高考物理专题分析:四 弹性碰撞模型及应用

合集下载

弹性碰撞专题分析

弹性碰撞专题分析

弹性碰撞专题分析沈志斌(江苏省无锡市第一中学江苏无锡214031)前几年的《考试说明》中,关于弹性碰撞的知识有限定性说明:“在弹性碰撞的问题中,不要求使用动能守恒公式进行计算”。

2003年高考物理《考试说明》第31个考点:动量知识和机械能知识的应用(包括碰撞、反冲、火箭),定位在Ⅱ类要求,无限定性说明。

而2002年广东试卷中也考到弹性碰撞的知识,鉴于上述原因,笔者认为在高中教学中应该补充“弹性碰撞”的理论及作相关训练。

本文就弹性碰撞作一专题讲座,供大家教学时参考。

一、什么是弹性碰撞?弹性形变是指撤去外力后能够恢复原状的形变,能够发生弹性形变的物理我们说它具有弹性。

碰撞是在极短的时间内发生的,满足相互作用的内力大于大于外力的条件,因此不管系统是否受到外力,一般都满足动量守恒。

因此弹性碰撞是同时满足动量守恒和动能守恒的碰撞。

一般意义上的碰撞,仅满足动量守恒,系统有动能损失,由于一般只研究碰撞发生在一直线上的情况,系统在碰撞前后的重力势能不变,因此动能损失也对应着机械能的损失,通常情况下是机械能转化为内能。

二、弹性碰撞的基本规律如图1所示,设质量为m1的弹性球,速度为v1与质量为m2的弹性球,速度为v2发生碰撞,碰撞后两求的速度分别为v1/、v2/,取向右为矢量的正方向。

由系统的动量守恒定律得 m1v1+m2v2=m1v1/+m2v2/……①由系统的动能守恒定律得 m1v12/2+m2v22/2=m1v1/2/2+m2v2/2/2……②由①②得 v1-v2= v2/-v1/……③③的物理意义是:“在弹性碰撞中,碰撞前后两球的相对速度大小保持不变,但方向改变1800。

”由①②得碰撞后两球的速度为:v1/=[(m1-m2)v1+2m2v2]/(m1+m2)……④v2/=[(m2-m1)v2+2m1v1]/(m1+m2)……⑤特例讨论:1.两球质量m1=m2 v1/= v2 v2/= v1两球速度交换(动量)动能也交换)2.两球质量m1>>m2 v1/= v1 v2/= 2v1-v2(如果v2=0,则v2/= 2v1,如果列车以30m/s的速度撞上静止的汽车,发生交通事故,假定为弹性碰撞,则汽车将以60m/s的速度飞出,而列车速度不变) 3.两球质量m1<<m2 v1/=2v2-v1 v2/=v2(如果v2=0,则v1/=-v1,如果乒乓球以10m/s的速度撞上静止的墙壁,假定为弹性碰撞,则乒乓球将以10m/s的速度返回,而墙壁仍然静止)三、考题研究例1 如图2所示,质量为m 的钢球,放在质量为M 的光滑箱底,箱置于光滑水平面上,箱底长度为L 。

2025高考物理总复习碰撞模型及拓展

2025高考物理总复习碰撞模型及拓展

考点一 碰撞模型
例3 (2023·天津卷·12)已知A、B两物体mA=2 kg,mB=1 kg,A物体从h =1.2 m处自由下落,且同时B物体从地面竖直上抛,经过t=0.2 s相遇碰 撞后,两物体立刻粘在一起运动,已知重力加速度g=10 m/s2,求: (1)碰撞时离地高度x; 答案 1 m
对物体A,根据运动学公式可得 x=h-12gt2=1.2 m-12×10×0.22 m=1 m
考点一 碰撞模型
例2 (2024·江苏省木渎高级中学月考)如图所示,两小球P、Q
竖直叠放在一起,小球间留有较小空隙,从距水平地面高度为h处同时由静止释放源自已知小球Q的质量是P的2倍。设所有碰撞
均为弹性碰撞。忽略空气阻力及碰撞时间,则两球第一次碰撞
后小球P上升的高度为
5 A.3h
√B.295h
7 C.3h
第七章
动量守恒定律
第 3
专题强化:碰撞模型及拓展


目标 1.理解碰撞的种类及其遵循的规律。2.理解“滑块—弹簧”、“滑块—斜(曲)面”两种模型与碰撞的相似性, 要求 会分析解决两类模型的有关问题。
内 容
考点一 碰撞模型


考点二 碰撞模型拓展
< 考点一 >
碰撞模型
考点一 碰撞模型
1.碰撞 碰撞是指物体间的相互作用持续时间很短,而物体间相互作用力很大的 现象。 2.特点 在碰撞现象中,一般都满足内力 远大于 外力,可认为相互碰撞的物体组 成的系统动量守恒。
考点一 碰撞模型
总结提升
碰撞问题遵守的三条原则 1.动量守恒:p1+p2=p1′+p2′。 2.动能不增加:Ek1+Ek2≥Ek1′+Ek2′。 3.速度要符合实际情况 (1)碰前两物体同向运动,若要发生碰撞,则应有v后>v前,碰后原来在前 的物体速度一定增大,若碰后两物体同向运动,则应有v前′≥v后′。 (2)碰前两物体相向运动,碰后两物体的运动方向至少有一个改变。

2024届高考物理一轮复习课件:弹性碰撞

2024届高考物理一轮复习课件:弹性碰撞
[思路点拨] 解此题关键把握两点 (1)发生弹性碰撞,碰撞过程满足动量守恒和能量守恒; (2)碰后符合实际情况,前面物体的速度要大于后面物体的速度.
弹性碰撞
一、动量守恒定律的判断和计算
二、动量守恒定律的应用之1——碰撞 1、碰撞 2、完全非弹性碰撞:子弹打木块模型 3、完全弹性碰撞: 4、弹簧模型(含2、3)
1、已知A、B两个钢性小球质量分别是m1、m2,小
球B静止在光滑水平面上,A以初速度v0与小球B
发生弹性碰撞,求碰撞后小球A的速度v1,物体B
【典例】 如图所示,在足够长的光滑水平面上,物体 A、B、C 位于同一直 线上,A 位于 B、C 之间.A 的质量为 m,B、C 的质量都为 M,三者均处于静止 状态.现使 A 以某一速度向右运动,求 m 和 M 之间应满足什么条件,才能使 A 只 与 B、C 各发生一次碰撞.设物体间的碰撞都是弹性的.
2、质量为M的小车静止于光滑的水平面上,小车
的上表面和圆弧的轨道均光滑,如图所示,一个
质量为m的小球以速度v0水平冲向小车,当小球
返回左端脱离小车时,下列说法正确的是:
A.小球一定沿水平方向向左做平抛运动
B.小球可能沿水平方向向左作平抛运动
C.小球可能沿水平方向向右作平抛运动
D.小球可能做自由落体运动
小球A与地面的碰撞是弹性的,而且AB都是从同一高
度释放的,所以AB碰撞前的速度大小相等于设为v0, 根据机械能守恒有:
mA gH
1 2
mAv02
化简得: v0 2gH
设A、B碰撞后的速度分别为vA和vB,以竖直向上为
速度的正方向,根据A、B组成的系统动量守恒和动
能不变得:
mAv0 mBv0 mAvA mBvB

高考物理碰撞问题

高考物理碰撞问题

碰撞问题(⼀)——考点透析碰撞问题是历年⾼考试题的重点和热点,同时它也是同学们学习的难点.它所反映出来的物理过程、状态变化及能量关系,能够全⽅位地考查同学们的理解能⼒、逻辑思维能⼒及分析推理能⼒.⾼考中考查的碰撞问题,碰撞时间极短,位移为零,碰撞过程遵循动量守恒定律.⼀、考点诠释两个(或两个以上)物体相遇,物体之间的相互作⽤仅持续⼀个极为短暂的时间,⽽运动状态发⽣显著变化,这种现象称为碰撞。

碰撞是⼀个基本,⼗分重要的物理模型,其特点是:1.瞬时性.由于物体在发⽣碰撞时,所⽤时间极短,因此在计算物体运动时间时,通常把碰撞时间忽略不计;在碰撞这⼀极短的时间内,物体的位置是来不及改变的,因此我们可以认为物体在碰撞中位移为零。

2.动量守恒性.因碰撞时间极短,相互作⽤的内⼒⼤于外⼒,所以系统在碰撞过程中动量守恒。

3.动能不增.在碰撞过程中,系统总动能只有减少或者不变,⽽绝不会增加,即不能违背能量守恒原则。

若弹性碰撞则同时满⾜动量、动能守恒。

⾮弹性碰撞只满⾜动量守恒,⽽不满⾜动能守恒(系统的动能减少)。

⼆、解题策略⾸先要根据碰撞的瞬时性特点,正确选取相互作⽤的研究对象,使问题简便解决;其次要确定碰撞前和碰撞后系统中各个研究对象的状态;然后根据动量守恒定律及其他规律求解,并验证求得结果的合理性。

三、边解边悟1.在光滑的⽔平⾯上有三个完全相同的⼩球排成⼀条直线.2、3⼩球静⽌,并靠在⼀起,1球以速度v0射向它们,如图所示.设碰撞过程不损失机械能,则碰后三个⼩球的速度为多少?解析:本题的关键在于分析清楚实际的碰撞过程:由于球1与球2发⽣碰撞时间极短,球2的位置来不及发⽣变化,这样球2对球3也就⽆法产⽣⼒的作⽤,即球3不会参与此次碰撞过程.⽽球1与球2发⽣的是弹性碰撞,质量⼜相等,故它们在碰撞中实现速度交换,碰后球1⽴即停⽌,球2速度⽴即变为;此后球2与球3碰撞,再⼀次实现速度交换.所以碰后球1、球2的速度为零,球3速度为v 0.2.⽤轻弹簧相连的质量均为m =2㎏的A 、B 两物体都以v =6m/s 的速度在光滑的⽔平地⾯上运动,弹簧处于原⻓,质量M =4㎏的物体C 运动,在以后的运动中,求:(1)当弹簧的弹性势能最⼤时物体A 的速度。

2024届高考物理一轮复习热点题型归类训练:动量能量在各类模型中的应用(学生版)

2024届高考物理一轮复习热点题型归类训练:动量能量在各类模型中的应用(学生版)

动量能量在各类模型中的应用目录题型一碰撞模型类型1 一动一静的弹性碰撞类型2 弹性碰撞中的“子母球”模型题型二非弹性碰撞中的“动能损失”问题类型1 非弹性小球碰撞中的动能损失类型2 滑块木板模型中的动能损失类型3 滑块-曲面模型中的动能损失问题类型4 小球-弹簧模型中的动能损失问题类型5 带电系统中动能的损失问题类型6 导体棒“追及”过程中的动能损失问题题型三碰撞遵循的规律类型1 碰撞的可能性类型2 碰撞类型的识别题型四 “滑块-弹簧”碰撞模型中的多过程问题题型五 “滑块-斜(曲)面”碰撞模型题型六滑块模型中的多过程题型七子弹打木块模型中的能量动量问题题型八两体爆炸(类爆炸)模型中的能量分配题型九人船模型及其拓展模型的应用题型十悬绳模型题型一:碰撞模型1.类型1一动一静的弹性碰撞.以质量为m1、速度为v1的小球与质量为m2的静止小球发生弹性碰撞为例,则有m1v1=m1v1′+m2v2′1 2m1v21=12m1v1′2+12m2v2′2联立解得:v1′=m1-m2m1+m2v1,v2′=2m1m1+m2v1讨论:①若m1=m2,则v1′=0,v2′=v1(速度交换);②若m1>m2,则v1′>0,v2′>0(碰后两小球沿同一方向运动);当m1≫m2时,v1′≈v1,v2′≈2v1;③若m1<m2,则v1′<0,v2′>0(碰后两小球沿相反方向运动);当m1≪m2时,v1′≈-v1,v2′≈0.1(2023春·江西赣州·高三校联考阶段练习)弹玻璃球是小孩子最爱玩的游戏之一,一次游戏中,有大小相同、但质量不同的A、B两玻璃球,质量分别为m A、m B,且m A<m B,小朋友在水平面上将玻璃球A以一定的速度沿直线弹出,与玻璃球B发生正碰,玻璃球B冲上斜面后返回水平面时与玻璃球A速度相等,不计一切摩擦和能量损失,则m A、m B之比为()A.1:2B.1:3C.1:4D.1:52(2023·四川达州·统考二模)如图所示,用不可伸长的轻绳将质量为m1的小球悬挂在O点,绳长L= 0.8m,轻绳处于水平拉直状态。

2024年高考物理热点-碰撞与类碰撞模型(解析版)

2024年高考物理热点-碰撞与类碰撞模型(解析版)

碰撞与类碰撞模型1.碰撞问题是历年高考试题的重点和热点,它所反映出来的物理过程、状态变化及能量关系,对学生的理解能力、逻辑思维能力及分析推理能力要求比较高。

高考中考查的碰撞问题,碰撞时间极短,位移为零,碰撞过程遵循动量守恒定律。

2.高考题命题加重了试题与实际的联系,命题导向由单纯的解题向解决问题转变,对于动量守恒定律这一重要规律我们也要关注其在生活实际中的应用,学会建构模型、科学推理。

3.动量和能量综合考查是高考命题的热点,在选择题和计算题中都可能出现,选择题中可能考查动量和能量知识的简单应用,计算题中一般结合竖直面内的圆周运动模型、板块模型或弹簧模型等压轴考查,难度较大。

此类试题区分度较高,且能很好地考查运动与相互作用观念、能量观念动量观念和科学思维要素,因此备考命题者青睐。

题型一人船模型1.模型简析:如图所示,长为L 、质量为m 船的小船停在静水中,质量为m 人的人由静止开始从船的一端走到船的另一端,不计水的阻力。

以人和船组成的系统为研究对象,在人由船的一端走到船的另一端的过程中,系统水平方向不受外力作用,所以整个系统动量守恒,可得m 船v 船=m 人v 人,因人和船组成的系统动量始终守恒,故有m 船x 船=m 人x 人,由图可看出x 船+x 人=L ,可解得x 人=m 船m 人+m 船L ,x 船=m 人m 人+m 船L 。

2.模型特点(1)两个物体作用前均静止,作用后均运动。

(2)动量守恒且总动量为零。

3.结论:m 1x 1=m 2x 2(m 1、m 2为相互作用物体的质量,x 1、x 2为其对地位移的大小)。

题型二“物块-弹簧”模型模型图例m 1、m 2与轻弹簧(开始处于原长)相连,m 1以初速度v 0运动两种情景1.当弹簧处于最短(最长)状态时两物体瞬时速度相等,弹性势能最大:(1)系统动量守恒:m 1v 0=(m 1+m 2)v 共。

210212共pm 2.当弹簧处于原长时弹性势能为零:(1)系统动量守恒:m1v0=m1v1+m2v2。

高考物理一轮复习学案:碰撞的规律及应用(三)

高考物理一轮复习学案:碰撞的规律及应用(三)

三、碰撞模型的建构有些物理现象虽然不是小球间的碰撞,但相互作用的物体动量、能量变化规律与碰撞规律相同,可抽象为碰撞模型求解。

【例1】 如图,一滑雪道由AB 和BC 两段滑道组成,其中AB 段倾角为θ,BC 段水平,AB 段和BC段由一小段光滑圆弧连接,一个质量为2kg 的背包在滑道顶端A 处由静止滑下,若1s 后质量为48kg 的滑雪者从顶端以1.5m/s 的初速度、23m/s 的加速度匀加速追赶,恰好在坡底光滑圆弧的水平处追上背包并立即将其拎起,背包与滑道的动摩擦因数为112μ=,重力加速度取210m/s g =,7sin 25θ=,24cos 25θ=,忽略空气阻力及拎包过程中滑雪者与背包的重心变化,求:(1)滑雪者追上背包的时间;(2)滑雪者拎起背包时这一瞬间的速度。

【导思】滑雪者与背包位移相等,运用运动学公式求出追上的时间,进而求出追上时两者的速度。

*【拓展1】如图所示,物块A 和B 通过一根轻质不可伸长的细绳连接,跨放在质量不计的光滑定滑轮两侧,质量分别为m A =2 kg 、m B =1 kg 。

初始时A 静止于水平地面上,B 悬于空中。

先将B 竖直向上再举高h=1.8 m (未触及滑轮)然后由静止释放。

一段时间后细绳绷直,A 、B 以大小相等的速度一起运动,之后B 恰好可以和地面接触。

取g=10 m/s 2。

空气阻力不计。

求:(1)A 的最大速度v 的大小;(3)初始时B 离地面的高度H 。

【导思】细绳绷直时A 、B 速度大小相等,此时A 、B 的相互作用相对于粘合碰撞。

高三一轮复习 物理学案 动量守恒定律6 总第( )期 学生姓名 班级 学号 课题:碰撞的规律及应用(三) 组编人: 校对人:【例2】在反应堆中用石墨作减速剂使快中子减速。

碳核的质量是中子的12倍,假设中子与碳核的每次碰撞都是弹性正碰,而且认为碰撞前碳核是静止的,碰撞前中子的动能是E0,求:经过第一次碰撞,中子损失去的动能是多少?*【拓展2】至少经过多少次碰撞,中子的动能才能小于10-6E0?(lg11=1.04,lg13=1.11)*【拓展3】如图所示,两质量分别为m1和m2的弹性小球叠放在一起,从高度为h处自由落下,且h 远大于两小球半径,所有的碰撞都是弹性碰撞,且都发生在竖直方向.已知m2=3m1,求小球m1反弹后能达到的高度。

2025高考物理专题复习--弹性碰撞和非弹性碰撞(共37张ppt)

2025高考物理专题复习--弹性碰撞和非弹性碰撞(共37张ppt)

A.

C.−
B.-v


D.


15
2、碰撞的可能性判断
2.1 碰撞问题遵循的三个原则
例4、(多选)质量相等的A、B两球在光滑水平面上沿同一直线、同一方向运动,
A球的动量pA=9 kg·m/s,B球的动量pB=3 kg·m/s,当A追上B时发生正碰,则碰
后A、B两球的动量可能值是( AD )
A. pA′=6 kg·m/s,pB′=6 kg·m/s
球A、B、C,现让A球以v0=2 m/s的速度向着B球运动,A、B两球碰撞后粘合在
一起,两球继续向右运动并跟C球碰撞,C球的最终速度vC=1 m/s.求:
(1)A、B两球跟C球相碰前的共同速度大小;
(2)第二次碰撞过程中损失了多少动能;
(3)两次碰撞过程中共损失了多少动能.
答案
(1)1 m/s;(2)0.25J;(3)1.25J
a、碰前两物体同向运动,即v后 > v前,碰后原来在前面的物体速度一定增大,
且v前′ ≥ v后′。
b、碰前两物体相向运动,碰后两物体的运动方向不可能都不改变。
14
2、碰撞的可能性判断
2.1 碰撞问题遵循的三个原则
例3、如图所示,质量为m的A小球以水平速度v与静止的质量为3m的B小球正碰


后,A球的速率变为原来的 ,而碰后B球的速度是(以v方向为正方向) ( D )
2、非弹性碰撞:物体碰撞后,形变不能恢复,动能产生损失。生活中,绝大多
数碰撞属于非弹性碰撞。
动量守恒:
动能损失,转化成声能和内能:
7
1、 弹性碰撞和非弹性碰撞
1.3 碰撞的分类
3、完全非弹性碰撞:一种特殊的非弹性碰撞,物体碰撞后结合在一起,动能损
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四 弹性碰撞模型及应用
弹性碰撞问题及其变形在是中学物理中常见问题,在高中物理中占有重要位置,也是多年来高考的热点。

弹性碰撞模型能与很多知识点综合,联系广泛,题目背景易推陈出新,掌握这一模型,举一反三,可轻松解决这一类题,切实提高学生推理能力和分析解决问题能力。

所以我们有必要研究这一模型。

(一) 弹性碰撞模型
弹性碰撞是碰撞过程无机械能损失的碰撞,遵循的规律是动量守恒和系统机械能守恒。

确切的说是碰撞前后动量守恒,动能不变。

在题目中常见的弹性球、光滑的钢球及分子、原子等微观粒子的碰撞都是弹性碰撞。

已知A 、B 两个钢性小球质量分别是m 1、m 2,小球B 静止在光滑水平面上,A 以初速度v 0与小球B 发生弹性碰撞,求碰撞后小球A 的速度v 1,
物体B 的速度v 2大小和方向
解析:取小球A 初速度v 0的方向为正方向,因发
生的是弹性碰撞,碰撞前后动量守恒、动能不变有: m 1v 0= m 1v 1+ m 2v 2 ①
② 由①②两式得: , 结论:(1)当m 1=m 2时,v 1=0,v 2=v 0,显然碰撞后A 静止,B 以A 的初速度运动,两球速度交换,并且A 的动能完全传递给B ,因此m 1=m 2也是动能传递最大的条件;
(2)当m 1>m 2时,v 1>0,即A 、B 同方向运动,因 <,所以速度大小v 1<v 2,即两球不会发生第二次碰撞;
若m 1>>m 2时,v 1= v 0,v 2=2v 0 即当质量很大的物体A 碰撞质量很小的物体B 时,物体A 的速度几乎不变,物体B 以2倍于物体A 的速度向前运动。

(3)当m 1<m 2时,则v 1<0,即物体A 反向运动。

当m 1<<m 2时,v 1= - v 0,v 2=0 即物体A 以原来大小的速度弹回,而物体B 不动,A 的动能完全没有传给B ,因此m 1<<m 2是动能传递最小的条件。

2222112012
12121v m v m v m +=210211)(m m v m m v +-=2
10122m m v m v +=2121)(m m m m +-2
112m m m +m 2v 2 m 1v 1 B
m 1v 0 B A 图1 A
以上弹性碰撞以动撞静的情景可以简单概括为:(质量)等大小,(速度和动能)交换了;小撞大,被弹回;大撞小,同向跑。

(二)应用举例
[例1]如图2所示,两单摆的摆长不同,已知B 的摆长是A 摆长的4倍,A 的
周期为T ,平衡时两钢球刚好接触,现将摆球A 在两摆线所在的平面向左拉开一小
角度释放,两球发生弹性碰撞,碰撞后两球分开各自做简谐运动,以m A ,m B 分别
表示两摆球A ,B 的质量,则下列说法正确的是;
A .如果m A =m
B 经时间T 发生下次碰撞且发生在平衡位置
B .如果m A >m B 经时间T 发生下次碰撞且发生在平衡位置
C .如果m A >m B 经时间T/2发生下次碰撞且发生在平衡位置右侧
D .如果m A <m B 经时间T/2发生下次碰撞且发生在平衡位置左侧
[解析] 当m A =m B 时,A 、B 球在平衡位置发生弹性碰撞,速度互换,A 球静止,由于B 摆长是A 摆长的4倍,由单摆周期公式可知,A 周期是T ,B 的周期是2T ,当B 球反向摆回到平衡位置经时间为T ,再次发生碰撞。

故A 选项正确。

当m A >m B 时,发生第一次碰撞后两球同向右摆动,但A 球的速度小于B 球的速度,并有A 的周期是B 周期的一半,T/2时B 到达右侧最大位移处,此时A 向左回到平衡位置,A 继续向左;再经T/2, B 完成半个全振动向右,A 恰好完成一次全振动向左同时回到平衡位置发生碰撞,故B 选项正确,C 选项错误;当m A <m B 时,碰撞后A 反弹向左运动,B 向右,若m A 越接近m B 发生下一次碰撞的时间越接近T ,若m A <<m B ,A 接近原速反弹,B 几乎不动,发生下一次碰撞的时间越接近T/2,当A 经T/2经平衡位置从左向右运动时B 恰好在右侧最高点,而A 、B 碰撞的位置只能在平衡位置的右侧,或十分接近平衡位置,不可能在平衡位置的左侧,故D 选项错误。

[例2] 质量为 M 的小车静止于光滑的水平面上,小车的上表面和
圆弧的轨道均光滑,如图3如图所示,一个质量为m 的小球以速度v 0水平冲
向小车,当小球返回左端脱离小车时,下列说法正确的是:
A .小球一定沿水平方向向左做平作抛运动
B .小球可能沿水平方向向左作平抛运动
C .小球可能沿水平方向向右作平抛运动 g
L T π2=4
1
D .小球可能做自由落体运动
[解析]:小球水平冲上小车,又返回左端,到离开小车的整个过程中,系统动量守恒、机械能守恒,相当于小球与小车发生弹性碰撞的过程,如果m <M ,小球离开小车向左平抛运动,m=M ,小球离开小车做自由落体运动,如果m >M ,小球离开小车向右做平抛运动,所以答案应选B ,C ,D
[例3]在光滑水平面上有相隔一定距离的A 、B 两球,质量相等,假定它们之间存在恒定的斥力作用,原来两球被按住,处在静止状态。

现突然松开两球,同时给A 球以速度v 0,使之沿两球连线射向B 球,B 球初速度为零;若两球间的距离从最小值(两球未接触)到刚恢复到原始值所经历的时间为t 0,求:B 球在斥力作用下的加速度
[解析]:A 球射向B 球过程中,A 球一直作匀减速直线运动,B 球由静止开始一直作匀加速直线运动,当两球速度相等时相距最近,当恢复到原始值时相当于发生了一次弹性碰撞,,由于A 、B 质量相等,A 、B 发生了速度交换,系统动量守恒、机械能守恒。

设A 、B 速度相等时速度为v ,恢复到原始值时A 、B 的速度分别为v 1、v 2,
mv 0= 2mv ①
2mv=mv 1+ mv 2 ②
③ 由①式得v=,由②③解得v 1=0,v 2= v 0 (另一组解v 1= v 0,v 2= 0舍去) 则B 的加速度a== [例4] 如图4所示,光滑水平地面上静止放置两由弹簧相连木块A 和B,一质量为m 子弹,以速度v 0,水平击中木块A,并留在其中,A 的质量为3m,B 的质量为4m.
(1)求弹簧第一次最短时的弹性势能
(2)何时B 的速度最大,最大速度是多少?
[解析](1)从子弹击中木块A 到弹簧第一次达到最短的过程可分为两个小过程一是子弹与木块A 的碰撞过程,动量守恒,有机械能损失;二是子弹与木块A 组成的整体与木块B 通过弹簧相互作用的过程,动量守恒,系统机械能守恒,
子弹打入: mv 0=4mv 1 ① 2221202
12121mv mv mv +=2
0v 000022t v v t v v -=-0
02t v mv o
B
A
图4
打入后弹簧由原长到最短: 4mv 1=8mv 2 ②
机械能守恒: ③ 解①②③得 (2)从弹簧原长到压缩最短再恢复原长的过程中,木块B 一直作变加速运动,木块A 一直作变减速运动,相当于弹性碰撞,因质量相等,子弹和A 组成的整体与B 木块交换速度,此时B 的速度最大,设弹簧弹开时A 、B 的速度分别为
4mv 1=4mv 1’ +4mv 2’ ④ ⑤ 解得: v 1’=o ,v 2’=v 1 = 可见,两物体通过弹簧相互作用,与弹性碰撞相似。

弹性碰撞模型的应用不仅仅局限于“碰撞”,我们应广义地理解 “碰撞”模型。

这一模型的关键是抓住系统“碰撞”前后动量守恒、系统机械能守恒(动能不变),具备了这一特征的物理过程,可理解为“弹性碰撞”。

我们对物理过程和遵循的规律就有了较为清楚的认识,问题就会迎刃而解。

P E mv mv +=222182
142120161mv E P =
'
21,v v '2’22’12142
1421421mv mv mv +=40v。

相关文档
最新文档