化工过程系统优化问题基本概念
4.3 化工过程系统最优化问题的类型

实际生产操作必须根据环境和条件的变化来调节决策变量 (即操作变量),从而使整个过程系统处于最佳状态,也就 是目标函数达到最优。这就是操作参数优化问题
如:通过操作参数优化计算,可以找到对应于系统下的精馏
塔最佳回流比、操作压力、反应器最佳反应温度和再循环流 量等等。
如果操作参数与生产装置的测试系统连接在一起,随时根据
检测仪表送来的信息进行优化计算,然后将计算结果信息直 接送往控制系统,则称为“在线操作优化”
过程系统的设计参数优化和操作参数优化的区别 在于优化对象不同,前者优化的是设计变量,后 者优化的是操作变量,
但就应其数学本质而言并什么本质上的区别,优 化的对象都是决策变量
当用机理模型描述过程系统的参数优化问题时, 模型方程分为稳态优化模型和动态优化模型
例4-2 间歇式理想混合反应器的最优操作, 假设反应器内进 行的是可逆放热反应,通过改变其冷却衬套内冷却剂的温度 对反应器实现最优控制
解:描述该反应器内过程进行的 T (t )] dt dT qr F r[ xA (t ), T (t )] (T Tc ) dt C p VC p
最优化问题可分为
过程系统参数的优化 过程系统结构的优化 过程系统管理的优化
4.3.1 过程系统参数优化
包括设计参数优化和操作参数优化
设计参数优化,就是把最优化技术应用于过程系统
模型,寻求一组使目标函数达到最优,同时又满足
各项设计规定要求的决策变量(即设计变量)。
根据最优设计方案可计算单元设备的尺寸
化工过程分析与合成
第四章 化工过程系统的优化
目 录
4.1 概述 4.2 化工过程系统优化问题基本概念 4.3 化工过程系统最优化问题的类型 4.4 化工过程中的线性规划问题
化工原理概述与基本概念

化工原理概述与基本概念化工原理是指在化学工程与化学技术领域中,通过对化学反应、传质、传热等基本过程的研究,总结出一系列基本规律和理论知识的学科。
化工原理的研究与应用,对于提高化工生产过程的效率和产品质量具有重要意义。
本文将从化工原理的定义、基本概念以及与化学工程实践的关系等方面展开论述。
一、化工原理的定义化工原理是化学工程学科中的基础学科,它主要研究化学反应、物质传质与传热等基本过程的规律和原理。
通过对这些基本过程的研究,可以揭示物质的转化规律并加以应用,进而实现化工生产的控制和优化。
化工原理既是化学工程学科的基础,也是其发展的核心。
二、化工原理的基本概念1. 化学反应:化学反应是指物质之间发生的化学变化过程。
在化学反应中,原子或分子之间的化学键发生断裂或形成新的化学键,从而导致物质的属性发生改变。
化学反应是化工原理研究的重要内容,其速率、平衡等方面的控制对于化工过程的运行至关重要。
2. 传质:传质是指物质在不同相之间的传递过程。
在化工过程中,传质现象普遍存在,例如气体的吸收、液体的萃取、固体的溶解等。
传质的速率和方式对于分离纯化和反应等化工过程的效果和效率有重要影响。
3. 传热:传热是指热量在空间中由高温物体传递到低温物体的过程。
在化工生产中,传热过程是难以避免的。
掌握传热规律对于提高化工反应效率、节能减排具有重要意义。
4. 化工流程:化工流程是指将原料经过合适的化学反应、传质传热等处理,最终得到所需产品的过程。
化工流程的设计和优化需要考虑多种因素,包括原料选取、反应条件控制、能耗和环保等。
三、化工原理与实际应用化工原理是化学工程实践的基础和指导,通过研究和应用化工原理的基本概念,可以实现对化工过程的控制和优化。
以下是化工原理在实际应用中的几个方面:1. 反应器设计:化工原理为反应器的设计提供了理论依据。
通过研究化学反应的动力学、热力学等理论,可以确定最适宜的反应器类型、尺寸和操作条件,提高反应过程的效率和产物质量。
化工过程优化与控制

化工过程优化与控制化工过程的优化和控制是目前化工领域中非常重要的一个问题,其目的是为了实现化工生产过程的高效稳定和安全环保。
随着化工产业的快速发展和全球竞争的激烈化,化工过程的优化和控制显得更加重要。
本文将着重探讨化工过程的优化和控制的问题,并提出相应的解决方案。
第一部分:化工过程的难点与挑战化工过程是一种包括反应、分离、净化等多个环节的复杂过程,而且化工生产的每个环节都会受到不同的影响因素。
例如,化学反应的速度、温度、压力以及催化剂的条件等都会对反应的效果产生影响,同时化工过程中的原材料、工艺、仪器设备、操作技术等也都会与化学反应相互作用。
这些因素的多样性和复杂性都为化工过程的优化和控制带来了巨大的挑战。
化工过程的优化和控制要解决的核心问题是如何在保证产品质量和安全环保的前提下,以尽可能低的生产成本提高生产效率。
为了实现这一目标,必须要解决以下几个难点:1. 复杂反应控制。
复杂反应控制是实现化工过程优化的难点之一。
为了实现复杂反应的控制,需要有计算机模拟、算法优化和高级仪器设备的支持。
2. 过程优化动态性。
化工过程的变化是极其复杂和动态的,所以优化和控制的过程也需要动态调整。
化工过程的异质性和随机性需要不断的调整和优化。
3. 环境保护。
化工行业是对环境最为严格的行业之一,对于化学品的生产和处理都要求非常高的要求,包括废气废水和固体废弃物的处理和排放等等。
第二部分:化工过程优化的方法和技术化工过程的优化方法和技术比较多,以下介绍几种比较常用的方法。
1. 统计学方法。
统计学方法是最常见和有效的化工过程优化方法之一。
它通过分析数据和变量之间的关系来确定影响因素和优化方案。
2. 模型预测控制。
模型预测控制是利用数学模型和计算机仿真实现化工过程优化的一种方法。
通过建立预测模型和控制模型来预测和控制反应过程的变化,实现化工过程的优化。
3. 综合控制。
综合控制是利用多种控制方法和设备来实现化工过程的优化。
综合控制方法包括PID控制、多变量控制和先进控制策略等。
《化工过程分析与合成》教学大纲

化工过程分析与合成课程教学大纲一、课程的基本信息适应对象:化学工程与工艺、课程代码:41E01016学时分配:32赋予学分:2学分先修课程:高等数学、化工原理、化工设备机械基础、化学反应工程后续课程:化工设计、化工过程开发二、课程性质与任务1课程性质:《化工过程分析与合成》课程是一门具有综合性、应用性、研究性特色的化工类专业主干课程,以科学研究的方法论为主线,培养成人教育学生将实践经验与所学知识相结合分析和解决工程问题的能力。
2课程任务:通过本课程教学,使学生在学习了化工原理、化工热力学、化学反应工程等课程的基础上,学会以系统工程的方法来处理化工过程的分析与合成问题。
三、教学目的与要求本课程以科学研究的方法论为主线,培养学生将实践经验与所学知识相结合、分析和解决工程问题的能力。
通过本课程的学习,使学生掌握将实验室研究成果(新工艺、新产品等)实现工业化的主要方法,掌握化工过程及系统工程的发展概况;氨合成工艺介绍了化工过程系统稳态模拟方法及其分析求解方法;化工过程系统动态模拟的特性、方法及数学处理;化工过程系统的优化和求解方法;化工生产过程操作工况调优的数学模型及调优计算,以及人工神经元网络的基础知识;间歇化工过程的基本概念、模型化方法及设计优化;换热网络的合成及其夹点技术进行了全面的介绍;分离塔序列合成的方法等环节的过程研究。
通过列举大量化工过程开发的实例,让学生了解正确的理论指导、科学的实验方法、以及工艺与工程相结合的工程观念在化工过程开发中的重要作用。
四、教学内容与安排第一章绪论(课堂讲授学时:2)1.1 化工过程1.2 化工过程生产操作控制1.3 化工过程的分析与合成1.4 化工过程模拟系统1.5 化工企业CIPS技术第二章化工过程系统稳态模拟与分析(课堂讲授学时:4)2.1 典型的稳态模拟与分析问题2.2 过程系统模拟的三类问题及三种基本方法2.3 过程系统模拟的序贯模块法2.4 过程系统模拟的面向方程法2.5 过程系统模拟的联立模块法2.6 氨合成工艺流程的模拟与分析第三章化工过程系统动态模拟与分析(课堂讲授学时:4)3.1 化工过程系统的动态模型3.2 连续搅拌罐反应器的动态特性3.3 精馏塔的动态特性第四章化工过程系统的优化(课堂讲授学时:4)4.1 概述4.2 化工过程系统优化问题基本概念4.3 化工过程系统最优化问题的类型4.4 化工过程中的线性规划问题4.5 化工过程中非线性规划问题的解析求解4.6 化工过程中非线性规划问题的数值求解第五章化工生产过程操作工况调优(课堂讲授学时:2)5.1 化工生产过程操作工况调优的作用与意义5.2 化工生产过程操作工况离线调优的方法第六章间歇化工过程(课堂讲授学时:6)6.1 间歇过程与连续过程6.2 过程动态模型及模拟6.3 间歇过程的最优时间表6.4 多产品间歇过程的设备设计与优化第七章换热网络合成(课堂讲授学时:4)7.1 化工生产流程中换热网络的作用和意义7.2 换热网络合成问题7.3 换热网络合成--夹点技术7.4 夹点法设计能量最优的换热网络第八章分离塔序列的综合(课堂讲授学时:6)8.1 精馏塔分离序列综合概况8.2 分离序列综合的基本概念8.3 动态规划法8.4 分离度系数有序探试法8.5 相对费用函数法8.6 分离序列综合过程的评价五、教学设备和设施多媒体教室、黑板、黑板笔六、课程考核与评估期末闭卷考试,考试时间100min。
化工原理中的化工过程集成与优化

化工原理中的化工过程集成与优化化工工程中的过程集成与优化是一项重要的技术,旨在通过优化化工过程中的各个单元操作,提高生产效率、降低能耗以及减少对环境的污染。
本文将介绍化工原理中的化工过程集成与优化的基本概念、方法和应用案例,并探讨其在化工工程中的重要性和前景。
一、化工过程集成与优化的基本概念化工过程集成与优化旨在通过将化工过程中的各个单元操作进行整合和优化,以实现整体性能的提升。
过程集成是指将不同的单元操作相互结合,形成一个具有相互关联和协同作用的整体系统;过程优化则是通过对该整体系统进行综合分析和调整,以实现最佳的生产效果。
化工过程集成与优化的目标包括降低能耗、提高产量和质量、降低成本和减少对环境的影响。
二、化工过程集成与优化的方法1. Pinch Analysis(突破分析)Pinch分析是一种常用的化工过程集成与优化方法,主要用于能量系统的优化。
该方法通过对热量的流动进行分析,确定热量交换装置的最佳配置,以最大程度地降低能量消耗和损失。
2. Mathematical Programming(数学规划)数学规划是一种利用数学模型和计算方法来优化化工过程的方法。
它通过建立数学模型,将目标函数和约束条件进行数学描述,然后使用优化算法求解最优解。
常用的数学规划方法包括线性规划、整数规划、动态规划等。
3. Process Simulation(过程模拟)过程模拟是一种将化工过程进行数字化描述和仿真的方法,旨在通过对过程进行模拟和分析,找出优化的空间和改进的方向。
过程模拟常用的软件工具包括ASPEN Plus、HYSYS等。
三、化工过程集成与优化的应用案例1. 炼油厂的能量优化炼油厂是一个典型的能耗较高的化工过程,其中能量系统的优化对于提高能源利用效率和降低成本至关重要。
通过应用Pinch Analysis方法,可以确定热量交换网络的最佳配置,实现能量的最大回收和利用。
2. 化肥生产过程的排放控制化肥生产过程中,大量的废气和废水会对环境造成严重的污染。
4.2-化工过程系统优化问题基本概念

(4-9)
满足约束条件的方案集合,构成了最优化问题的可行域, 记作R
可行域中的方案称为可行方案 每组方案y为n维向量,它确定了n维空间中的一个点 因此,过程系统最优化问题是在可靠域中寻求使目标函
Hale Waihona Puke 数取最小值的点,这样的点称为最优化问题的最优解
D { x 1 ,x 2 [ ] T |x 1 2 x 2 2 1 , x 1 0 , x 2 0 }
5 可行路径法和不可行路径法
对于有约束最优化问题,视其如何处理约束条件可分为 可行路径法和不可行路径法。
可行路径法的整个搜索过程是在可行域内进行的,对变 量的每次取值,约束条件均必须满足
对于每一次优化迭代计算(统计模型除外)均必须解算 一次过程系统模型方法(即状态方程)f,也就是做一次 全流程模拟计算。同时,要解算式(4-6)至(4-8)。
End
过程系统优化问题可表示为
m in F (w , x) s .t. f ( w , x , z ) 0
c(w,x,z) 0 h(w,x) 0 g (w,x) 0
w-决策变量向量(w1,…,wr); x-状态变量向量(x1,…,xm) z-过程单元内部变量向量(z1,…,zs) F-目标函数 f-m维流程描述方程组(状态方程) c-s维尺寸成本方程组 h-l维等式设计约束方程 g-不等式设计约束方程
(3,2)距离最近的点(2,1)
例4-1 求一个受不等式约束的最优化问题
m f( x 1 ,x i 2 ) n ( x 1 3 ) 2 ( x 2 2 ) 2 1
4.2.2 最优化问题的建模方法
对于过程机理清楚的问题,一般采用机理模型进行优化, 其优点是结果比较精确
机理模型的约束方程是通过分析过程的物理、化学本质 和机理,利用化学工程学的基本理论建立的描述过程特 性的数学模型及边界条件
化工过程分析与合成第四章过程系统最优化第一、二节(参

假设 x有n个分量,状态方程S( x ) = 0有m个方程,则状态 变量数为m。
状态变量数 = 状态方程数 = m 决策变量数 = 变量总数 - 状态变量数= n - m 决策变量数(n-m)被称为优化时系统的自由度(d)。 即:
d = 决策变量数 = n - m
min J = f (x) 设优化模型为:
变
程和决策变量;
量
决策变量 ─ 是独立变量,即可以任意取值的变量。
它是事先必须人为给定的变量。
几何变量:
决
是流程中起决定作用的设备结构尺寸。
策
变
◆ 原始输入物流的温度、压力、组成和流率;
量
过 ◆ 由外界引入的能量及压力变化;
程 变
◆ 反应的转化率;
量 ◆ 系统中存在的独立反应数;
◆ 分流器的分流比;
数;
四. 基本概念和数学模型
(一). 基本概念
1. 目标函数
目标函数又称为经济评价函数,它将经济评价指标与过 程系统的主要变量,用一个数学表达式关联在一起。因此, 目标函数是整体评价的依据和标准。
效果函数
经济指标
费用函数
利润 产率
费用 能耗或单耗
max min
对于反应器的优化问题,常用的经济指标有: ◆ 在不同反应时间下,单位反应器体积的收率最高; ◆ 对间歇反应器,每釜产品量最大; ◆ 对间歇反应器,当产量固定时,其生产周期最短; ◆ 在不同的操作条件下,产品的收率最高; ◆ 在不同的操作条件下,其能耗最低; ◆ 在不同转化率下(未反应的原料循环使用)的利润最大。
第四章 化工过程系统 的最优化
第一节 概 述
一.化工中的优化问题
在工程问题中,常会遇到设备费和操作费之间的矛盾。 如何在设备费和操作费之间进行权衡,使总费用最小,这就 是优化要解决的问题。优化的目标是确定系统中各单元设备 的结构参数和操作参数,使系统的经济指标达到最优。
(完整版)化工过程分析与合成复习

化工过程分析与合成复习一、基本概念(1)名词解释1、化工过程系统模拟(对于化工过程,在计算机上通过数学模型反映物理原型的规律)2、过程系统优化(实现过程系统最优运行,包括结构优化和参数优化)3、过程系统合成(P5)4、过程系统自由度(过程系统有m个独立方程数,其中含有n个变量,则过程系统的自由度为:d=n-m,通过自由度分析正确地确定系统应给定的独立变量数。
)5、夹点的意义(夹点处,系统的传热温差最小(等于ΔT min ),系统用能瓶颈位置。
夹点处热流量为0 ,夹点将系统分为热端和冷端两个子系统,热端在夹点温度以上,只需要公用工程加热(热阱),冷端在夹点温度以下,只需要公用工程冷却(热源);)6、过程系统能量集成(以用能最小化为目标的考虑整个工艺背景的过程能量综合)7、过程系统的结构优化和参数优化(改变过程系统中的设备类型或相互间的联结关系,以优化过程系统;参数优化指在确定的系统结构中,改变操作参数,是过程某些指标达到优化。
)二、判断以下问题是非(N,Y)• 1.自由度数只与过程系统有关。
(Y )• 2.换热网络的夹点设计,要尽量避免物流穿过夹点。
(N )• 3.在换热夹点分析中,没有物流穿过夹点,就无热流量穿过夹点。
(N )• 4.在夹点上方尽量避免引入冷物流,夹点下方尽量避免引入热物流(N )• 5.穿过夹点热流量为零,则夹点处传热量为零(N )• 6.夹点上方热流股数NH.>NC,热流股总热负荷QH<QC,不能实现夹点匹配( N ) •7.精馏塔跨过夹点,则塔底要用热公用工程,塔顶要用冷公用工程。
(Y )•8. 对于冷热流股换热系统,传热量一定的前提下,传热温差愈小,过程不可逆程度愈小,有效能损失愈小,但要求较大的热交换面积。
(Y)•9. 利用能量松弛方法对换热器网络的调优,并不影响冷热公用工程负荷。
(N)•10. 热物流穿过换热网络的夹点,必有热流量穿过夹点。
(N)•11. 热物流在夹点上方,冷物流在夹点下方。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f (w, x, z) 0
(4-9)
满足约束条件的方案集合,构成了最优化问题的可行域, 记作R
可行域中的方案称为可行方案 每组方案y为n维向量,它确定了n维空间中的一个点 因此,过程系统最优化问题是在可靠域中寻求使目标函
数取最小值的点,这样的点称为最优化问题的最优解
D {[ x1, x2 ]T | x12 x22 1,x1 0,x2 0}
优点是模型关系式简单,不需要特殊的最优化求解算法。
缺点是外延性能较差
多层神经网络模型也是一种黑箱建模方法,广泛用于 过程系统模拟和优化问题。在许多方面优于一般的统 计回归模型。
e( y) 0
(4-3)
y ( y1, y2,, yn )T 为n维优化变量向量
最优化问题的组成要素: 目标函数,优化变量,约束条件与可行域。
1 目标函数
目标函数(又称性能函数,评价函数)是最优化问题所 要达到的目标。两组不同的决策,其好坏优劣要以它们 使目标函数达到多少为评判标准。
系统的产量最大; 系统的经济收益最大; 系统的能量消耗最小; 系统的原料利用率最高; 系统的操作成本最低; 系统的投资成本最低; 系统的稳定操作周期最长 。。。 还有多目标问题
程确定了x与w的函数关系
f (w, x) 0
(4-4)
通常称之为状态方程,它表示的是系统状态变量与决
策变量之间的关系。
状态方程数目与状态变量x的维数相同。
自由度为零的系统优化问题就是系统模拟问题
有时过程变量向量还包括S维单元内部变量向量z ,因此,
状态方程的一般形式为:
f (w, x, z) 0
在数学上,求解最优化问题就是要找到一组使得 目标函数J达到最大或最小的决策变量
求最小值的方法完全可以用于求解最大值问题
min J max[ J ]
4.2.1 最优化问题的数学描述
目标函数:
min J min F( y) (4-1)
不等式约束条件:
g(y) 0
(4-2)
等式约束条件:
2 优化变量
对于过程系统参数优化问题,优化变量向量就是过程 变量向量。过程变量向量包括决策变量和状态变量
决策变量等于系统的自由度,它们是系统变量中可以 独立变化以改变系统行为的变量;
状态变量是决策变量的函数,它们是不能独立变化的 变量,服从于描述系统行为的模型方程
w表示决策变量,x表示状态变量,则过程系统模型方
化工过程分析与合成
第四章 化工过程系统的优化
目录
4.1 概述 4.2 化工过程系统优化问题基本概念 4.3 化工过程系统最优化问题的类型 4.4 化工过程中的线性规划问题 4.5 化工过程中的非线性规划问题 4.6 化工过程大系统的优化
4.2 化工过程系统优化问题基本概念
4.2.1 最优化问题的数学描述
g-不等式设计约束方程
讨论
对于上述优化问题,变量数为m+r+s,等式约束方程数 为m+l+s,问题的自由度为
d=变量数-方程数=r -l 若l=0,自由度等于决策变量数r; 若l=r,自由度等于零,此时最优化问题的解是唯一的
(即等于约束方程的交点),没有选择最优点的余地; 若l>r,则最优化问题无解。由此可见,l<r是最优化问
约束条件有等式约束和不等式约束
不等式约束条件:过程变量的不等式约束条件和不等
式设计规定要求
g(w, x) 0
(4-6)
等式约束条件:由等式设计规定要求和尺寸成本关系
式两部分组成,分别表示为
h(w, x) 0
(4-7)
c(w, x, z) 0
(4-8)
状态方程式(包括各种衡算方程、联结方程等):
形式往往比较复杂,具有大型稀疏性特点,需要用特殊 的最优化方法进行求解,求解方法选择不当,会影响优 化迭代计算速度
对于过程机理不很清楚,或机理模型复杂,难以建立数学 方程组或方程组求解困难的问题,可通过建立黑箱模型进 行优化。
其中常用的就是统计模型优化方法
直接以实测数据为依据,只着眼于输入-输出关系,不考 虑过程本质,对数据进行数理统计分析从而得到过程各参 数之间的函数关系。函数关系通常比较简单。
min f (x1, x2 ) (x1 3)2 (x2 2)2 1
约束条件:
x12 x2 3 0
x2 1 0
x1 0 解:可行域是由:
x12 x2 3 0 x2 1 0 x1 0
三边所围成的区域,最优解只能是可行域内与点
(3,2)距离最近的点(2,1)
例4-1 求一个受不等式约束的最优化问题
(4-5)
一般,过程系统优化问题中,决策变量数仅占整个过程 变量中的一小部分。这一特性在缩小优化搜索时是很有 用的
3 约束条件和可行域
当过程变量向量y的各分量为一组确定的数值时,称为 一个方案
变量y的取值范围一般都要给以一定的限制,这种限制 称为约束条件 状态方程限制了状态变量与决策变量间的关系,因此, 也可以看作是一种约束条件。 对于设计参数优化问题,设计规定要求也是一种约束 条件。
min f (x1, x2 ) (x1 3)2 (x2 2)2 1
4.2.2 最优化问题的建模方法
对于过程机理清楚的问题,一般采用机理模型进行优化, 其优点是结果比较精确
机理模型的约束方程是通过分析过程的物理、化学本质 和机理,利用化学工程学的基本理论建立的描述过程特 性的数学模型及边界条件
题有解的必要条件之一
例:求该优化问题的自由度
max
f
(x)
1000x1x2 x3
(4
x2
x1.4 3
0.4
x0.6 4
)
2.0
s.t.
x32
(1
Байду номын сангаас
x1 ) 2
x5
0
x2 x3 (1 x1)x2 x3 x4 x5 0
x1x2 x3 100 0 x2 600 0
例4-1 求一个受不等式约束的最优化问题
过程系统优化问题可表示为
min F(w, x) s.t. f (w, x, z) 0
c(w, x, z) 0 h(w, x) 0 g(w, x) 0
w-决策变量向量(w1,…,wr); x-状态变量向量(x1,…,xm) z-过程单元内部变量向量(z1,…,zs) F-目标函数 f-m维流程描述方程组(状态方程) c-s维尺寸成本方程组 h-l维等式设计约束方程