第三章 变阻式传感器1
15第3章_电气式传感(1)

x
B
C
A
x
xp
灵敏度
dR dx
kl
e0 ey
e0
x
ey
x
x pey e0
1.1 变阻器式传感器
x x pey e0 kley
e0
ey
0
x
Hale Waihona Puke xp1.1 变阻器式传感器
后接分压电路
R p Rx
e0
Rx
ey
RL
V
ey
A
dl
l
A
2
dA
l A
d
代入 R l / A
dR R
dl l
dA A
d
1.2 电阻应变式传感器
金属丝 A r 2 金属丝体积不变
dR dl l
dr r dl l
2 d
2 dr r
d
有
R
器(differential transformer))
2.1 自感型(self-inductance)(可变磁阻式)
原理:电磁感应
线圈
由电磁学原理可知: L W m i 其 中 : L 电 感 ; W 线 圈 匝 数 ; i 电 流 ;
m 电 流 i产 生 的 磁 通
基于金属导体的应变效应(strain effect),即
金属导体在外力作用下发生机械变形时,其电 阻值随着所受机械变形(伸长或缩短)的变化而 发生变化象。
1.2 电阻应变式传感器
3.1 变阻器式传感器

3 变阻式传感器的应用
变阻式传感器常用来测量位移、压力、加速度等参 量。
被测位移使测量轴沿导轨轴向移动时,带动电刷在 滑线电阻上产生相同的位移,从而改变电位器的输 出电阻。精密电阻与电位器电阻式电桥的两个桥臂, 构成电桥测量电路。
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
(1)结构简单、尺寸小、重量轻、价格低廉且性能稳定; (2)受环境因素(如温度、湿度、电磁场干扰等)影响小; (3)可以实现输出—输入间任意函数关系; (4)输出信号大,一般不需放大。
缺点是:因为存在电刷与线圈或电阻膜之间摩擦,因此
需要较大的输入能量;由于磨损不仅影响使用寿命和 降低可靠性,而且会降低测量精度,分辨力较低;动 态响应较差,适合于测量变化较缓慢的量。
3.1 变阻器式传感器
1 变阻器式传感器工作原理 变阻Hale Waihona Puke 式传感器也称电位器式传感器,其工作原理
是通过改变电路中电阻值的大小,将物体的位移转 换为电阻的变化。 当电阻丝直径与材质一定时,则电阻R随导线长度l 而变化。常用电位器式传感器有直线位移型、角位 移型和非线性型.
1
电位器式传感器类型
2
2 变阻式传感器的优点
4
变阻式传感器位移传感器的结构图
5
第三章 传感器

第三章常用的传感器§3.1传感器的分类一、传感器的定义通俗的讲,传感器就是将被测信息转换成某种信号的器件。
也就是将被测物理量转换成于之相对应的、容易检测、传输或处理的信号的装置,称之为传感器。
传感器通常直接作用于被测量。
传感器是对信号进行感受与传送的装置,它是测试装置的输入环节,因此传感器的性能直接影响着整个测试装置的工作可靠性。
近来,随着测量、控制及信息技术的发展,传感器作为这个领域内的一个重要构成因素,被视为90年代的重要技术之一受到了普遍的重视。
深入研究传感器的原理和应用,研制新型传感器,对于社会生产、科学技术和日常生活中的自动测量和自动控制的发展,以及在科学技术领域里实现现代化都有重要意义。
二、传感器的组成传感器一般由敏感元件、传感元件和测量电路三个主要部分组成,有时还加上辅助电源。
通常可用图表示如下:图4-1 传感器的组成由于其用途的不同或是结构原理的不同,其繁简程度相差很大。
因此,传感器的组成将依不同情况而有差异。
敏感元件——传感器的核心,它直接感受被测量(一般为非电量)并转换成信号形成,即输出与被测量成确定关系的其它量的元件,如膜片、热电偶,波纹管等。
传感元件——又称变换器,是传感器的重要组成部分。
传感元件可以直接感受被测量(一般为非电量)而输出与被测量成确定关系的电量。
如热电偶和热敏电阻等。
传感元件也可以不只感受被测量,而只是感受与被测两或确定关系的其它非电量;如应变式压力传感器的电阻片,并不直接感受压力,只是感受与被测压力成确定关系的应变,然后输出电量,在多数情况下,使用的就是这种传感元件。
测量电路——能把传感元件输出的电信号转换为便于显示、记录、控制和处理的有用电信号的电路。
测量电路视传感元件的类型而定。
三、传感器的分类在生产和科研中应用的传感器种类很多,一种被测量有时可以用集中传感器来测量,用一种传感器往往可以测量多种物理量。
为了对传感器有一个概括的认识,对传感器进行研究是很必要的。
第三章 常用传感器的变换原理

根据电阻的定义式: 阻的相对变化为:
R l/A
如果电阻丝在外力作用下产生变化时,其电
dR d 1 2 x R
1 为电阻丝轴向相对变形,或称纵向应变。
dR ( 1 2 ) K x 0 x R
d 引起的。
是由于电阻丝几何尺寸变化引起的; 是由于受力后材料的电阻率发生变化而
蠕变:应力不变的条件下,应变随时间延 长而增加的现象。 横向效应:敏感栅的电阻变化一定小于 纯直线敏感栅的电阻变化的现象。 机械滞后:应变片贴在试件上以后,在 一定温度下,进行循环的加载和卸载,加载 和卸载时的输入-输出特性曲线不重合的现象。
2)箔式应变片 箔式应变片中的箔栅是金属箔(厚为 0.002~0.01mm)通过光刻、腐蚀等工艺制 成的。如图3-10中(d)、(f)、(h)、(k)。箔的 材料多为电阻率高、热稳定性好的康铜和 铜镍合金。
(二)应变片的粘贴 1. 去污:采用 手持砂轮工具除去 构件表面的油污、 漆、锈斑等,并用 细纱布交叉打磨出 细纹以增加粘贴力 , 最后用浸有酒精或 丙酮的纱布片或脱 脂棉球擦洗。
2. 贴片:在应 变片的表面和处理 过的粘贴表面上, 各涂一层均匀的粘 贴胶 ,用镊子将应 变片放上去,并调 好位置,然后盖上 塑料薄膜,用手指 揉和滚压,排出下 面的气泡 。
dR d 1 2 x R
对于金属材料:
d 是个常数,往往很小,可以忽略。
因此,上式可写成为:
dR ( 1 2 ) E 应变-电阻效应 x 1 x R
K0为金属单丝灵敏系数,是单位应变所 引起的电阻相对变化。
对于半导体材料: 对一块半导体材料的某一轴向施加一定的载荷 而产生应力时,它的电阻率会发生变化,这种物理 现象称为半导体的压阻效应。 半导体应变片是根据压阻效应原理工作的。 当沿某一晶轴方向切下一小条半导体应变片, 若只沿其轴向受到应力,其电阻率的变化量可由下 式表示
变磁阻式传感器

(1)差动整流电路
(a)半波电压输出 (b)全波电压输出 (适用于高阻抗负载)
(c)半波电流输出(d)全波电流输出 (适用于低阻抗负载)
电阻R0用于调整零点残余电压
(2)相敏检波电路
(a)被测位移变化波形图;
相
敏
(b)差动变压器激励电压波形;
灵敏度高分辩力大:能测出0.01μm甚至更小的机械位
移变化,能感受小至0.1″的微小角度变化。传感器的输 出信号强,电压灵敏度一般每一毫米可达数百毫伏, 因此有利于信号的传输与放大;
重复性好线性度优良:在一定位移范围(最小几十微
米,最大达数十甚至数百毫米)内,输出特性的线性 度好,并且比较稳定,高精度的变磁阻式传感器,非 线性误差仅0.1%。
缺点: 存在交流零位信号,不宜于高频动态测量。
第一节 电感式传感器
一、工作原理
L W W 2 I I Rm
L ——线圈自感量; Ψ——线圈总磁链,单位:韦伯; I——通过线圈的电流,单位:安培; W——线圈的匝数; Rm——磁路总磁阻,单位:1/亨。
a)气隙型
b)截面型
c)螺管型
Rm
L1
差动变压器输出电压特性曲线
二、基本特性
当次级开路时,初级线圈激励电流为
I1
r1
U 1
jL1
则次级绕组中感应电势为
E 2a jM1I1
E 2b jM2 I1
次级两绕组反相串联,则
U 2
E 2a
E 2b
jM1 M2 U1
r1 jL1
输出电压有效值
U2
M1 M2 U1 r12 L1 2
1、基本特性分析:
(1)当活动衔铁处于中间位置时
M1= M2=M
电阻式传感器

F F
y x
r
a
l1 l (a) (b)
图3-5 横向应变 (a) 应变片及轴向受力图; (b) 应变片的横向效应图
第3章 电阻式传感器 综上所述,将直的电阻丝绕成敏感栅后,虽然长度改 变产生的应变情况相同,但由于圆弧段截面积增大,电阻值 减小,敏感栅的灵敏系数 k 较同样长度单纯受轴向力时的 灵敏系数 k0要小。这种因弯折处应变的变化使灵敏系数减 小的现象称之为应变片的横向效应。横向效应。
R R k L L
或
R k R
(3-36)
式中, ε为应变片的轴向应变, ε =ΔL/L。 k 为应变片的灵敏系数,又称“标称灵敏系数” 。
第3章 电阻式传感器 * 2.横向效应和横向灵敏度
当将图3-5所示的应变片粘贴在被测试件上时,由于其敏 感栅是由n条长度为l1 的直线段和直线段端部的n-1个半径为r 的半圆圆弧或直线组成,若该应变片承受轴向应力而产生纵 向拉应变εx外, 还在与x方向垂直的y方向产生压缩应变εy, 使圆弧段截面积增大,电阻值减小。
k0 dR R
(1 2 )
d
(1)应变片受力后材料几何尺寸的变化,即1+2μ; (2) 应变片受力后材料的电阻率发生的变化, 即
d
。
对金属材料来说,电阻丝灵敏度系数表达式中1+2μ 的值要比(dρ/ρ)/ε大得多。一般金属材料在弹性形变时, μ约为0.3,所以k0的第一项约为1.6 。 用金属电阻材料制成的金属丝应变片和金属箔式应变 片,其灵敏系数k0主要取决于第一项,因电阻率的变化而 引起的电阻值变化是较小的。
灵敏系数稳定性好,不但在弹性变形范围内能保持 为常数,进入塑性变形范围内也基本上能保持为常数; 康铜的电阻温度系数较小且稳定,当采用合适的热 处理工艺时,可使电阻温度系数在±50×10-6/℃的范围 内; 康铜的加工性能好,易于焊接,因而国内外多以康 铜作为应变丝材料。
第3章 电阻式传感器原理及其应用

3.1 电阻应变式传感器
3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 传感器的工作原理 电阻应变片的结构和分类 电阻应变式传感器的测量电路 电阻应变式的粘贴 电阻应变式传感器的应用
3.2 压阻式传感器
3.2.1 压阻式传感器的结构 3.2.2 压阻式传感器的工作原理 3.2.3 压阻式传感器的应用
金属箔式电阻应变片的结构 它的敏感栅是通过光刻、腐蚀等工艺制成。 它的敏感栅是通过光刻、腐蚀等工艺制成。将合金 先轧成厚度为0.002mm~0.01mm的箔材,经过热 的箔材, 先轧成厚度为 的箔材 处理后在一面图刷一层0.03~0.05mm厚的树脂胶, 厚的树脂胶, 处理后在一面图刷一层 厚的树脂胶 再经聚合固化形成基底。 再经聚合固化形成基底。 在另一面经照相制版、光刻、 在另一面经照相制版、光刻、腐蚀等工艺制成敏感 焊上引线, 栅,焊上引线,并涂上与基底相同的树脂胶作为覆 盖片。 盖片。
若 接入的两个应变片对于电源输入端对称, 接入的两个应变片对于电源输入端对称,且满足两 个应变片在工作时所产生的电阻增量大小相等符号 相反时,电桥的输出电压变化为: 相反时概述
电阻式传感器是利用一定的方式将被测量的变化 电阻式传感器是利用一定的方式将被测量的变化 转化为敏感元件电阻参数的变化, 转化为敏感元件电阻参数的变化,再通过电路转变成 电压或电流信号的输出,从而实现非电量的测量。 电压或电流信号的输出,从而实现非电量的测量。 可用于各种机械量和热工量的检测, 可用于各种机械量和热工量的检测,如用来测量 压力、位移、应变、速度、加速度、 力、压力、位移、应变、速度、加速度、温度和湿度 它结构简单,性能稳定,成本低廉, 等。它结构简单,性能稳定,成本低廉,在许多行业 得到了广泛应用。 得到了广泛应用。 由于构成电阻的材料及种类很多, 由于构成电阻的材料及种类很多,引起电阻变化 的物理原因也很多, 的物理原因也很多,这就构成了各种各样的电阻式传 感元件以及由这些元件构成的电阻式传感器。 感元件以及由这些元件构成的电阻式传感器。
变阻抗式传感器原理与应用

3-28
只能确定衔铁位移的大小,不能判断位移的方向。
为了判断位移的方向,要在后续电路中配置相敏检
波器。
3.1 自感式传感器
(2) 相敏检波电路
C
A
B
D
图3-7 相敏检波电路
电路作用:辨别衔铁位移方向。 U0的大小反映位移
的大小,U0的极性反映位移的方向。
消除零点残余电压。使x=0时,U0=0。
3.1 自感式传感器
L L0 0
3-11
3-12
L 1 L0 K0 0
3-13
3.1 自感式传感器 差动变隙式电感传感器
1-铁芯; 2-线圈; 3-衔铁
3-3差动式变间隙式电感传感器
当衔铁向上移动时,两个线圈的电感变化量Δ L1、Δ L2
3.1 自感式传感器
衔铁上移
3-22
L1
r 2 0W 2
l
rc 1 r 1 r
2
l c x l
每只线圈的灵敏度为
dL1 dL2 0W 2 r 1rc2 k1 k2 dx dx l2
则此时输出电感为L = L0-ΔL。 2 L L0 [1 ( ) ( ) ...]
3-10
(2)当衔铁下移Δδ时, 传感器气隙增大Δδ, 即δ=δ0+Δδ,
0 0 0 L 2 [1 ( )( ) ...] L0 0 0 0
图3-16变间隙差动变压器等效电路 两个初级绕组的同名端顺向串联, 而两个次级绕组的同名端则反向串联。
3.2 差动变压器
可推导 . . W a 2 b U U1 2 b a W1 如果被测体带动衔铁移动
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 应变片的基本结构与种类
敏感栅 直径为0.025mm左右的合金电阻丝
丝绕式
基
底
绝缘
保护
覆盖层
位移、力、力矩、加速度、压力 外力作用 应变片
弹性敏 感元件
应变
被测对象表面产生微小机械变形 应变片敏感栅随同变形 电阻值发生相应变化
应变片的类型和材料
• 金属丝式
• 金属箔式 • 金属薄膜式
回线式
短接式
第三章 变阻式传感器
• 工作原理,应变效应,应变种类
• 金属应变片的主要特性
• 测量电路
• 应变式传感器应用
3.1
• 应变
工作原理
物体在外部压力或拉力作用下发生形变的现象
• 弹性应变
当外力去除后,物体能够完全恢复其尺寸和形状的 应变
• 弹性元片将应变转换为电阻变化的传感器
a.选择式自补偿应变片
实现温度补偿的条件为 t t ( g s )t 0
K0
当被测试件的线膨胀系数βg已知时,通过选择敏感栅材料, 使下式成立
K 0 ( g s )
即可达到温度自补偿的目的。 优点:容易加工,成本低, 缺点:只适用特定试件材料,温度补偿范围也较窄。
组合自补偿法
通过调节两种敏感栅的长度来控制 应变片的温度自补偿,
③热敏电阻补偿
R5 分流电阻
T
R1+⊿R U R3 U0 R4 R2
K URt
Rt Ui
Rt
U = Ui - URt
K
3.1.3 电阻应变片的测量电路
1 直流电桥 2 非线性误差及其补偿
1. 直流电桥
• 直流电桥的工作原理
R1 R4 - R2 R3 IL U RL ( R1 R2 )( R3 R4 ) R1 R2 ( R3 R4 ) R3 R4 ( R1 R2 )
相应的虚假应变输出
Rt / R0 t t ( g s )t K0 K0
温度补偿
单丝自补偿法
自补偿法
温度补偿 组合式自补偿法 线路补偿法〔电桥补偿法、热敏电阻〕
温度补偿方法 电桥补偿方法
R3 R1 Uo Ua Ub U ( ) R1 Rb R3 R4 Uo U 令 A R1 R4 R3 Rb ( R1 Rb )( R3 R4 ) U ( R1 Rb )( R3 R4 )
(三)温度误差及其补偿
1 、敏感栅电阻随温度的变化引起的误差。当环境温度 变化△t 时,敏感栅材料电阻温度系数为 ,则引起 的电阻相对变化为
温度 误差
Rt Rt R0 R0 t
2、试件材料的线膨胀引起的误差。当温度变化△t时, 因试件材料和敏感栅材料的线膨胀系数不同,应变片将 产生附加拉长(或压缩),引起的电阻相对变化
b. 双金属敏感栅自补偿应变片
敏感栅丝由两种不同温度系数的金属丝串接组成 选用两者具有不同符号的电阻温度系数 调整R1和R2的比例,使温度变化时产生的 电阻变化满足
( R1 ) t ( R2 ) t
R1 R2
2 K 2 ( g 2 ) R2t / R2 R1 R2 R1t / R1 1 K1 ( g 1 )
缺点:
电阻值的分散性大 阻值调整
金属薄膜应变片
• 采用真空蒸发或真空沉积等方法在薄的绝缘基 片上形成厚度在0.1μm以下的金属电阻材料薄
膜敏感栅,再加上保护层,易实现工业化批量
生产
• 优点:应变灵敏系数大,允许电流密度大,工
作范围广,易实现工业化生产 • 问题:难控制电阻与温度和时间的变化关系
3.1.2 金属应变片的主要特性
金属电阻的灵敏系数
k0 R R
1 2
/
k0
1 2 材料的几何尺寸变化引起的
/
材料的电阻率ρ 随应变引起的(压阻效应)
金属材料:k0以前者为主,则k0≈1+2μ =1.7~3.6 半 导 体:k0值主要是由电阻率相对变化所决定
R k0 R
U0
F
R1 Rb
F
R3
U
R4
电桥补偿法
• 优点: • 简单、方便,在常温下补偿效果较好,缺 点: • 在温度变化梯度较大的条件下,很难做到 工作片与补偿片处于温度完全一致的情况, 因而影响补偿效果。
② 应变片的自补偿法
• 粘贴在被测部位上的是一种特殊应变片, 当温度变化时,产生的附加应变为零或相 互抵消,这种应变片称为温度自补偿应变 片。利用这种应变片来实现温度补偿的方 法称为应变片自补偿法。 • a. 选择式自补偿应变片 • b. 双金属敏感栅自补偿应变片
U R U 4 R
' 0
R1 R4 R2 R3 U0 U ( R1 R2 )( R3 R4 )
( R R ) R R 2 U0 U (2 R R)2 R
1
R U R 1 R U0 U 实际输出电压 1 4 R 2R 4 R 2 R 电桥的相对非线性误差为
1
U0 1 R 1 R 1 1 R ' 1 1 1 K 1 1 2 R 2 R 2 U0 2 R
温度变化 T
R1 U0 R3 U
Rb
R4
Uo A( R1 R1 R1T ) R4 ( Rb RbT ) R3 )
F
R1 Rb
F
R1T RbT
Uo AR1 R4 K
电桥补偿法
R1 U0 R3 U R4 Rb R1 +⊿R Rb -⊿R
R1+⊿R
Rb-⊿R
金属丝式应变片
金属电阻丝应变片的基本结构 1-基片;2-电阻丝;3-覆盖层;4-引出线
金属电阻应变片,材料电阻率随应变产生的变化很小,可忽略
R (1 2 ) K 0 R
应变片电阻的相对变化与应变片纵向应变成正比, 并且对同一电阻材料, K0=1+2μ是常数。 其灵敏度系数多在1.7~3.6之间。
Rt R0 K 0 t R0 K 0 ( g s )t
线膨胀系数的影响
应变片:
lT 1 lT 1 lo lo s T
lT 2 lT 2 lo lo g T
附加形变: lTB lT 2 lT 1 lo ( g s )T
3.1.1 工作原理
1.金属的电阻应变效应
电阻应变效应:当金属丝在外力作用下发生机械变形时 其电阻值将发生变化
l R= A
F
Δ l、Δ A 、Δρ
ΔR
R
A R l A
l
l dR dl 2 dA d A A A
l
电阻的灵敏系数
R A R l A
试件:
如:
s
g
据材料力学:
TB
lTB ( g s ) T lo
附加电阻: RTB R0 K o TB R0 K o ( g s )T
Rt Rt R0 R0 t
可得由于温度变化而引起的总电阻变化为
Rt Rt Rt R0t R0 K 0 ( g s )t
(一)灵敏系数
(二)横向效应
(三)温度误差及其补偿
应变片的电阻值 R
• 应变片在未经安装也不受外力情况下,于 室温下测得的电阻值
• 电阻系列:60、120、200、350、500、1000Ω 可以加大应变片承受电压, 输出信号大, 敏感栅尺寸也增大
电阻值大
(一)灵敏系数
k R / R
“标称灵敏系数”:受轴向单向力(拉或压),试件材料 为泊松系数μ=0.285的钢等。一批产品中只能抽样5%的 产品来测定,取平均值及允许公差值。
电阻应变片的灵敏系数k < 电阻丝的灵敏系数k0
原因: 粘结层传递变形失真 还存在有横向效应
(二)横向效应
敏感栅是由多条直线和圆弧部分组成 直线段:沿轴向拉应变εx,电阻 圆弧段:沿轴向压应变εy 电阻 εy εx K (箔式应变片)
εy
横向效应
应变片的横栅部分将纵向丝栅部分的电阻变 化抵消了一部分,从而降低了整个电阻应 变片的灵敏度,带来测量误差,其大小与 敏感栅的构造及尺寸有关。敏感栅的纵栅 愈窄、愈长,而横栅愈宽、愈短,则横向 效应的影响愈小。
灵敏度系数K受两个因素影响
• 一是应变片受力后材料几何尺寸的变化, 即1+2μ • 二是应变片受力后材料的电阻率发生的变化, 即 (∆ ρ / ρ )/ ε 。 • 对金属材料:1+2μ >>(∆ ρ /ρ )/ε • 对半导体材料:(∆ ρ /ρ )/ε >>1+2μ • 大量实验证明,在电阻丝拉伸极限内, 电阻的相对 变化与应变成正比,即K为常数。
应变片工作时,其电阻变化ΔR
( R1 R1 )( R4 R4 ) ( R2 R2 )( R3 R3 ) U0 U ( R1 R1 R2 R2 )( R3 R3 R4 R4 )
采用等臂电桥,即R1= R2= R3=R4=R 。
R(R1 R2 R3 R4 ) R1R4 R2 R3 U0 U (2 R R1 R2 )(2 R R3 R4 )
R1 U0 R3
Rb
R4 U
U o A( R1 R4 R3 Rb )
等臂 电桥
电桥平衡:
设 R1 R4 Rb R3
Uo 0
电桥补偿方法
R1 R1 K Uo A( R1 R1 ) R4 Rb R3 温度不变化:
F 0
Uo AR1 R4 K