一次函数及其应用经典练习题
一次函数经典例题20题

一次函数经典例题20题以下是一些关于一次函数的经典例题,共计20道。
每道题后面会给出解答和解析。
1.若函数y=2x+3,求当x等于5时的y值。
解答:将x=5代入函数,得到y=2(5)+3=13。
2.若函数y=-3x+2,求当y等于7时的x值。
解答:将y=7代入函数,得到-3x+2=7,解方程得到x=-1。
3.若函数y=4x-1,求函数在x轴上的截距。
解答:当y=0时,解方程4x-1=0,得到x=1/4。
所以函数在x轴上的截距为1/4。
4.若函数y=-2x+5,求函数的斜率。
解答:斜率即为函数中x的系数,所以斜率为-2。
5.若函数y=3x+2与函数y=-2x+1相交于点P,求点P的坐标。
解答:将两个函数相等,得到3x+2=-2x+1,解方程得到x=-1/5。
将x=-1/5代入其中一个函数,得到y=3(-1/5)+2=1/5。
所以点P的坐标为(-1/5,1/5)。
6.若函数y=kx+3与函数y=2x-1平行,求k的值。
解答:两个函数平行意味着它们的斜率相等。
所以k=2。
7.若函数y=5x+b与函数y=3x-2垂直,求b的值。
解答:两个函数垂直意味着它们的斜率之积为-1。
所以5*3=-1,解方程得到b=-17。
8.若函数y=ax+2与函数y=-bx+4平行且在点(1,3)相交,求a和b的关系。
解答:两个函数平行意味着它们的斜率相等。
所以a=-b。
将点(1,3)代入其中一个函数,得到a+2=3,解方程得到a=1。
所以b=-1。
9.若函数y=-2x+a与函数y=x-1垂直,求a的值。
解答:两个函数垂直意味着它们的斜率之积为-1。
所以-2*1=-1,解方程得到a=-1。
10.若函数y=4x+3与y轴平行,求函数在x轴上的截距。
解答:与y轴平行意味着函数的斜率为无穷大。
所以在x轴上的截距不存在。
11.若函数y=-3x+2与x轴平行,求函数在y轴上的截距。
解答:与x轴平行意味着函数的斜率为0。
所以在y轴上的截距为2。
第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册

第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册一、利用一次函数模型解决实际问题例1.实验表明,在某地,温度在15℃至25℃的范围内,一种蟋蟀1min的平均鸣叫次数y可近似看成该地当时温度x(℃)的一次函数.已知这种蟋蟀在温度为16℃时,1min平均鸣叫92次;在温度为23℃时,1min平均鸣叫155次.(1)求y与x之间的函数表达式;(2)当这种蟋蟀1min平均鸣叫128次时,该地当时的温度约是多少?变式1.如图是1个碗和4个整齐叠放成一摞的碗的示意图,碗的规格都是相同的.小亮尝试结合学习函数的经验,探究整齐叠放成一摞的这种规格的碗的总高度y(单位:cm)随着碗的数量x(单位:个)的变化规律.下表是小亮经过测量得到的y与x之间的对应数据:x/个1234y/cm68.410.813.2(1)依据小亮测量的数据,写出y与x之间的函数表达式,并说明理由;(2)若整齐叠放成一摞的这种规格的碗的总高度不超过28.8cm,求此时碗的数量最多为多少个?变式2.某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.二、利用一次函数解决行程问题例2.小军到某景区游玩,他从景区入口处步行到达小憩屋,休息片刻后继续前行,此时观光车从景区入口处出发的沿相同路线先后到达观景点,如图,l1,l2分别表示小军与观光车所行的路程y(m)与时间x(min)之间的关系.根据图象解决下列问题:(1)观光车出发分钟追上小军;(2)求l2所在直线对应的函数表达式;(3)观光车比小军早几分钟到达观景点?请说明理由.变式1.在一条笔直的道路上依次有A,B,C三地,男男从A地跑步到C地,同时乐乐从B地跑步到A地,休息1分钟后接到通知,要求乐乐比男男早1分钟到达C地,两人均匀速运动,如图是男男跑步时间t(分钟)与两人距A 地路程s(米)之间的函数图象.(1)a=,乐乐去A地的速度为;(2)结合图象,求出乐乐从A地到C地的函数解析式(写出自变量的取值范围);(3)请直接写出两人距B地的距离相等的时间.变式2.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离s (km)与慢车行驶的时间t(h)之间的关系如图:(1)快车的速度为km/h,C点的坐标为.(2)慢车出发多少小时后,两车相距200km.变式3.某物流公司的一辆货车A从乙地出发运送货物至甲地,1小时后,这家公司的一辆货车B从甲地出发送货至乙地.货车A、货车B距甲地的距离y(km)与时间x(h)之间的关系如图所示.(1)求货车B距甲地的距离y与时间x的关系式;(2)求货车B到乙地后,货车A还需多长时间到达甲地.三、利用一次函数解决最低费用和最高利润问题例3.某校开设棋类社团,购买了五子棋和象棋.五子棋比象棋的单价少8元,用1000元购买的五子棋数量和用1200元购买的象棋数量相等.(1)两种棋的单价分别是多少?(2)学校准备再次购买五子棋和象棋共30副,根据学生报名情况,购买五子棋数量不超过象棋数量的3倍.问购买两种棋各多少副时费用最低?最低费用是多少?变式1.眉山是“三苏”故里,文化底蕴深厚.近年来眉山市旅游产业蓬勃发展,促进了文创产品的销售,某商店用960元购进的A款文创产品和用780元购进的B款文创产品数量相同.每件A款文创产品进价比B款文创产品进价多15元.(1)求A,B两款文创产品每件的进价各是多少元?(2)已知A款文创产品每件售价为100元,B款文创产品每件售价为80元,根据市场需求,商店计划再用不超过7400元的总费用购进这两款文创产品共100件进行销售,问:怎样进货才能使销售完后获得的利润最大,最大利润是多少元?变式 2.近年来,中国传统服饰备受大家的青睐,走上国际时装周舞台,大放异彩.某服装店直接从工厂购进长、短两款传统服饰进行销售,进货价和销售价如表:价格/类别短款长款进货价(元/件)8090销售价(元/件)100120(1)该服装店第一次用4300元购进长、短两款服装共50件,求两款服装分别购进的件数;(2)第一次购进的两款服装售完后,该服装店计划再次购进长、短两款服装共200件(进货价和销售价都不变),且第二次进货总价不高于16800元.服装店这次应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?变式3.某小区物管中心计划采购A,B两种花卉用于美化环境.已知购买2株A 种花卉和3株B种花卉共需要21元;购买4株A种花卉和5株B种花卉共需要37元.(1)求A,B两种花卉的单价.(2)该物管中心计划采购A,B两种花卉共计10000株,其中采购A种花卉的株数不超过B种花卉株数的4倍,当A,B两种花卉分别采购多少株时,总费用最少?并求出最少总费用.变式4.A、B两种型号的吉祥物具有吉祥如意、平安幸福的美好寓意,深受大家喜欢.某超市销售A、B两种型号的吉祥物,有关信息见如表:成本(单位:元/个)销售价格(单位:元/个)A型号35aB型号42b若顾客在该超市购买8个A种型号吉祥物和7个B种型号吉祥物,则一共需要670元;购买4个A种型号吉祥物和5个B种型号吉祥物,则一共需要410元.(1)求a、b的值;(2)若某公司计划从该超市购买A、B两种型号的吉祥物共90个,且购买A 种型号吉祥物的数量x(单位:个)不少于B种型号吉祥物数量的,又不超过B种型号吉祥物数量的2倍.设该超市销售这90个吉祥物获得的总利润为y元,求y的最大值.变式5.成都某知名小吃店计划购买A,B两种食材制作小吃.已知购买1千克A 种食材和1千克B种食材共需68元,购买5千克A种食材和3千克B种食材共需280元.(1)求A,B两种食材的单价;(2)该小吃店计划购买两种食材共36千克,其中购买A种食材千克数不少于B种食材千克数的2倍,当A,B两种食材分别购买多少千克时,总费用最少?并求出最少总费用.变式6.某县著名传统土特产品“豆笋”、“豆干”以“浓郁豆香,绿色健康”享誉全国,深受广大消费者喜爱.已知2件豆笋和3件豆干进货价为240元,3件豆笋和4件豆干进货价为340元.(1)分别求出每件豆笋、豆干的进价;(2)某特产店计划用不超过10440元购进豆笋、豆干共200件,且豆笋的数量不低于豆干数量的,该特产店有哪几种进货方案?(3)若该特产店每件豆笋售价为80元,每件豆干售价为55元,在(2)的条件下,怎样进货可使该特产店获得利润最大,最大利润为多少元?变式7.近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?四、利用一次函数解决含参数的最高利润问题例4.在襄阳市创建“经济品牌特色品牌”政策的影响下.每到傍晚,市内某网红烧烤店就食客如云,这家烧烤店的海鲜串和肉串非常畅销,店主从食品加工厂批发以上两种产品进行加工销售,其中海鲜串的成本为m元/支,肉串的成本为n元/支;两次购进并加工海鲜串和肉串的数量与成本如下表所示(成本包括进价和其他费用):次数数量(支)总成本(元)海鲜串肉串第一次3000400017000第二次4000300018000针对团以消费,店主决定每次消费海鲜串不超过200支时,每支售价5元;超过200支时、不超过200支的部分按原价,超过200支的部分打八折.每支肉串的售价为3.5元.(1)求m、n的值;(2)五一当天,一个旅游团去此店吃烧烤,一次性消费海鲜串和肉串共1000支,且海鲜串不超过400支.在本次消费中,设该旅游团消费海鲜串x支,店主获得海鲜串的总利润为y元,求y与x的函数关系式,并写出自变量x的取值范围;(3)在(2)的条件下,该旅游团消费的海鲜串超过了200支,店主决定给该旅游团更多优惠,对每支肉串降价a(0<a<1)元,但要确保本次消费获得肉串的总利润始终不低于海鲜串的总利润,求a的最大值.变式1.为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:甲乙运动鞋价格进价(元/双)m m﹣20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?变式2.为了振兴乡村经济,我市某镇鼓励广大农户种植山药,并精加工成甲、乙两种产品、某经销商购进甲、乙两种产品,甲种产品进价为8元/kg;乙种产品的进货总金额y(单位:元)与乙种产品进货量x(单位:kg)之间的关系如图所示.已知甲、乙两种产品的售价分别为12元/kg和18元/kg.(1)求出0≤x≤2000和x>2000时,y与x之间的函数关系式;(2)若该经销商购进甲、乙两种产品共6000kg,并能全部售出.其中乙种产品的进货量不低于1600kg,且不高于4000kg,设销售完甲、乙两种产品所获总利润为w元(利润=销售额﹣成本),请求出w(单位:元)与乙种产品进货量x(单位:kg)之间的函数关系式,并为该经销商设计出获得最大利润的进货方案;(3)为回馈广大客户,该经销商决定对两种产品进行让利销售.在(2)中获得最大利润的进货方案下,甲、乙两种产品售价分别降低a元/kg和2a元/kg,全部售出后所获总利润不低于15000元,求a的最大值.变式3.为迎接“五一”小长假购物高潮,某品牌专卖店准备购进甲、乙两种衬衫,其中甲、乙两种衬衫的进价和售价如下表:衬衫价格甲乙m m﹣10进价(元/件)260180售价(元/件)若用3000元购进甲种衬衫的数量与用2700元购进乙种衬衫的数量相同.(1)求甲、乙两种衬衫每件的进价;(2)要使购进的甲、乙两种衬衫共300件的总利润不少于34000元,且不超过34700元,问该专卖店有几种进货方案;(3)在(2)的条件下,专卖店准备对甲种衬衫进行优惠促销活动,决定对甲种衬衫每件优惠a元(60<a<80)出售,乙种衬衫售价不变,那么该专卖店要获得最大利润应如何进货?五、利用一次函数解决方案问题例5.暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.变式1.某水果店购进甲、乙两种苹果的进价分别为8元/kg、12元/kg,这两种苹果的销售额y(单位:元)与销售量x(单位:kg)之间的关系如图所示.(1)写出图中点B表示的实际意义;(2)分别求甲、乙两种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式,并写出x的取值范围;(3)若不计损耗等因素,当甲、乙两种苹果的销售量均为a kg时,它们的利润和为1500元,求a的值.。
一次函数应用题专项练习(含答案)

一次函数型应用题:1、我市某乡A 、B 两村盛产柑橘,A 村有柑橘200吨,B 村有柑橘300吨。
先将这些柑橘运到C 、D 两个冷藏仓库。
已知C 仓库可储存240吨,D 仓库可储存260吨。
从A 村运往C 、D 两处的费用分别为每吨20元和25元,从B 村运往C 、D 两处的费用分别为每吨15元和18元。
设从A 村运往C 仓库的柑橘重量为x 吨,A 、B 两村运往两仓库的柑橘运输费用分别为y A 元和y B 元. (1(2(3)、考虑到B 村的经济承受能力,B 村的柑橘运费不得超过4830元,在这种情况下,怎样调运,才使两村运费之和最小?求出这个最小值。
A YB =15(240-x )+18(x+60)=3x+4680⑵:当Y A =Y B 时,-5x+5000=3x+4680 ∴x=40当Y A >Y B 时,-5x+5000>3x+4680 ∴x <40 当Y A <Y B 时,-5x+5000)<3x+4680 ∴x >40 ∴当x=40时, 两村运费相同; 当0≤x <40时, B 村运费较少; 当40<x ≤200时, A 村运费较少;⑶:由Y B ≤4830得:3x+4680≤4830 ∴x ≤50设两村运费之和为y , 则y=Y A +Y B =(-5x+5000)+(3x+4680)=-2x+9680 ∵ k=-2<0 ∴ y 随x 增大而减小;∴ 当x =50时,y 最小。
此时,y =-2×50+9680=9580 ∴ 调运方案为:A 村调往C 库50吨、D 库150吨;B 村调往c 库190吨,D 库110吨。
这时,两村运费之和最小,是9580元。
2、甲乙两个仓库要向A 、B 两地运水泥,已知甲库可调出100吨水泥,乙库可调运80吨,而A 地需水泥70吨,B 地需水泥110吨,两库到A 、B 两地的路程和运费如下表: ((2) 当甲乙两库各运往A 、B 两地多少吨水泥时,总运费最省?最省是多少? )+20×8(x+10)=-30x +39200⑵:由题意得:⎪⎪⎩⎪⎪⎨⎧≥+≥-≥-≥01001000700x x x x ∴0≤x ≤70∵y =-30x +39200又∵k=-2<0 ∴y 随x 增大而减小;∴当x =70时,y 最小。
一次函数经典例题与习题

一次函数经典例题与习题
一次函数是指函数的最高次数为一次,即为形如y=mx+b的函数,其中m和b为常数。
以下是一些经典的一次函数例题和习题:
例题1:已知一次函数的图像经过点(2,4)和(-1,1),求函数的解析式。
解:设该函数的解析式为y=mx+b。
由题意,可得到以下两个方程:4=2m+b(1)
1=-m+b(2)
解这个方程组,可以使用常见的线性方程组的解法。
首先用(2)式减去(1)式,得到:
-3=-3m
解得m=1
将m=1代入(2)式,得到:
1=-1+b
解得b=2
因此,该函数的解析式为y=x+2
例题2:若一次函数的解析式为y=3x-2,求该函数的图像与x轴交点的横坐标。
解:将y=0代入解析式,得到:
0=3x-2
解得x=2/3
因此,该函数的图像与x轴交点的横坐标为2/3
习题1:已知一次函数图像上两点的坐标分别为(-3,4)和(1,2),求
该函数的解析式。
习题2:已知一次函数的图像与x轴的交点坐标分别为(-1,0)和
(3,0),求该函数的解析式。
习题3:设一直线上两不同点的横坐标之差为3,纵坐标之差为5,
求该直线的斜率和截距。
习题4:已知一次函数的图像与x轴的交点坐标为(1,0),截距为2,
求该函数的斜率。
以上是一些经典的一次函数例题和习题。
通过解这些问题,可以加深
对一次函数的理解,并熟练掌握解析式与图像之间的关系。
通过反复练习,可以提高解一次函数问题的能力。
一次函数的应用练习题及答案

一次函数的应用练习题及答案一次函数是数学中一个非常基础且常见的函数类型,其形式为 y = ax + b。
在现实生活中,我们经常会遇到一次函数的应用场景。
本文将提供一些基于一次函数的应用练习题,并附带答案,希望能够帮助读者更好地理解一次函数的概念和应用。
练习题1:某公司的年工资总额与员工人数之间存在一次函数关系。
已知当公司的员工人数为100人时,年工资总额为500万元;当员工人数为200人时,年工资总额为800万元。
求该公司年工资总额与员工人数的一次函数表达式,并根据该函数回答以下问题:a) 当员工人数为300人时,年工资总额是多少?b) 当员工人数为0人时,年工资总额是多少?解答:设年工资总额为 y,员工人数为 x。
根据题意,我们可以列出两个方程:100a + b = 500200a + b = 800通过解这个方程组,我们可以得到 a 的值为 1.5,b 的值为 350。
因此,该公司的年工资总额与员工人数的一次函数表达式为 y = 1.5x + 350。
a) 当员工人数为 300 人时,将 x = 300 代入函数表达式中,可得年工资总额为 1.5 * 300 + 350 = 850 万元。
b) 当员工人数为 0 人时,将 x = 0 代入函数表达式中,可得年工资总额为 1.5 * 0 + 350 = 350 万元。
练习题2:某手机品牌的某款手机的售价与销量之间存在一次函数关系。
已知当该手机的销量为3000部时,售价为2000元/部;当销量为5000部时,售价为1500元/部。
求该手机的售价与销量的一次函数表达式,并根据该函数回答以下问题:a) 当销量为4000部时,售价是多少?b) 当销量为0部时,售价是多少?解答:设售价为 y,销量为 x。
根据题意,我们可以列出两个方程:3000a + b = 20005000a + b = 1500通过解这个方程组,我们可以得到 a 的值为 -0.1,b 的值为 500。
一次函数实际应用题-含答案-

一次函数实际应用问题练习1、一次时装表演会预算中票价定位每张100元,容纳观众人数不超过2000人,毛利润y(百元)关于观众人数x(百人)之间的函数图象如图所示,当观众人数超过1000人时,表演会组织者需向保险公司交纳定额平安保险费5000元(不列入成本费用)请解答下列问题:⑴求当观众人数不超过1000人时,毛利润y (百元)关于观众人数x(百人)的函数解析式和成本费用s(百元)关于观众人数x(百人)的函数解析式;⑵若要使这次表演会获得36000元的毛利润,那么要售出多少张门票需支付成本费用多少元(注:当观众人数不超过1000人时,表演会的毛利润=门票收入—成本费用;当观众人数超过1000人时,表演会的毛利润=门票收入—成本费用—平安保险费)1、解:⑴由图象可知:当0≤x≤10时,设y关于x的函数解析y=kx-100,∵(10,400)在y=kx-100上,∴400=10k-100,解得k=50∴y=50x-100,s=100x-(50x-100),∴s=50x+100⑵当10<x≤20时,设y关于x的函数解析式为y=mx+b,∵(10,350),(20,850)在y=mx+b上,∴ 10m+b=350 解得 m=5020m+b=850 b=-150∴y=50x-150 ∴s=100x-(50x-150)-50∴s=50x+100 ∴y= 50x-100 (0≤x ≤10)50x-150 (10<x ≤20) 令y=360 当0≤x ≤10时,50x-100=360 解得x= s=50x+100=50×+100=560 当10<x ≤20时,50x-150=360解得x= s=50x+100=50×+100=610。
要使这次表演会获得36000元的毛利润. 要售出920张或1020张门票,相应支付的成本费用分别为56000元或61000元。
2、甲乙两名同学进行登山比赛,图中表示甲乙沿相同的路线同时从山脚出发到达山顶过程中,个自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题:⑴分别求出表示甲、乙两同学登山过程中路程s (千米)与时间t (时)的函数解析式;(不要求写出自变量的取值范围)⑵当甲到达山顶时,乙行进到山路上的某点A 处,求A 点距山顶的距离; ⑶在⑵的条件下,设乙同学从A 点继续登山,甲同学到达山顶后休息1小时,沿原路下山,在点B 处与乙同学相遇,此时点B 与山顶距离为千米,相遇后甲、乙各自沿原路下山和上山,求乙到大山顶时,甲离山脚的距离是多少千米12623S(千米)t(小时)CD EF B甲乙2、解:⑴设甲、乙两同学登山过程中,路程s (千米)与时间t (时)的函数解析式分别为s 甲=k 1t ,s 乙=k 2t 。
(完整版)一次函数应用题专项练习题

(完整版)一次函数应用题专项练习题本文档包含一系列一次函数应用题的专项练题。
这些练题旨在帮助学生巩固一次函数的应用知识,并提高解决实际问题的能力。
练题1:商品售价计算某商店的某商品原价为300元。
根据销售策略,该商品的价格会随着销量的增加而递减。
销售策略如下:当销量不超过100件时,每件商品的售价减少2元;当销量超过100件时,每件商品的售价减少3元。
请编写一次函数,描述该商品的售价与销量之间的关系,并计算在销量为200件时,该商品的售价为多少。
答案:设销量为x,售价为y。
根据题意,可以得到以下一次函数:当x <= 100时,y = 300 - 2x;当x > 100时,y = 300 - 2*100 - 3(x - 100),即y = 200 - 3x。
因此,当销量为200件时,该商品的售价为200 - 3*200 = 200 - 600 = -400元。
练题2:汽车旅行费用计算某汽车租赁公司的计费规则如下:每次租车基本费用为100元,每公里行驶费用为8元。
请编写一次函数,描述租赁一辆汽车的费用与行驶里程之间的关系,并计算行驶200公里的费用为多少。
答案:设行驶里程为x公里,租赁费用为y元。
根据题意,可以得到以下一次函数:y = 100 + 8x因此,当行驶200公里时,费用为100 + 8*200 = 100 + 1600 = 1700元。
练题3:房屋租金计算某房屋中介公司的租金规则如下:每月租金为1200元,每年涨幅为5%。
请编写一次函数,描述房屋租金与租期之间的关系,并计算租期为3年的租金为多少。
答案:设租期为x年,租金为y元。
根据题意,可以得到以下一次函数:y = 1200 + 1200 * 0.05x因此,租期为3年时,租金为1200 + 1200 * 0.05 * 3 = 1200 + 180 = 1380元。
以上是本文档的一次函数应用题专项练习题。
希望这些练习题能够帮助您巩固一次函数的应用知识,提高解决实际问题的能力。
一次函数经典例题20题

一次函数经典例题20题(最新版)目录1.题目概述2.一次函数的基本概念3.一次函数的性质4.例题解析5.总结正文一次函数经典例题 20 题一次函数是数学中的基本概念之一,它在各个领域的数学问题中都有广泛的应用。
本文将通过 20 个经典例题,介绍一次函数的基本概念和性质,并解析如何解决一次函数的题目。
一、一次函数的基本概念一次函数是指形如 y=ax+b 的函数,其中 a 和 b 是常数,且 a 不等于 0。
在这个函数中,x 的次数为 1,因此称为一次函数。
其中,y 表示函数的输出,x 表示函数的输入,a 表示斜率,b 表示截距。
二、一次函数的性质1.斜率斜率是指函数图像在坐标系中的倾斜程度。
在一次函数 y=ax+b 中,斜率 a 表示函数图像的倾斜程度。
当 a>0 时,函数图像是向上倾斜的;当 a<0 时,函数图像是向下倾斜的。
2.截距截距是指函数图像与坐标轴的交点。
在一次函数 y=ax+b 中,截距 b表示函数图像与 y 轴的交点。
当 b>0 时,函数图像与 y 轴的交点在 y 轴的正半轴上;当 b<0 时,函数图像与 y 轴的交点在 y 轴的负半轴上。
3.函数的单调性一次函数的单调性是指函数值随着自变量的增大或减小而单调增加或单调减少的性质。
当斜率 a>0 时,函数图像是向上倾斜的,函数值随着 x 的增大而单调增加;当斜率 a<0 时,函数图像是向下倾斜的,函数值随着 x 的增大而单调减少。
三、例题解析以下是 20 个一次函数的经典例题及其解析:1.已知函数 y=2x+3,求当 x=2 时的函数值。
解:将 x=2 代入函数 y=2x+3 中,得到 y=2×2+3=7。
2.已知函数 y=-x+7,求当 x=5 时的函数值。
解:将 x=5 代入函数 y=-x+7 中,得到 y=-5+7=2。
3.已知函数 y=3x-2,求函数的斜率。
解:函数的斜率是 3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数及其应用1. (2014年广东汕尾中考)已知直线y =kx +b ,若k +b =﹣5,kb =6,那么该直线不经过( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限2. (2014年贵州贵阳中考)如图,A 点的坐标为(﹣4,0),直线y 3x n =+与坐标轴交于点B ,C ,连接AC ,如果∠ACD =90°,则n 的值为( )A . 2-B . 423-C . 432-D . 453- 3. (2014年贵州黔西南中考)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y (米)与乙出发的时间t (秒)之间的关系如图所示,给出以下结论:①a =8;②b =92;③c =123.其中正确的是( )A . ①②③B . 仅有①C . 仅有①③D . 仅有②③4.(2014年江苏镇江中考)已知过点()23- ,的直线()y ax b a 0=+≠不经过第一象限.设s a 2b =+,则s 的取值范围是( )A .35s 2-≤≤- B . 36<s 2-≤- C . 36s 2-≤≤- D . 37<s 2-≤- 5.(2014年四川内江中考)如图,已知A 1、A 2、A 3、…、A n 、A n +1是x 轴上的点,且OA 1=A 1A 2=A 2A 3=…=A n A n +1=1,分别过点A 1、A 2、A 3、…、A n 、A n +1作x 轴的垂线交直线y =2x 于点B 1、B 2、B 3、…、B n 、B n +1,连接A 1B 2、B 1A 2、B 2A 3、…、A n B n +1、B n A n +1,依次相交于点P 1、P 2、P 3、…、P n .△A 1B 1P 1、△A 2B 2P 2、△A n B n P n 的面积依次记为S 1、S 2、S 3、…、S n ,则S n 为( )A .n 12n 1++B .m 3n 1-C .2n 2n 1-D .2n 2n 1+ 6.(2015连云港)如图是本地区一种产品30天的销售图象,图①是产品日销售量y (单位:件)与时间t (单位;天)的函数关系,图②是一件产品的销售利润z (单位:元)与时间t (单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是( )A .第24天的销售量为200件B .第10天销售一件产品的利润是15元C .第12天与第30天这两天的日销售利润相等D .第30天的日销售利润是750元7.(2015德阳)如图,在一次函数6y x =-+的图象上取一点P ,作P A ⊥x 轴于点A ,PB ⊥y 轴于点B ,且矩形PBOA 的面积为5,则在x 轴的上方满足上述条件的点P 的个数共有( )A .1个B .2个C .3个D .4个8.(2015德阳)已知1m x =+,2n x =-+,若规定1 ()1 ()m n m n y m n m n +-≥⎧=⎨-+<⎩,则y 的最小值为( ) A .0 B .1 C .﹣1 D .29.(2015广安)某油箱容量为60 L 的汽车,加满汽油后行驶了100 Km 时,油箱中的汽油大约消耗了15,如果加满汽油后汽车行驶的路程为x Km ,邮箱中剩油量为y L ,则y 与x 之间的函数解析式和自变量取值范围分别是( )A .y =0.12x ,x >0B .y =60﹣0.12x ,x >0C .y =0.12x ,0≤x ≤500D .y =60﹣0.12x ,0≤x ≤50010.(2015河池)我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l :43y kx =+与x 轴、y 轴分别交于A 、B ,∠OAB =30°,点P 在x 轴上,⊙P 与l 相切,当P 在线段OA 上运动时,使得⊙P 成为整圆的点P 个数是( )A .6B .8C .10D .1211.(2015广元)如图,把RI △ABC 放在直角坐标系内,其中∠CAB =90°, BC =5.点A 、B 的坐标分别为(1,0)、(4,0).将△ABC 沿x 轴向右平移,当点C 落在直线26y x =-上时,线段BC 扫过的面积为( )A .4B .8C .16D .8212.(2015泸州)若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的大致图象可能是( )A.B.C.D.13.(2015鄂州)甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=54或154.其中正确的结论有()A.1个B.2个C.3个D.4个14.(2015随州)甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(单位:千米),甲行驶的时间为t(单位:小时),s与t之间的函数关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②出发1.5小时时,乙比甲多行驶了60千米;③出发3小时时,甲、乙同时到达终点;④甲的速度是乙速度的一半.其中,正确结论的个数是()A .4B .3C .2D .115.(2015北京市)一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠: 会员年卡类型 办卡费用(元) 每次游泳收费(元)A 类50 25 B 类 200 20 C 类400 15例如,购买A 类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为( )A .购买A 类会员年卡B .购买B 类会员年卡C .购买C 类会员年卡D .不购买会员年卡16.(2015甘南州)如图,直线y kx b =+经过A (2,1),B (﹣1,﹣2)两点,则不等式122x kx b >+>-的解集为( )A .x <2B .x >﹣1C .x <1或x >2D .﹣1<x <217.(2015南平)直线22y x =+沿y 轴向下平移6个单位后与x 轴的交点坐标是( )A . (﹣4,0)B . (﹣1,0)C . (0,2)D . (2,0)18.(2015宁德)如图,在平面直角坐标系中,点A 1,A 2,A 3…都在x 轴上,点B 1,B 2,B 3…都在直线y x =上,△OA 1B 1,△B 1A 1A 2,△B 2B 1A 2,△B 2A 2A 3,△B 3B 2A 3…都是等腰直角三角形,且OA 1=1,则点B 2015的坐标是( )A .(20142,20142)B .(20152,20152)C .(20142,20152)D .(20152,20142)19.(2015长春)如图,在平面直角坐标系中,点A (﹣1,m )在直线23y x =+上,连结OA ,将线段OA 绕点O 顺时针旋转90°,点A 的对应点B 恰好落在直线y x b =-+上,则b 的值为( )A .﹣2B .1C .32D .2 20.(2015哈尔滨)小明家、公交车站、学校在一条笔直的公路旁(小明家、学校到这条公路的距离忽略不计),一天,小明从家出发去上学,沿这条公路步行到公交车站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小明下车时发现还有4分钟上课,于是他沿这条公路跑步赶到学校(上、下车时间忽略不计),小明与家的距离s (单位:米)与他所用时间t (单位:分钟)之间的函数关系如图所示,已知小明从家出发7分钟时与家的距离为1200米,从上公交车到他到达学校共用10分钟,下列说法:①小明从家出发5分钟时乘上公交车 ②公交车的速度为400米/分钟③小明下公交车后跑向学校的速度为100米/分钟 ④小明上课没有迟到其中正确的个数是( )A .1个B .2个C .3个D .4个21.(2015西宁)同一直角坐标系中,一次函数11y k x b =+与正比例函数22y k x =的图象如图所示,则满足12y y ≥的x 取值范围是( )A .2x ≤-B .2x ≥-C .2x <-D .2x >-22.(2015枣庄)已知直线y kx b =+,若5k b +=-,5kb =,那该直线不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限23.(2015济南)如图,一次函数1y x b =+与一次函数24y kx =+的图象交于点P (1,3),则关于x 的不等式4x b kx +>+的解集是( )A .x >﹣2B .x >0C .x >1D .x <124.(2015淄博)一次函数3y x b =+和3y ax =-的图象如图所示,其交点为P (﹣2,﹣5),则不等式33x b ax +>-的解集在数轴上表示正确的是( )A .B .C .D .25.(2015菏泽)如图,在平面直角坐标系xOy 中,直线3y x =经过点A ,作AB ⊥x 轴于点B ,将△ABO 绕点B 逆时针旋转60°得到△CBD .若点B 的坐标为(2,0),则点C 的坐标为( )A .(﹣1,3)B .(﹣2,3)C .(3-,1)D .(3-,2)26.(2015丽水)在平面直角坐标系中,过点(﹣2,3)的直线l 经过一、二、三象限,若点(0,a ),(﹣1,b ),(c ,﹣1)都在直线l 上,则下列判断正确的是( )A .a <bB .a <3C .b <3D .c <﹣227.(2015宿迁)在平面直角坐标系中,若直线b kx y +=经过第一、三、四象限,则直线k bx y +=不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限28.(2015桂林)如图,直线y kx b =+与y 轴交于点(0,3)、与x 轴交于点(a ,0),当a 满足30a -≤<时,k 的取值范围是( )A .10k -≤<B .13k ≤≤C .1k ≥D .3k ≥29.(2015贺州)已知120k k <<,则函数1k y x=和21y k x =-的图象大致是( )A .B .C .D .30.(2015南通)在20km 越野赛中,甲乙两选手的行程y (单位:km )随时间x (单位:h )变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km ;③出发后1.5小时,甲的行程比乙多3km ;④甲比乙先到达终点.其中正确的有( )A .1个B .2个C .3个D .4个31.(2015徐州)若函数y kx b =-的图象如图所示,则关于x 的不等式(3)0k x b -->的解集为( )A .x <2B .x >2C .x <5D .x >51.(2015届山东省济南市平阴县中考二模)如图,已知函数y =x -2和y =-2x +1的图象交于点P ,根据图象可得方程组221x y x y -=⎧⎨+=⎩的解是 .2.(2015届山东省济南市平阴县中考二模)新定义:[a ,b ,c ]为函数y =ax 2+bx +c (a ,b ,c 为实数)的“关联数”.若“关联数”为[m -2,m ,1]的函数为一次函数,则m 的值为 .3.(2015届山东省青岛市李沧区中考一模)如图,过点(0,3)的一次函数的图象与正比例函数y =2x 的图象相交于点B ,则这个一次函数的解析式是 .4.(2015届山西省晋中市平遥县九年级下学期4月中考模拟)如图,直线y =kx +b 过A (﹣1,2)、B (﹣2,0)两点,则0≤kx +b ≤﹣2x 的解集为 .5.(2015届山西省晋中市平遥县九年级下学期4月中考模拟)在平面直角坐标中,已知点A (2,3)、B (4,7),直线y =kx ﹣k (k ≠0)与线段AB 有交点,则k 的取值范围为 .6.(2014-2015学年山东省潍坊市诸城市实验中学中考三模)如图放置的△OAB 1,△B 1A 1B 2,△B 2A 2B 3,…都是边长为2的等边三角形,边AO 在y 轴上,点B 1,B 2,B 3,…都在直线y =33x 上,则A 2015的坐标是 .7.(2015北海)如图,直线22y x =-+与两坐标轴分别交于A 、B 两点,将线段OA 分成n 等份,分点分别为P 1,P 2,P 3,…,P n ﹣1,过每个分点作x 轴的垂线分别交直线AB 于点T 1,T 2,T 3,…,T n ﹣1,用S 1,S 2,S 3,…,S n ﹣1分别表示Rt △T 1OP 1,Rt △T 2P 1P 2,…,Rt △T n ﹣1P n ﹣2P n ﹣1的面积,则当n =2015时,S 1+S 2+S 3+…+S n ﹣1= .8.(2015贵港)如图,已知点A 1,A 2,…,A n 均在直线1y x =-上,点B 1,B 2,…,B n 均在双曲线1y x=-上,并且满足:A 1B 1⊥x 轴,B 1A 2⊥y 轴,A 2B 2⊥x 轴,B 2A 3⊥y 轴,…,A n B n ⊥x 轴,B n A n +1⊥y 轴,…,记点A n 的横坐标为a n (n 为正整数).若11a =-,则a 2015= .9.(2015宜宾)如图,一次函数的图象与x 轴、y 轴分别相交于点A 、B ,将△AOB 沿直线AB 翻折,得△ACB .若C (32,32),则该一次函数的解析式为 .10.(2015达州)在直角坐标系中,直线1y x =+与y 轴交于点A ,按如图方式作正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 1C 2…,A 1、A 2、A 3…在直线1y x =+上,点C 1、C 2、C 3…在x 轴上,图中阴影部分三角形的面积从左到游依次记为1S 、2S 、3S 、…n S ,则n S 的值为 (用含n 的代数式表示,n 为正整数).11.(2015天水)正方形OA 1B 1C 1、A 1A 2B 2C 2、A 2A 3B 3C 3,按如图放置,其中点A 1、A 2、A 3在x 轴的正半轴上,点B 1、B 2、B 3在直线2y x =-+上,则点A 3的坐标为 .12.(2015东营)如图放置的△OAB 1,△B 1A 1B 2,△B 2A 2B 3,…都是边长为1的等边三角形,点A 在x 轴上,点O ,B 1,B 2,B 3,…都在直线l 上,则点A 2015的坐标是 .13.(2015阜新)小明到超市买练习本,超市正在打折促销:购买10本以上,从第11本开始按标价打折优惠,买练习本所花费的钱数y (元)与练习本的个数x (本)之间的关系如图所示,那么在这个超市买10本以上的练习本优惠折扣是 折.1.(2015来宾)过点(0,﹣2)的直线1l :1y kx b =+(0k ≠)与直线2l :21y x =+交于点P (2,m ). (1)写出使得12y y <的x 的取值范围; (2)求点P 的坐标和直线1l 的解析式.2.(2015梧州)梧州市特产批发市场有龟苓膏粉批发,其中A 品牌的批发价是每包20元,B 品牌的批发价是每包25元,小王需购买A 、B 两种品牌的龟苓膏共1000包.(1)若小王按需购买A 、B 两种品牌龟苓膏粉共用22000元,则各购买多少包?(2)凭会员卡在此批发市场购买商品可以获得8折优惠,会员卡费用为500元.若小王购买会员卡并用此卡按需购买1000包龟苓膏粉,共用了y 元,设A 品牌买了x 包,请求出y 与x 之间的函数关系式.(3)在(2)中,小王共用了20000元,他计划在网店包邮销售这批龟苓膏粉,每包龟苓膏粉小王需支付邮费8元,若每包销售价格A品牌比B品牌少5元,请你帮他计算,A品牌的龟苓膏粉每包定价不低于多少元时才不亏本(运算结果取整数)?3.(2015河池)丽君花卉基地出售两种盆栽花卉:太阳花6元/盆,绣球花10元/盆.若一次购买的绣球花超过20盆时,超过20盆部分的绣球花价格打8折.(1)分别写出两种花卉的付款金额y(元)关于购买量x(盆)的函数解析式;(2)为了美化环境,花园小区计划到该基地购买这两种花卉共90盆,其中太阳花数量不超过绣球花数量的一半.两种花卉各买多少盆时,总费用最少,最少费用是多少元?4.(2015常州)已知某市的光明中学、市图书馆和光明电影院在同一直线上,它们之间的距离如图所示.小张星期天上午带了75元现金先从光明中学乘出租车去了市图书馆,付费9元;中午再从市图书馆乘出租车去了光明电影院,付费12.6元.若该市出租车的收费标准是:不超过3公里计费为m元,3公里后按n元/公里计费.(1)求m,n的值,并直接写出车费y(元)与路程x(公里)(x>3)之间的函数关系式;(2)如果小张这天外出的消费还包括:中午吃饭花费15元,在光明电影院看电影花费25元.问小张剩下的现金够不够乘出租车从光明电影院返回光明中学?为什么?5.(2015徐州)为加强公民的节水意识,合理利用水资源.某市对居民用水实行阶梯水价,居民家庭每月用水量划分为三个阶梯,一、二、三级阶梯用水的单价之比等于1:1.5:2.如图折线表示实行阶梯水价后每月水费y(元)与用水量xm3之间的函数关系.其中线段AB表示第二级阶梯时y与x之间的函数关系.(1)写出点B的实际意义;(2)求线段AB所在直线的表达式;(3)某户5月份按照阶梯水价应缴水费102元,其相应用水量为多少立方米?6.(2015泰州)已知一次函数42-=x y 的图象与x 轴、y 轴分别相交于点A 、B ,点P 在该函数的图象上,P 到x 轴、y 轴的距离分别为1d 、2d .(1)当P 为线段AB 的中点时,求21d d +的值;(2)直接写出21d d +的范围,并求当123d d +=时点P 的坐标;(3)若在线段AB 上存在无数个P 点,使421=+ad d (a 为常数),求a 的值.7.(2015淮安)小丽的家和学校在一条笔直的马路旁,某天小丽沿着这条马路上学,先从家步行到公交站台甲,再乘车到公交站台乙下车,最后步行到学校(在整个过程中小丽步行的速度不变),图中折线ABCDE 表示小丽和学校之间的距离y (米)与她离家时间x (分钟)之间的函数关系. (1)求小丽步行的速度及学校与公交站台乙之间的距离; (2)当8≤x ≤15时,求y 与x 之间的函数关系式.8.(2015盐城)如图,在平面直角坐标系xOy 中,已知正比例函数x y 43=与一次函数7+-=x y 的图象交于点A .(1)求点A 的坐标;(2)设x 轴上有一点P (a ,0),过点P 作x 轴的垂线(垂线位于点A 的右侧),分别交x y 43=和7+-=x y 的图象于点B 、C ,连接OC .若BC =57OA ,求△OBC 的面积.9(2014年福建莆田中考)如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO在y轴上,点B1,B2,B3,…都在直线3y x3=上,则A2014的坐标是.10. (2014年贵州黔东南中考)在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(1,0),B (2,0)是x轴上的两点,则P A+PB的最小值为.11. (2014年辽宁营口中考)如图,在平面直角坐标系中,直线l:3y x3=,直线l2:y3x=,在直线l1上取一点B,使OB=1,以点B为对称中心,作点O的对称点B1,过点B1作B1A1∥l2,交x轴于点A1,作B1C1∥x轴,交直线l2于点C1,得到四边形OA1B1C1;再以点B1为对称中心,作O点的对称点B2,过点B2作B2A2∥l2,交x轴于点A2,作B2C2∥x轴,交直线l2于点C2,得到四边形OA2B2C2;…;按此规律作下去,则四边形OA n B n C n的面积是.12.(2014年江苏无锡中考)某发电厂共有6台发电机发电,每台的发电量为300万千瓦/月.该厂计划从今年7月开始到年底,对6台发电机各进行一次改造升级.每月改造升级1台,这台发电机当月停机,并于次月再投入发电,每台发电机改造升级后,每月的发电量将比原来提高20%.已知每台发电机改造升级的费用为20万元.将今年7月份作为第1个月开始往后算,该厂第x(x是正整数)个月的发电量设为y(万千瓦).(1)求该厂第2个月的发电量及今年下半年的总发电量;(2)求y关于x的函数关系式;(3)如果每发1千瓦电可以盈利0.04元,那么从第1个月开始,至少要到第几个月,这期间该厂的发电盈利扣除发电机改造升级费用后的盈利总额ω1(万元),将超过同样时间内发电机不作改造升级时的发电盈利总额ω2(万元)?13.(2015届北京市平谷区中考二模)如图,在平面直角坐标系中,点A(5,0),B(3,2),点C在线段OA上,BC=BA,点Q是线段BC上一个动点,点P的坐标是(0,3),直线PQ的解析式为y=kx+b(k≠0),且与x轴交于点D.(1)求点C的坐标及b的值;(2)求k的取值范围;(3)当k为取值范围内的最大整数时,过点B作BE∥x轴,交PQ于点E,若抛物线y=ax2﹣5ax(a≠0)的顶点在四边形ABED的内部,求a的取值范围.14.(2015届安徽省安庆市中考二模)如图所示,折线AOB可以看成是函数y=|x|(﹣1≤x≤1)的图象.(1)将折线AOB向右平移4个单位,得到折线A1O1B1,画出折线A1O1B1;(2)直接写出折线A1O1B1的表达式.15.(2015届山东省日照市中考一模)如图1所示,某乘客乘高速列车从甲地经过乙地到丙地,列车匀速行驶,图2为列车离乙地路程y(千米)与行驶时间x(小时)时间的函数关系图象.(1)填空:甲、丙两地距离千米.(2)求高速列车离乙地的路程y与行驶时间x之间的函数关系式,并写出x的取值范围.16.(2015届山东省日照市中考模拟)自来水公司有甲、乙两个蓄水池,现将甲池的中水匀速注入乙池,甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象如下所示,结合图象回答下列问题.(1)分别求出甲、乙两个蓄水池中水的深度y与注水时间x之间的函数表达式;(2)求注入多长时间甲、乙两个蓄水池水的深度相同;(3)求注入多长时间甲、乙两个蓄水的池蓄水量相同;(4)3小时后,若将乙蓄水池中的水按原速全部注入甲蓄水池,又需多长时间?17.(2015届山东省青岛市李沧区中考一模)【问题情境】张老师给爱好学习的小林和小兰提出这样一个问题:如图①,在△ABC中,AB=AC,点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.小林的证明思路是:如图②,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.小兰的证明思路是:如图②,过点P作PG⊥CF,垂足为G,通过证明四边形PDFG是矩形,可得:PD=GF,PE=CG,则PD+PE=CF.【变式探究】如图③,当点P在BC延长线上时,其余条件不变,求证:PD﹣PE=CF;【结论运用】请运用上述解答中所积累的经验和方法完成下列两题:如图④,在平面直角坐标系中有两条直线l1:y=34x+3、l2:y=﹣3x+3,若l2上的一点M到l1的距离是1,请运用上述的结论求出点M的坐标.18.(2015届广东省佛山市初中毕业班综合测试)如图1,在一次航海模型船训练中,A1B1和A2B2是水面上相邻的两条赛道(看成两条互相平行的线段).甲船在赛道A1B1上从A1处出发,到达B1后,以同样的速度返回A1处,然后重复上述过程;乙船在赛道A2B2上以2m/s的速度从B2处出发,到达A2后以相同的速度回到B2处,然后重复上述过程(不考虑每次折返时的减速和转向时间).若甲、乙两船同时出发,设离开池边B1B2的距离为y(m),运动时间为t(s),甲船运动时,y(m)与t(s)的函数图象如图2所示.(1)赛道的长度是m,甲船的速度是m/s;(2)分别求出甲船在0≤t≤30和30<t≤60时,y关于t的函数关系式;(3)求出乙船由B2到达A2的时间,并在图2中画出乙船在3分钟内的函数图象;(4)请你根据(3)中所画的图象直接判断,若从甲、乙两船同时开始出发到3分钟为止,甲、乙共相遇了几次?19.(2015届广东省深圳市龙华新区中考二模)在“五•一”期间,“佳佳”网店购进A、B两种品牌的服装进行销售,已知B种品牌服装的进价比A种品牌服装的进价每件高20元,2件A种品牌服装与3件B种品牌服装进价共560元.(1)求购进A、B两种品牌服装的单价;(2)该网站拟以不超过11200元的总价购进这种两品牌服装共100件,并全部售出.其中A种品牌服装的售价为150元/件,B种品牌服装的售价为200元/件,该网站为了获取最大利润,应分别购进A、B两种品牌服装各多少件?所获取的最大利润是多少?20.(2014-2015学年山东省潍坊市诸城市实验中学中考三模)(12分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.。