的生产成本(包括固定成本和原料成本)与产量之间的函数表达式;(2)如果每件产品的出厂价为1200元,那么每天生产多少件产品,该工厂才有赢利?设计意图:分析实际问题中变量与变量之间的关系,引导学生建立一次函数的模型,从而利用一次函数的相关知识解决实际问题.方法的归纳与提升:把实际问题抽象成函数模型,即用函数思想来解决实际问题。
你能小结“用函数思想解决实际问题”的一般思路吗?特别要注意哪些?练习:在人才招聘会上,某公司承诺:录用后第1年的月工资为2000元,以后每年的月工资比上一年的月工资增加300元.(1)如果某人在公司连续工作n年,那么他在第n年的月工资是多少?(2)如果某人期望第5年的年收入能超过40000元,那么他是否可以在该公司应聘?设计意图:通过探索分析,让学生进一步明确题中的数量关系,揭示其中内在的规律.体验在处理一个实际问题面前,数学所具有的价值和魅力,培养学生的应用意识.问题探究二:(电脑展示)2011年世界园艺博览会在西安隆重开园,这次世园会的个人票设置有三种:票的种类夜票(A)平日普通票(B)指定日普通票(C)单价(元/张)60 100 150某社区居委会为奖励“和谐家庭”,欲购买个人票100张,其中B种票张数是A种票张数的3倍少34张.设需购A种票张数为x,C种票张数为y.(1)写出y与x之间的函数关系式;(2)设购票总费用为w元,求出w (元)与x (张)之间的函数关系式.(3)求当购三种票中夜票最少时的购票总费用。
苏科版数学八年级上册6.4 用一次函数解决问题 教案

§6.4 用一次函数解决问题教学目标1、能通过函数图象获取信息,发展形象思维。
2、能利用函数图象解决简单的实际问题,3、初步体会方程与函数的关系。
能力目标1、通过函数图象获取信息,培养学生的数形结合意识。
2、根据函数图象解决简单的实际问题,发展学生的教学应用能力。
3、通过方程与函数关系的研究,建立良好的知识联系。
情感目标通过函数图象解决实际问题,培养学生的数学应用能力,同时培养学生良好的环保意识和热爱生活的意识。
教学重点一次函数图象的应用教学过程一、新课导入在前几节课里,我们分别学习了一次函数,一次函数的图象,一次函数图象的特征,并且了解到一次函数的应用十分广泛,和我们日常生活密切相关,因此本节课我们一起来学习一次函数图象的应用。
二、讲授新课做一做:小明有100元的零花钱,每月剩余零花钱 y(元)与所用月数x(月)的关系如图所示:(元)(月)(1)观察图象,零花钱可供小明用多少个月?∵x=5时,y=0∴零花钱可用5个月(2)两个月后零花钱为多少? 60元几个月后的零花钱为20元? 4个月(3)图中的点A的坐标是什么?(3,40)是什么含义?3个月时,剩余零花钱40元。
(4)请写出y 与x的函数关系式y=100-20x(0≤x≤5)想一想:O 10203040507080901003456789106021A C B yy=100-20x y=80-10x1、图中的点B 的坐标是什么? 是什么含义 ?(6,20) 6个月时,剩余零花钱20元。
2、图中的点C 的坐标是什么? 是什么含义 ?(2,60)2个月时,两人剩余零花钱都为60元。
练一练:某种摩托车的油箱最多可储油10升,加满油后,油箱中的剩余油量y (升)与摩托车行驶路程x (千米)之间的关系如图所示。
o 1001234567891011200300400500600y根据图象回答下列问题:(1)一箱汽油可供摩托车行驶多少千米?(2)摩托车每行驶100千米消耗多少升汽油?(3)油箱中的剩余油量小于1升时,摩托车将自动报警,行驶多少千米后,摩托车将自动报警?分析:(1)函数图象与x 轴交点的横坐标即为摩托车行驶的最长路程。
苏科版数学八年级上册教学设计《6-4用一次函数解决问题(1)》

苏科版数学八年级上册教学设计《6-4用一次函数解决问题(1)》一. 教材分析《6-4用一次函数解决问题(1)》是苏科版数学八年级上册的教学内容。
本节课主要让学生掌握一次函数的应用,学会利用一次函数解决实际问题。
教材通过丰富的案例和练习题,帮助学生理解和掌握一次函数在解决问题中的作用。
二. 学情分析学生在学习本节课之前,已经掌握了二次函数和一次函数的基本概念,能够理解函数的图像和性质。
但部分学生在解决实际问题时,还不能很好地将函数知识运用其中。
因此,在教学过程中,需要关注学生的认知差异,引导学生将函数知识与实际问题相结合。
三. 教学目标1.知识与技能:使学生掌握一次函数解决问题的方法,能够运用一次函数解决实际问题。
2.过程与方法:通过案例分析和练习题,培养学生运用函数知识解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生积极参与数学学习的习惯。
四. 教学重难点1.重点:一次函数在解决问题中的应用。
2.难点:如何将实际问题转化为一次函数问题,并求解。
五. 教学方法1.情境教学法:通过案例分析,引导学生将函数知识应用于实际问题。
2.练习法:通过布置练习题,让学生在实践中掌握一次函数解决问题的方法。
3.讨论法:学生进行小组讨论,分享解题心得,提高学生的合作能力。
六. 教学准备1.教材:苏科版数学八年级上册。
2.案例:选取与生活相关的一次函数应用案例。
3.练习题:设计具有层次性的练习题,巩固所学知识。
4.课件:制作课件,辅助教学。
七. 教学过程1.导入(5分钟)利用生活案例,如购物、出行等问题,引导学生思考如何用一次函数解决问题。
激发学生的学习兴趣,导入新课。
2.呈现(10分钟)展示一次函数的图像,让学生观察一次函数在解决问题中的作用。
通过案例分析,引导学生了解一次函数解决问题的基本方法。
3.操练(10分钟)让学生独立完成练习题,巩固一次函数解决问题的方法。
教师巡回指导,解答学生的疑问。
苏科版数学八年级上册6.4《用一次函数解决问题》教学设计1

苏科版数学八年级上册6.4《用一次函数解决问题》教学设计1一. 教材分析《苏科版数学八年级上册6.4《用一次函数解决问题》》这一节主要让学生学会运用一次函数解决实际问题。
通过前面的学习,学生已经掌握了函数的概念、一次函数的定义、图像和性质等知识。
本节内容是在这个基础上,进一步让学生学会如何将实际问题转化为函数问题,从而运用一次函数解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了函数的基本知识,对一次函数的概念、图像和性质有一定的了解。
但学生对如何将实际问题转化为函数问题,以及如何运用一次函数解决实际问题,可能还存在一定的困难。
因此,在教学过程中,需要引导学生将实际问题与函数知识联系起来,培养学生运用函数解决实际问题的能力。
三. 教学目标1.知识与技能:让学生掌握一次函数解决实际问题的方法,学会如何将实际问题转化为函数问题。
2.过程与方法:通过解决实际问题,培养学生运用数学知识解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.一次函数解决实际问题的方法。
2.如何将实际问题转化为函数问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过提出问题,引导学生思考,激发学生的学习兴趣;通过案例教学,让学生学会将实际问题转化为函数问题;通过小组合作,培养学生的团队合作精神。
六. 教学准备1.准备相关的实际问题案例。
2.准备一次函数的图像和性质的资料。
3.分组安排,准备小组合作的学习环境。
七. 教学过程1.导入(5分钟)通过提出一个问题:“如何在两个城市之间找到最短的路线?”引发学生的思考。
让学生意识到,解决这个问题需要用到数学知识。
2.呈现(10分钟)呈现一个实际问题案例,如“在一个农场中,如何规划一条道路,使得道路的长度最短?”引导学生将实际问题转化为函数问题。
3.操练(10分钟)让学生分组讨论,如何将实际问题转化为函数问题,并运用一次函数解决实际问题。
苏科版八年级数学上册《6章 一次函数 6.4 用一次函数解决问题》公开课教案_6

问题1某工厂生产某种产品,已知该工厂正常运转的固定成本为每天12000元,生产该产品的原料成本为每件900元.
y2=1200x.
当销售收入y2大于生产成本y1时,工厂有赢利,即
1200x>900x+12000.
解得x>40.
交流
在人才招聘会上,某公司承诺:应聘者被录用后第1年的月工资为2000元,在以后的一段时间内,每年的月工资比上一年的月工资增加300元.
(1)某人在该公司连续工作n年,写出他第n年的月工资y与n的函数表达式.
(1)写出每天的生产成本(包括固定成本和原料成本)与产量之间的函数表达式;
(2)如果每件产品的出厂价为1200元,那么每天生产多少件产品,该工厂才有赢利?
即该产品每天的生产成本由两部分构成,一部分是固定成本,这是一个与产量无关的常量;另一部分是原料成本,它随产量的变化而变化.
解:每天的销售收入y2(元)与产量x(件)之间的函数表达式是:
初中八上数学教案
章节
第六章一次函数
主备
课题
6.4用一次函数解决问题(1)
课时
2-1
授课日期
教学目标
1、使学生理解一次函数和正比例函数的概念;
2、能根据已知条件,写出简单的函数表达式,进一步发展学生的数学应用能力。
教学重点
根据实际问题中变量之间的关系,确定一次函数的关系式
教学难点
如何将实际问题转化为数学问题,合理地建立一次函数的模型,并解决实际问题
苏科版数学八年级上册《6.4 用一次函数解决问题》教学设计
苏科版数学八年级上册《6.4 用一次函数解决问题》教学设计一. 教材分析《6.4 用一次函数解决问题》是苏科版数学八年级上册的一个重要内容。
本节课主要让学生学会如何运用一次函数解决实际问题,培养学生的数学应用能力。
教材通过生动的例题和丰富的练习,引导学生掌握一次函数在实际问题中的应用,感受数学与生活的紧密联系。
二. 学情分析八年级的学生已经学习了初中数学的前置知识,对一次函数的概念、性质和图像有一定的了解。
但部分学生对实际问题的建模能力较弱,难以将现实问题转化为一次函数模型。
因此,在教学过程中,教师需要关注学生的个体差异,引导他们积极参与,提高建模能力。
三. 教学目标1.理解一次函数在实际问题中的应用,提高学生的数学应用意识。
2.培养学生将现实问题转化为一次函数模型的能力。
3.巩固一次函数的性质,提高学生的运算求解能力。
四. 教学重难点1.重点:一次函数在实际问题中的应用。
2.难点:如何将实际问题转化为一次函数模型,并求解。
五. 教学方法1.情境教学法:通过生活实例引入一次函数的应用,激发学生的学习兴趣。
2.引导发现法:教师引导学生发现一次函数在实际问题中的作用,培养学生自主探究的能力。
3.合作交流法:学生在小组内共同解决问题,提高团队协作能力。
六. 教学准备1.课件:制作课件,展示一次函数在实际问题中的应用。
2.练习题:准备一些实际问题,供学生练习。
3.教学工具:黑板、粉笔、投影仪等。
七. 教学过程1.导入(5分钟)利用生活中的实例,如购物时优惠券的使用,引入一次函数在实际问题中的应用。
引导学生思考:如何用数学模型表示这个问题?2.呈现(10分钟)展示一次函数模型解决购物优惠问题的过程,让学生理解一次函数在实际问题中的作用。
引导学生发现,实际问题可以转化为一次函数模型,从而求解。
3.操练(10分钟)让学生分组讨论,选取一个实际问题,尝试用一次函数模型解决。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)选取几组实际问题,让学生独立解决,巩固一次函数在实际问题中的应用。
苏科版数学八年级上册6.4《用一次函数解决问题》说课稿1
苏科版数学八年级上册6.4《用一次函数解决问题》说课稿1一. 教材分析《苏科版数学八年级上册6.4《用一次函数解决问题》》这一节的内容,是在学生已经掌握了函数的概念、性质以及一次函数的图像和性质的基础上进行学习的。
本节课的主要内容是让学生学会如何利用一次函数来解决实际问题,培养学生运用数学知识解决实际问题的能力。
教材通过例题和练习题的形式,让学生学会如何将实际问题转化为一次函数问题,从而求解。
二. 学情分析八年级的学生已经掌握了函数的基本知识,对于一次函数的图像和性质也有了一定的了解。
但是,学生对于如何将实际问题转化为数学问题,以及如何运用一次函数来解决问题还有一定的困难。
因此,在教学过程中,教师需要引导学生将实际问题与数学知识联系起来,帮助学生建立起用数学知识解决实际问题的思维方式。
三. 说教学目标1.知识与技能目标:让学生掌握用一次函数解决实际问题的方法,会列式计算,能解释实际问题中的数量关系。
2.过程与方法目标:通过解决实际问题,培养学生运用数学知识解决实际问题的能力。
3.情感态度与价值观目标:让学生体验数学在生活中的应用,提高学生学习数学的兴趣。
四. 说教学重难点1.教学重点:让学生学会如何将实际问题转化为一次函数问题,掌握一次函数在实际问题中的应用。
2.教学难点:如何引导学生将实际问题转化为数学问题,以及如何运用一次函数来解决问题。
五. 说教学方法与手段在教学过程中,我会采用情境教学法、问题教学法和引导发现法。
通过设置情境,提出问题,引导学生自主探究,发现和总结一次函数在实际问题中的运用。
同时,我还会运用多媒体教学手段,如PPT、视频等,来辅助教学,提高学生的学习兴趣。
六. 说教学过程1.导入新课:通过一个实际问题,引入本节课的主题——用一次函数解决问题。
2.探究新知:引导学生分析实际问题,将其转化为一次函数问题,然后运用一次函数的知识进行求解。
3.巩固新知:通过练习题,让学生进一步理解和掌握一次函数在实际问题中的应用。
苏科版八年级数学上册《6章 一次函数 6.4 用一次函数解决问题》公开课教案_19
数学教学设计6.4 用一次函数解决问题(1)教学目标1.能根据实际问题中变量之间的关系,确定一次函数关系式;2.能将简单的实际问题转化为数学问题建立一次函数,从而解决实际问题;3.通过具体问题的分析,发展解决问题的能力,增强应用意识.4. 学会从数学角度发现问题、理解问题,并能综合运用所学知识解决问题,形成解决实际问题的一些基本策略教学重点根据实际问题中变量之间的关系,确定一次函数的关系式.教学难点如何将实际问题转化为数学问题,合理地建立一次函数的模型,并解决实际问题.教学过程(教师)学生活动设计思路引入:在前几节课里,我们分别学习了一次函数、一次函数的图像及其特征。
数学与生活密切相关,本节课我们就把一次函数与生活联系起来,用一次函数来解决实际问题。
阅读与思考名闻遐迩的玉龙雪山,位于云南丽江城北15km,由12座山峰组成,主峰海拔5596m.海拔4500m处一条黑白分明的雪线蜿蜒山头,由于气候变暖等原因,雪线平均每年约上升10m,假如按此速度推算,经过几年,玉龙雪山的雪线将由现在的4500m 退至山顶而消失?问:1.你在这段文字中获得了哪些数量的信息?2.这些数量之间有什么关系?学生读题,找清数量关系。
数年后雪线的海拔由两部分组成:现在的雪线海拔4500m(常量,与时间无关)和数年后雪线上升的海拔高度(变量,与时间有关).可以有不同的解法解决此题,可以用算术解法,可以用方程,也可以用函数的观点解决.算术解法:(5596-4500)÷10=109.6(年),方程解法:设经过 x 年,玉龙雪山的雪线将由现在的4500m退至山顶而消失可得方程:4500+10x=5596解得:x=109.6一次函数解法:按照上面的假设,雪线海拔y(m)是时间x(年)的一次函数,其函数表达式为:y=4500+10x,于是,可以用一次函数的相关知识,解决上述问题.分析实际问题中变量与变量之间的关系,如果这种关系可以用一次函数表达式表示,那么就可用一次函数的相关知识,解决实际问题.情景的引入是为了让学生以丽江美景玉龙雪山为问题背景,通过两个变量的分析,引导学生建立一次函数的模型,从而利用一次函数的相关知识解决实际问题.在解答方法上,可以有不同的解法,鼓励学生发散思维,找到不同的解决途径,同时也为问题的解决作准备.问题1某工厂生产某种产品,已知该工厂正常运转的固定成本为每天12000元,生产该产品的原料成本为每件900元.(1)写出每天的生产成本(包括固定成本和原料成本)与产量之间的函数表达式;学生读题,找清数量关系,即该产品每天的生产成本由两部分构成,一部分是固定成本,这是一个与产量无关的常量;另一部分是原料成本,它随产量的变化而变化.解:(1)解:每天的生产成本y1(元)与产量x(件)之间的函数表达式是:y1=900x+12000.通过探索活动,让学生进一步明确题中的数量关系,通过文字语言的分析,正确找出不等关系.体验在处理一个实际问题面前,数学所具有的价值和魅力,培养学生的应用意识.请同学们仔细审题,找清数量关系.(2)如果每件产品的出厂价为1200元,那么每天生产多少件产品,该工厂才有赢利?在怎样的情况下工厂才会赢利?销售收入与那些量有关?当销售收入大于生产成本时工厂才会有赢利.每天销售收入与没见产品的出厂价及产品产量有关.(2)每天的销售收入y2(元)与产量x (件)之间的函数表达式是:y2=1200x.当销售收入y2大于生产成本y1时,工厂有赢利,即1200 x> 900x+12000.解得x >40.答:每天生产的产品超过40件,该工厂才会有赢利.交流在人才招聘会上,某公司承诺:应聘者被录用后第1年的月工资为2000元,在以后的一段时间内,每年的月工资比上一年的月工资增加 300元.(1)某人在该公司连续工作n年,写出他第n年的月工资y与n的函数表达式.请同学们仔细审题,找清数量关系.(2)他第5 年的年收入能否超过40000元?学生读题,找清数量关系:第n年的月工资由第1年的月工资和以后增加的工资两部分组成,然后写出相应的函数表达式.解:(1)他第n年的月工资y与n的函数表达式是:y=300(n-1)+2000.学生解答第(2)问,并小组交流.(2)当 n=5 时,y= 300×(5-1)+2000=3200(元)∴第 5 年的月工资为3200元∴年收入为:3200×12=38400(元) <40000(元)∴他第5年的年收入不能超过40000元.学生在前面学习的基础上,通过实践操作,观察思考,经历探索的过程,学会类比地分析和思考,尝试“数学地”去想.通过练习巩固知识的运用,培养学生用函数的观点分析问题和解决问题的能力.小结:用一次函数解决问题是从生活中的问题出发,将实际问题转化为数学问题,建立了一次函数的模型,从而解决实际问题。
苏科初中数学八上《6.4 用一次函数解决问题》教案
6.4 一次函数的应用(1)教学目标:1、能根据实际问题中变量之间数量的关系,确定一次函数关系式;2、能将简单的实际问题转化为数学问题(建立一次函数),从而解决实际问题,增强学生的应用意识和创新意识。
3、.初步体会方程与函数的关系。
重点;将实际问题转化成数学问题,建立一次函数关系式。
难点:理解实际问题中的数量关系,将实际问题转化成数学问题,建立一次函数关系式,并解决实际问题。
教学过程:一、课前复习与预习:1、已知一次函数的图像经过(1,2),(—1,4)求一次函数的关系式。
2、直线m上有两点A(—2,—3),B(—5,-9),求直线m的关系式。
预习:1、某校办工厂现年产值是30万元,如果每增加1元投资,一年可增加2.5元产值。
那么总产值y(万元)与增加的投资额x(万元)之间的函数关系式为。
2、某市电话的月租费是20元,可打60次免费电话(每次3分钟),超过60次后,超过部分每次0.13元。
写出每月电话费y (元)与通话次数x之间的函数关系式;二、新授1、导入:在前几节课里,我们分别学习了一次函数,一次函数的图象,一次函数图象的特征,并且了解到一次函数的应用十分广泛,和我们日常生活密切相关,因此本节课我们一起来学习一次函数的应用.2、新课讲解:活动一一辆汽车在普通公路上行驶了35km后,驶入高速公路,然后以105km/h的速度匀速前进。
1、你能写出这辆车行驶的路程s(Km)与它在高速公路上行驶的时间t(h)之间的关系吗?2、若从上高速公路开始记时,行驶了4小时到达目的地,则该车从出发点到目的地的路程有多远呢?3、高速公路上里程表显示行驶了175km,问车在高速公路上行了多长时间?问题一:车在高速公路上行驶的路程与哪些量有关系?问题二:车内里程表上记录的数据是汽车行驶在哪几段公路上的路程?活动二、某班同学秋游时,照相共用3卷胶卷,秋游后冲洗3卷胶卷并根据同学需要加印照片,已知冲洗胶卷的价格是3.0元/卷,加印照片的价格是0.45元/张,(1)试写出冲印后的费用y(元)与加印张数x之间的关系式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y=300(n-1)+2000.
(2)第5年的月工资为:
300×(5-1)+2000=3200(元),
所以年收入为:3200×12=38400(元),
38400<40000,所以他第5 年的年收入不能超过40000元.
学生在前面学习的基础上,通过实践操作,观察思考,经历探索的过程,学会类比地分析和思考,尝试“数学地”去想.通过练习巩固知识的运用,培养学生用函数的观点分析问题和解决问题的能力.
练习
某市出租车收费标准:不超过3千米计费为 7.0元,
3千米后按2.4元/千米计费.
(1)当路程表显7km时,应付费多少元?
(2)写出车费y(元)与路程x(千米)之间的函数表达式;
(3)小亮乘出租车出行,付费19元,计算小亮乘车的路程.
在这里需要说明的是:在现实生活中,两个变量之间的数量关系并不完全遵循同一个标准,在这样的情况下,往往根据自变量不同的取值范围,分别列出不同的函数表达式.
总结
通过探讨研究,你有哪些收获,你认为还有哪些困惑?
本节课我们从生活中的问题出发,将实际问题转化为数学问题,建立了一次函数的模型,从而解决实际问题.
学生尝试对知识方法进行归纳、提炼、总结,形成理性的认识,内化数学的方法和经验.
试对所学知识进行反思、归纳和总结.会对知识进行提炼,体会数学的思想和应用,将感性的认识升华为理性的认识.
解得x=8.所以,小亮乘车的路程等于8km.
问题的解决,让学生尝试解决更复杂、更难的问题,进一步激发其探求的欲望,培养学生良好的学习品质.
一次函数的应用从身边熟悉的问题,学习处理复杂问题研究方法和手段.
另外,分段函数是指自变量在不同的取值范围内,其关系式(或图像)也不同的函数,分段函数的应用解答时需要分段讨论,在现实生活中存在许多需分段计费的实际问题.对练习进行必要的延伸和拓展,提升了学生的解题能力.
交流
在人才招聘会上,某公司承诺:应聘者被录用后第1年的月工资为2000元,在以后的一段时间内,每年的月工资比上一年的月工资增加 300元.
(1)某人在该公司连续工作n年,写出他第n年的月工资y与n的函数表达式.
(2)他第5 年的年收入能否超过40000元?
学生读题,写出相应的函数表达式.
学生解答第(2)问,并小组交流.
解:每天的销售收入y2(元)与产量x(件)之间的函数表达式是:
y2=1200x.
当销售收入y2大于生产成本y1时,工厂有赢利,即
1200x>900x+12000.
解得x>40.
通过探索活动,让学生进一步明确题中的数量关系,通过文字语言的分析,正确找出不等关系.体验在处理一个实际问题面前,数学所具有的价值和魅力,培养学生的应用意识.
(1)7.0+(7-3)×2.4=16.6.
(2)写出车费y(元)与路程x(km)之间的关系式.
解:第一种情况,当x不超过3km时,y=7.0,第二种情况,当x超过3km时,y=7.0+(x-3)×2.4.
(3)因为小亮的付费19>7.0元,因此小亮乘车的路程超过了3km.
所以小亮的付费方式应该属于第二种情况,所以19=7.0+(x-3)2.4,
情景的引入是为了让学生以丽江美景玉龙雪山为问题背景,通过两个变量的分析,引导学生建立一次函数的模型,从而利用一次函数的相关知识解决实际问题.在解答方法上,可以有不同的解法,鼓励学生发散思维,找到不同的解决途径,同时也为问题的解决作准备.
问题1某工厂生产某种产品,已知该工厂正常运转的固定成本为每天12000元,生产该产品的原料成本为每件900元.
课后作业
P156练习1、2.
数学教学设计
教 材:义务教育教科书·数学(八年级上册)
6.4 用一次函数解决问题(1)
教学目标
1.能根据实际问题中变量之间的关系,确定一次函数关系式;
2.能将简单的实际问题转化为数学问题建立一次函数,从而解决实际问题;
3.通过具体问题的分析,发展解决问题的能力,增强应用意识.
教学重点
根据实际问题中变量之间的关系,确定一次函数的关系式.
教学难点
如何将实际问题转化为数学问题,合理地建立一次函数的模型,并解决实际问题.
教学过程(教师)
学生活动
设计思路
问题的引入
在前几节课里,我们分别学习了一次函数、一次函数的图像、一次函数图像的特征,并且了解到一次函数的应用十分广泛,和我们日常生活密切相关,因此本节课我们一起来学习一次函数图像的应用.
名闻遐迩的玉龙雪山,位于云南丽江城北15km,由12座山峰组成,主峰海拔5596m.海拔4500m处一条黑白分明的雪线蜿蜒山头,由于气候变暖等原因,雪线平均每年约上升10m,假如按此速度推算,经过几年,玉龙雪山的雪线将由现在的4500m退至山顶而消失?
可以有不同的解法解决此题,可以用算术解法,可以用方程,也可以用函数的观点解决.
算术解法:(5596-4500)÷10=109.6(年),
一次函数解法:按照上面的假设,雪线海拔y(m)是时间x(年)的一次函数,其函数表达式为:y=4500+10x,
于是,可以用一次函数的相关知识,解决上述问题.
分析实际问题中变量与变量之间的关系,如果这种关系可以用一次函数表达式表示,那么就可用一次函数的相关知识,解决实际问题.
(1)写出每天的生产成本(包括固定成本和原料成本)与产量之间的函数表达式;
(2)如果每件产品的出厂价为1200元,那么每天生产多少件产品,该工厂才有赢利?
学生读题,找清数量关系,即该产品每天的生产成本由两部分构成,一部分是固定成本,这是一个与产量无关的常量;另一部分是原料成本,它随产量的变化而变化.