实验一X射线衍射仪的结构与物相分析
x射线物相分析实验报告

x射线物相分析实验报告X射线物相分析实验报告引言:X射线物相分析是一种常用的实验方法,用于研究材料的晶体结构和组成。
通过观察和分析X射线的衍射图案,我们可以得到材料的晶体结构、晶格参数以及晶体中原子的排列方式等重要信息。
本实验旨在通过X射线物相分析技术,对给定的材料样品进行结构分析,并探索其性质和应用。
实验方法:1. 样品制备:首先,我们选择了一种具有特定晶体结构的材料作为研究对象。
然后,将样品制备成粉末状,以便于进行X射线衍射实验。
制备过程中需要注意避免杂质的混入,以保证实验结果的准确性。
2. X射线衍射实验:将制备好的样品放置在X射线衍射仪器中,调整仪器参数,如入射角度、扫描范围等。
通过控制X射线的入射角度和扫描范围,我们可以获取不同角度下的衍射图案。
实验过程中需要保证仪器的稳定性和准确性,以获得可靠的实验结果。
结果与讨论:通过X射线衍射实验,我们获得了样品在不同角度下的衍射图案。
根据这些衍射图案,我们可以进行结构分析和晶格参数计算。
1. 结构分析:通过对衍射图案的观察和分析,我们可以确定样品的晶体结构。
根据布拉格方程和衍射峰的位置、强度等信息,我们可以推断出晶体中原子的排列方式和晶胞结构。
这对于研究材料的性质和应用具有重要意义。
2. 晶格参数计算:通过测量衍射图案中的衍射角度和计算相关的几何参数,我们可以得到样品的晶格参数。
晶格参数是描述晶体结构的重要参数,它们的大小和比例关系直接影响材料的性质和行为。
通过计算晶格参数,我们可以进一步了解样品的结构特征和晶体生长方式。
结论:通过X射线物相分析实验,我们成功地对给定的材料样品进行了结构分析和晶格参数计算。
通过观察和分析衍射图案,我们得到了样品的晶体结构和晶格参数等重要信息。
这些结果对于研究材料的性质和应用具有重要意义,为进一步深入研究和应用提供了基础。
总结:X射线物相分析是一种重要的实验方法,通过观察和分析X射线的衍射图案,可以获得材料的晶体结构和组成等关键信息。
X射线衍射仪实验报告(范文模版)

X射线衍射仪实验报告(范文模版)第一篇:X射线衍射仪实验报告(范文模版)基本构造:(1)高稳定度X射线源提供测量所需的X射线, 改变X射线管阳极靶材质可改变X射线的波长, 调节阳极电压可控制X射线源的强度。
(2)样品及样品位置取向的调整机构系统样品须是单晶、粉末、多晶或微晶的固体块。
(3)射线检测器检测衍射强度或同时检测衍射方向, 通过仪器测量记录系统或计算机处理系统可以得到多晶衍射图谱数据。
(4)衍射图的处理分析系统现代X射线衍射仪都附带安装有专用衍射图处理分析软件的计算机系统, 它们的特点是自动化和智能化。
操作:第一步:检查真空灯是否正常,左“黄”右“绿”为正常状态,如果“绿”灯闪或者灭的状态表明真空不正常;第二步:冷却水系统箱,打开其开关(冷却水的温度低于26℃为正常)。
如果“延时关机”为开的状态要关闭。
“曲轴加热”一般在寒冬才用,打开预热10min 后即可继续以下操作。
(此外,测试实验完成后,打开“延时关机”按钮,而冷却水的“关闭”按钮不关,30min后冷却水会自动关闭)第三步:打开机器后面“右下角”的“测角仪”(上开下关),而“左下角”的开关一般为“开”的状态,除有允许不要动;第四步:电脑操作,桌面“右下角”有“蓝色标示”说明电脑和机器已经连接,否则“左击”该标示选择“初始化”即可;第五步:装样品,载物台一般用“多功能”的,粉体或者块体装上后,使其平面与载物台面相平。
如果是粉体还要在滑道上铺层纸,避免掉料污染滑道;第六步:在机器中放样品前,按“Door”按键,听到“嘀嘀”声时,方可打开机器门;第七步:点击“standard measurement”中的运行按钮即可运行机器进行测试中。
第八步:实验完成后,先降电流后降电压,20mA/5min至10mA,5kV/5min至20kV;关闭各个软件,关闭“测角仪”开关。
冷却水箱上的开关可以直接打开“延时关机”开关,而冷却水“关闭”按钮不关,30min后自动关闭冷却水。
材料分析基础实验报告之X射线衍射(XRD)物相分析【范本模板】

实验一 X射线衍射仪的结构与测试方法一、实验目的1、掌握X射线衍射的基本原理;2、了解X射线衍射仪的基本结构和操作步骤;3、掌握X射线衍射分析的样品制备方法;4、了解X射线的辐射及其防护方法二、实验原理根据晶体对X射线的衍射特征-衍射线的位置、强度及数量来鉴定结晶物质之物相的方法,就是X射线物相分析法。
每一种结晶物质都有各自独特的化学组成和晶体结构。
没有任何两种物质,它们的晶胞大小、质点种类及其在晶胞中的排列方式是完全一致的。
当X射线波长与晶体面间距值大致相当时就可以产生衍射。
因此,当X射线被晶体衍射时,每一种结晶物质都有自己独特的衍射花样,它们的特征可以用各个衍射晶面间距d和衍射线的相对强度I/I1来表征。
其中晶面间距d与晶胞的形状和大小有关,相对强度则与质点的种类及其在晶胞中的位置有关。
所以任何一种结晶物质的衍射数据d和I/I1是其晶体结构的必然反映,因而可以根据它们来鉴别结晶物质的物相。
三、实验设备丹东方圆仪器有限公司的D2700型X射线粉末衍射仪一台;玛瑙研体一个;化学药品或实际样品若干(Li4Ti5O12)。
四、实验内容1、采用玛瑙研体研磨样品,在玻璃样品架上制备一个合格试验样品;2、选择合适的试验参数,获得XRD图谱一张;3、理解样品、测试参数与XRD图谱特征的关系。
五、实验步骤1、开机1)打开总电源2)启动计算机3)将冷却水循环装置的机箱上的开关拨至运行位置,确认冷却水系统运行,水温正常(19—22℃);4)按下衍射仪ON绿色按键打开衍射仪主机开关5)启动高压部分(a)必须逐渐提升高压,稳定后再提高电流。
电压不超过40kV,管电流上限是40mA,一般为30mA。
(b)当超过4天未使用X光管时,必须进行光管的预热。
在25kV高压,预热10分钟;30kV,预热5分钟;35kV,预热5分钟。
(c)预热结束关机后,至少间隔30分钟以上方可再次开机实验。
6)将制备好的样品放入衍射仪样品台上;7)关好衍射仪门.2、样品测试1)在电脑上启动操作程序2)进入程序界面后,鼠标左键点击“测量”菜单,再点击“样品测量”命令,进入样品测量命令3)等待仪器自检完成后,设定好右边的控制参数;4)鼠标左键点击“开始测量”,保存输出文件;5)此时仪器立即开始采集数据,并在控制界面显示;(a)工作电压与电流:一般设为40kV,40mA;(b)扫描范围:起始角度>5°,终止角度<80°;(c)步进角度:推荐0.02°,一般在0.02—0。
X射线衍射实验报告

X射线衍射实验报告摘要:本实验通过了解到X射线的产生、特点和应用;理解X射线管产生连续X 射线谱和特征X射线谱的基本原理,了解D8xX射线衍射仪的基本原理和使用方法,通过分析软件对测量样品进行定性的物相分析。
关键字:布拉格公式晶体结构,X射线衍射仪,物相分析引言:X射线最早由德国科学家W.C. Roentgen在1895年在研究阴极射线发现,具有很强的穿透性,又因x射线是不带电的粒子流,所以在电磁场中不偏转。
1912年劳厄等人发现了X射线在晶体中的衍射现象,证实了X射线本质上是一种波长很短的电磁辐射,其波长约为10nm到10–2nm之间,与晶体中原子间的距离为同一数量级,是研究晶体结构的有力工具。
物相分析中的衍射方法包括X射线衍射,电子衍射和中子衍射三种,其中X射线衍射方法使用最广,它包括德拜照相法,聚集照相法,和衍射仪法。
实验目的:1. 了解X射线衍射仪的结构及工作原理2. 熟悉X射线衍射仪的操作3. 掌握运用X射线衍射分析软件进行物相分析的方法实验原理:(1)X射线的产生和X射线的光谱实验中通常使用X光管来产生X射线。
在抽成真空的X光管内,当由热阴极发出的电子经高压电场加速后,高速运动的电子轰击由金属做成的阳极靶时,靶就发射X射线。
发射出的X射线分为两类:(1)如果被靶阻挡的电子的能量不越过一定限度时,发射的是连续光谱的辐射。
这种辐射叫做轫致辐射;(2)当电子的能量超过一定的限度时,可以发射一种不连续的、只有几条特殊的谱线组成的线状光谱,这种发射线状光谱的辐射叫做特征辐射。
对于特征X光谱分为(1)K系谱线:外层电子填K层空穴产生的特征X射线Kα、Kβ…(2)L系谱线:外层电子填L层空穴产生的特征X射线Lα、Lβ…如下图1图1 特征X射线X射线与物质的作用X射线与物质相互作用产生各种复杂过程。
就其能量转换而言,一束X射线通过物质分为三部分:散射,吸收,透过物质沿原来的方向传播,如下图2,其中相干散射是产生衍射花样原因。
实验:X射线衍射法进行物相定性分析1

X射线衍射法进行物相定性分析实验目的及要求⏹了解X射线衍射仪的结构和工作原理;⏹掌握无机非金属材料X射线衍射分析的制样方法;⏹掌握X射线衍射物相定性分析的方法和步骤。
物相定性分析的基本原理2dsinθ=λ晶胞中原子种类、数量、排列方式(1) 任何一种物相都有其特征的衍射谱;任何两种物相的衍射谱不可能完全相同;多相样品的衍射峰是各物相衍射峰的机械叠加。
(2)制备标准单相物质的衍射花样:PDF卡片待分析物质(样品)的衍射花样与之对照,从而确定物质的组成相实验设备与结构D/max-RB型X射线衍射仪D/Max-RB型X射线衍射仪构造示意图主要组成部分有X射线发生器、测角仪、探测器、计算机控制处理系统等。
一、X射线管1、X-ray产生原理凡是高速运动的电子流或其它高能辐射流(如γ射线,X射线,中子流等)被突然减速时均能产生X射线。
热能 + 电磁波2、X射线机X射线管是X射线机的核心部件。
封闭式热阴极X射线管:热阴极、阳极、窗口、聚焦座、管座等滤波片可以获得近似的纯的kα辐射源为避免样品强烈吸收入射X射线产生荧光幅射,对分析结果产生干扰。
必须根据所测样品的化学成分选用不同靶材的X 射线管。
原则是:靶材的Kα谱应位于试样元素K吸收限的右近邻或左面远离试样元素K吸收限的低质量吸收系数处。
二、测角仪测角仪是X射线衍射仪的核心部件梭拉光栏梭拉光栏防散射光栏衍射仪的光路图X射线经线状焦点S发出,经发散狭缝DS后,成为扇形光束照射在平板试样上,产生衍射,衍射线经接收狭缝RS进入探测器(即计数管)后被转换成电信号记录下来。
为了限制X射线的发散,在照射路径中加入S1梭拉光栏限制X射线在高度方向的发散,加入DS发散狭缝光栏限制X射线的照射宽度。
试样产生的衍射线也会发散,同样在试样到探测器的光路中也设置防散射光栏SS、梭拉光栏S2和接收狭缝光栏RS,这样限制后仅让聚焦照向探测器的衍射线进入探测器,其余杂散射线均被光栏遮挡。
◆工作时,试样与探测器同时转动,但转动的角速度为1 : 2的比例关系。
X射线衍射结构分析实验报告

X 射线衍射结构分析实验【摘要】在一定条件下,每一种物质在被电子流轰击时都会产生特定的X 射线。
而X 射线的波长很小,可利用晶体这个天然的光栅使X 射线发生衍射。
本实验通过轰击钼靶产生一定波长的X 射线,并将NaCl 晶体作为光栅使其发生衍射。
通过一级衍射峰θ的值的测量,可测定NaCl 晶体的晶格结构。
【关键词】X 射线 衍射 布拉格方程 晶格常树引言:X 射线是波长介于紫外线和γ射线之间的电磁辐射,是一种波长很短的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。
X 射线最早是由德国科学家伦琴在1895年在研究阴极射线发现,它具有很强的穿透性,又因为X 射线是不带电的粒子流,所以在电磁场中不偏转。
1912年劳厄等人发现了X 射线在晶体中的衍射现象,证实了X 射线本质上是一种波长很短的电磁辐射,其波长约为10nm 到10–2nm 之间,与晶体中原子间的距离为同一数量级,用已知的X 射线可测定各种晶体的晶格结构。
也可以用已知晶体结构的晶体来测定未知X 射线的波长,从而确定未知物质的成分。
正文: 1、实验目的:1. 了解X 射线的产生、特点和应用;2. 了解X 射线衍射仪的结构和工作原理3. 掌握X 射线衍射物相定性分析的方法和步骤2、实验原理:1、由于X 光的波长与一般物质中原子的间距同数量级,因此X 光成为研究物质微观结构的有力工具。
当X 光射入原子有序排列的晶体时,会发生类似于可见光入射到光栅时的衍射现象。
1913年英国科学家布拉格父子(W.H.Bragg 和W.L.Bragg )证明了X 光在晶体上衍射的基本规律为(如图2所示):λθn d =sin 2 (1)根据布拉格公式,既可以利用已知的晶体(d 已知)通过测量θ角来研究未知X 光的波长,也可以利用已知的X 光(λ已知)来测量未知晶体的晶面间距。
本实验利用已知钼的X 光特征谱线来测量氯化钠(NaCl )晶体的晶面间距,从而得到其晶体结构。
X-射线衍射法进行物相分析..

X-射线衍射法进行物相分析一. 实验题目X射线衍射物相定性分析二. 实验目的及要求学习了解X射线衍射仪的结构和工作原理;掌握X射线衍射物相定性分析的方法和步骤;给定实验样品,设计实验方案,做出正确分析鉴定结果。
三. 实验原理根据晶体对X射线的衍射特征-衍射线的位置、强度及数量来鉴定结晶物质之物相的方法,就是X射线物相分析法。
每一种结晶物质都有各自独特的化学组成和晶体结构。
没有任何两种物质,它们的晶胞大小、质点种类及其在晶胞中的排列方式是完全一致的。
因此,当X 射线被晶体衍射时,每一种结晶物质都有自己独特的衍射花样,它们的特征可以用各个衍射晶面间距d和衍射线的相对强度I/I0来表征。
其中晶面间距d与晶胞的形状和大小有关,相对强度则与质点的种类及其在晶胞中的位置有关。
所以任何一种结晶物质的衍射数据d和I/I0是其晶体结构的必然反映,因而可以根据它们来鉴别结晶物质的物相。
四. 实验仪器图一X射线衍射仪本实验使用的仪器是Y-2000射线衍射仪( 丹东制造)。
X射线衍射仪主要由X射线发生器(X射线管)、测角仪、X射线探测器、计算机控制处理系统等组成。
衍射仪如图一所示。
1.X射线管X射线管主要分密闭式和可拆卸式两种。
广泛使用的是密闭式,由阴极灯丝、阳极、聚焦罩等组成,功率大部分在1~2千瓦。
可拆卸式X射线管又称旋转阳极靶,其功率比密闭式大许多倍,一般为12~60千瓦。
常用的X射线靶材有W、Ag、Mo、Ni、Co、Fe、Cr、Cu等。
X射线管线焦点为1×10平方毫米,取出角为3~6度。
选择阳极靶的基本要求:尽可能避免靶材产生的特征X射线激发样品的荧光辐射,以降低衍射花样的背底,使图样清晰。
测角仪是粉末X射线衍射仪的核心部件,主要由索拉光阑、发散狭缝、接收狭缝、防散射狭缝、样品座及闪烁探测器等组成。
(1)衍射仪一般利用线焦点作为X射线源S。
如果采用焦斑尺寸为1×10平方毫米的常规X射线管,出射角6°时,实际有效焦宽为0.1毫米,成为0.1×10平方毫米的线状X射线源。
X射线衍射实验方法和数据分析

X射线衍射实验报告摘要:本实验通过了解到X射线的产生、特点和应用;理解X射线管产生连续X 射线谱和特征X射线谱的基本原理,了解D8xX射线衍射仪的基本原理和使用方法,通过分析软件对测量样品进行定性的物相分析。
关键字:布拉格公式晶体结构,X射线衍射仪,物相分析引言:X射线最早由德国科学家W.C. Roentgen在1895年在研究阴极射线发现,具有很强的穿透性,又因x射线是不带电的粒子流,所以在电磁场中不偏转。
1912年劳厄等人发现了X射线在晶体中的衍射现象,证实了X射线本质上是一种波长很短的电磁辐射,其波长约为10nm到10–2nm之间,与晶体中原子间的距离为同一数量级,是研究晶体结构的有力工具。
物相分析中的衍射方法包括X射线衍射,电子衍射和中子衍射三种,其中X射线衍射方法使用最广,它包括德拜照相法,聚集照相法,和衍射仪法。
实验目的:1. 了解X射线衍射仪的结构及工作原理2. 熟悉X射线衍射仪的操作3. 掌握运用X射线衍射分析软件进行物相分析的方法实验原理:(1)X射线的产生和X射线的光谱实验中通常使用X光管来产生X射线。
在抽成真空的X光管内,当由热阴极发出的电子经高压电场加速后,高速运动的电子轰击由金属做成的阳极靶时,靶就发射X射线。
发射出的X射线分为两类:(1)如果被靶阻挡的电子的能量不越过一定限度时,发射的是连续光谱的辐射。
这种辐射叫做轫致辐射;(2)当电子的能量超过一定的限度时,可以发射一种不连续的、只有几条特殊的谱线组成的线状光谱,这种发射线状光谱的辐射叫做特征辐射。
对于特征X光谱分为(1)K系谱线:外层电子填K层空穴产生的特征X射线Kα、Kβ…(2)L系谱线:外层电子填L层空穴产生的特征X射线Lα、Lβ…如下图1图1 特征X射线X射线与物质的作用X射线与物质相互作用产生各种复杂过程。
就其能量转换而言,一束X射线通过物质分为三部分:散射,吸收,透过物质沿原来的方向传播,如下图2,其中相干散射是产生衍射花样原因。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一X射线衍射仪的结构与物相分析..一、实验目的
..1.了解X射线衍射仪的结构及工作原理。
..2.了解X射线衍射仪的性能特点
..3. 学习用X射线衍射仪进行物相的分析。
..二、实验原理(不拘格式与内容,自由写)
..1. X射线衍射仪简介
..2. 物相定性分析原理
..(可参考教材)
三、实验参数与数据
.实验参数自己了解
..四、撰写实验报告
..1. 简单描述X射线衍射仪的结构与工作原理。
..2. 简单说明X射线衍射仪的主要功能。
..3.简述物相分析的基本原理。
..4.对实验数据进行物相的定性分析。
..5.实验体会。