积分因子法习题
全微分方程与积分因子法

已构成全微分的项分出再把剩下的项凑成全微分.但这种方法
要求熟记一些简单二元函数的全微分,如
ydx+xdy=d(x,y)
ydx-xdy y2
=d(
x y
)
-ydx+xdy x2
=d(
x y
)
ydx-xdy =d(ιn| x |)
xy
y
ydx-xdy x2+y2
=d(arctg
x y
)
| | ydx-xdy x2-y2
的通解为
μ(x,y)=∫x0xP(x,y)dx+∫y0xQ(x,y)dy=C
(7)
其中点(x0,y0)可在与路径无关的单连通区域 G 内 任 意 取
得.很 多 情 况 下 都 选 (0,0)为 (x0,y0),只 有 当 点 (0,0)不 在 上 述
单连通区域 G 内,才考虑其他点作为曲线积分的始点.
坠p - 坠Q 坠y 坠x
-P
这里 φ 仅为 y 的函数.从而求得方程 (1)的一个积分因子 μ=
e 。 ∫φ(y)dy
例 4 试用公式法解线性微分方程(8)
解 : 将 (8)式 改 写 成 [Q(x)-P(X)Y]DX-DY=0
(10)
这时由公式,μ(x)=e∫p(x)dx.以 μ(x)=e∫p(x)dx 乘上(10)式得到
或 y=e-∫p(x)dx[∫Q(x)e∫p(x)dxdx+C]
2.公 式 法
由同一个方程
ydx-xdy=0
可以有不同的积分因子 1 y2
,
1 x2
,
1和 1 xy x2±y2
.可以证明,只要方程有解,则必有积分因子存在,
并且不是唯一的.因此,在具体解题过程中,由于求出的积分因
积分法练习

13.令������ = 2 tan ������,则原式= ∫
������������ = ∫ cos ������ ������������ = sin ������
= (√3 − √2).
14.原式= ∫ = 4 arcsin
(
)
������������,令������ − 2 = 2 sin ������,上式= ∫(4 + 2 sin ������)������������ = 4������ − 2 cos ������ + ������
( ) ( ) ( )
21.求∫ ������(������)������ (������)������ [������ (������)]������������,其中������ (������)连续. 22.求∫
( ) ( ) ( )
������������,其中������ (������)、������ (������)连续,������(������)������(������) ≠ 0.
23.计算∫ (1 − ������ ) sin ������ ������������. 24.已知������ (������) = ������(������),试用������ 表示∫ ������ ������������.
25.已知������ (ln ������) = ������ ln ������,������(0) = 0,求������(������). 26.已知������(0) = 1,������(2) = 3,������ (2) = 5,求∫ ������������ (2������)������������. 27.利用换元������ = 28.设������(������) = ∫ ������ ,计算∫
求解积分因子的方法整理

求解积分因子的方法整理求解积分因子的方法整理一、恰当微分方程与积分因子1、对于一阶微分方程M(x,y)dx+N(x,y)dy=0 (1) 其左端恰好是某个二元函数u(x,y)的全微分,即 P(x,y)dx+Q(x,y)dy=du(x,y)则称方程(1)为恰当微分方程。
容易得到方程(1)的通解为u(x,y)=c (这里的c 为任意常数)。
可是若(1)不是恰当微分方程,如果存在连续可微的函数u=u(x,y)≠0,使得u(x,y)M(x,y)dx+u(x,y)N(x,y)dy=0为恰当微分方程,则称u(x,y)为方程(1)的积分因子。
2、恰当微分方程的判定 对于一阶微分方程M(x,y)dx+N(x,y)dy=0 它为恰当微分方程的必要条件为: 二、几种常见的积分因子的类型及求法1、存在只与x 有关的积分因子 (1)充要条件:()M N yxx Nψ∂∂∂∂-= (2)形式:u=()x dx e ψ⎰ 2、存在只与y 有关的积分因子(1)充要条件:()M N yxy Mϕ∂∂∂∂-=-(2)形式:()y dy e ϕ⎰这里的().()x y ψϕ分别是只关于x 、y 的函数。
3、方程(1)有形如u(x,y)=F(x,y)的积分因子,充要条件:4、方程(1)有形如u[p(x)+f(x)g(y)+q(y)]的积分因子,充要条件:它的积分因子为:5、方程(1)有形如u[f(x)g(y)+q(y)]的积分因子,充要条件:它的积分因子为:6、方程(1)有形如的积分因子,充要条件:其中7、方程(1)有形如的积分因子,充要条件:它的积分因子为:8、方程有形如的积分因子,充要条件:它的积分因子为:其中这里的结束语:对于一阶微分方程,不同的形式有不同的积分因子,积分银子一般不会太容易求得,很多时候需要根据方程的特点进行判断,以上的一些情况是参考了一些文献后,整理而得到的一些特殊情况,对求解一些特殊方程有很大的帮助。
参考文献:1、张新丽、王建新.一类积分因子存在的充要条件.科学与技术工程.第11卷.第16期.2011.62、陈星海等.三类复合型积分因子的充要条件及其应用.湖南师范学院学报.第32卷.第2期.2010.43、高正晖.一阶微分方程三类积分因子的计算.衡阳师范学院学报.2002。
高等数学 第11章 微分方程习题详解

第十一章 微分方程习题详解第十一章 微分方程 习 题 11—11.判断下列方程是几阶微分方程?(1)23d tan 3sin 1;d y y t t t t ⎛⎫=++ ⎪⎝⎭(2)(76)d ()d 0;x y x x y y -++=(3)2()20;x y yy x ''''-+= (4)422()0'''''++=xy y x y .解 微分方程中所出现的未知函数导数(或微分)的最高阶数,叫做微分方程的阶.所以有:(1)一阶微分方程; (2)一阶微分方程; (3)三阶微分方程; (4)三阶微分方程. 2.指出下列各题中的函数是否为所给微分方程的解: (1)2'=xy y ,25=y x ;(2)0''+=y y ,3sin 4cos =-y x x ; (3)20'''-+=y y y ,2e =x y x ;(4)2()()20'''''-++-=xy x y x y yy y ,ln()=y xy .解 (1)将10'=y x 代入所给微分方程的左边,得左边210=x 22()5x ==右边,故25=y x 是微分方程2'=xy y 的解.(2)将3cos 4sin '=+y x x ,3sin 4cos ''=-+y x x 代入所给微分方程的左边,得左边(3sin 4cos )(3sin 4cos )0=-++-==x x x x 右边,故3sin 4cos =-y x x 是微分方程0''+=y y 的解.(3)将2e =x y x ,22e e '=+x x y x x ,22e 4e e ''=++x x x y x x 代入微分方程的左边,得左边222(2e 4e e )2(2e e )e 2e 0=++-++=≠x x x x x x x x x x x x (右边),故2e =x y x 不是所给微分方程20'''-+=y y y 的解.(4)对方程ln()=y xy 的两边关于x 求导,得 1''=+y y x y,即 ''=+xyy y xy .再对x 求导,得2()''''''''++=++yy x y xyy y y xy ,即2()()20'''''-++-=xy x y x y yy y ,故ln()=y xy 是所给微分方程的解.3.确定下列各函数关系式中所含参数,使函数满足所给的初始条件. (1)22-=x y C , 05==x y ;(2)2120()e ,0==+=x x y C C x y ,01='=x y .解 (1)将0=x ,5=y 代入微分方程,得220525=-=-C所以,所求函数为2225-=y x .(2)222212122e 2()e (22)e '=++=++x x x y C C C x C C C x ,将00==x y,01='=x y 分别代入212()e =+x y C C x 和2122(22)e '=++x y C C C x ,得10=C ,21=C ,所以,所求函数为2e =x y x .4.能否适当地选取常数λ,使函数e λ=x y 成为方程90''-=y y 的解.解 因为e λλ'=x y ,2e λλ''=x y ,所以为使函数e λ=x y 成为方程 90''-=y y 的解,只须满足2e 9e 0λλλ-=x x ,即2(9)e 0λλ-=x .而e 0λ≠x ,因此必有290λ-=,即3λ=或3λ=-,从而当3λ=,或3λ=-时,函数33e ,e -==x x y y 均为方程90''-=y y 的解.5.消去下列各式中的任意常数12,,C C C ,写出相应的微分方程. (1)2;y Cx C =+ (2)()tan ;y x x C =+ (3)12e e ;x x xy C C -=+ (4)212()y C C x -=.解 注意到,含一个任意常数及两个变量的关系式对应于一阶微分方程;含两个独立常数的式子对应于二阶微分方程.(1)由2=+y Cx C 两边对x 求导,得'=y C ,代入原关系式2y Cx C =+,得所求的微分方程为2()''+=y xy y .(2)由tan()=+y x x C 两边对x 求导,得2tan()sec ()'=+++y x C x x C ,即 2tan()tan ()'=++++y x C x x x C .而tan()=+yx C x,故所求的微分方程为 2⎛⎫'=++ ⎪⎝⎭y y y x x x x ,化简得 22'=++xy y x y .(3)由12e e -=+x x xy C C 两边对x 求导,得 12e e -'+=-x x y xy C C ,两边再对x 求导,得12e e -''''++=+x x y y xy C C ,可得所求的微分方程为2'''+=xy y xy .(4)由212()-=y C C x 两边对x 求导,得122()'-⋅=y C y C ,将212()-=y C C x代,并化简得12'=-xy y C ,对上式两边再对x 求导,得22''''+=y xy y ,故第十一章 微分方程习题详解所求的微分方程为20'''+=xy y .习 题 11—21.求下列微分方程的通解或特解:(1)ln 0;xy y y '-= (2)cos sin d sin cos d 0;x y x x y y += (3)22();y xy y y '''-=+ (4)(1)d ()d 0;x y x y xy y ++-= (5)23yy xy x '=-,01;x y == (6)22sin d (3)cos d 0x y x x y y ++=,16x y=π=. 解 (1)分离变量,得11d d ln =y x y y x,两端积分,得 ln(ln )ln ln =+y x C ,即 ln =y Cx ,所以原方程的通解为 e C x y =.注 该等式中的x 与C 等本应写为||x 与||C 等,去绝对值符号时会出现±号;但这些±号可认为含于最后答案的任意常数C 中去了,这样书写比较简洁些,可避开绝对值与正负号的冗繁讨论,使注意力集中到解法方面,本书都做这样的处理.(2)原方程分离变量,得cos cos d d sin sin =-y xy x y x,两端积分,得 ln(sin )ln(sin )ln =-+y x C ,即 ln(sin sin )ln ⋅=y x C ,故原方程的通解为 sin sin ⋅=y x C .(3)原方程可化成 2d (1)2d -+=yx y x ,分离变量,得 212d d 1=-+y x y x ,两端积分,得 12ln(1)-=-+-x C y, 即 12ln(1)=++y x C是原方程的通解.(4)分离变量,得d d 11=+-y x y x y x ,两边积分,得 ln(1)ln(1)ln -+=+-+y y x x C ,即 e (1)(1)y x C y x -=+- 是原方程的通解.(5)分离变量,得2d d 31=-y y x x y ,两端积分,得2211ln(31)ln 62-=+y x C , 即 211262(31)ex y C -=.由定解条件01==x y,知16(31)-=C ,即162=C ,故所求特解为 21112662(31)2x y e-=,即223312e -=x y .(6)将方程两边同除以2(3)sin 0+≠x y ,得22cos d d 03sin +=+x yx y x y,两端积分,得 122cos d d 3sin +=+⎰⎰x yx y C x y ,积分后得 2ln(3)ln(sin )ln ++=x y C (其中1ln =C C ),从而有2(3)sin +=x y C ,代入初始条件16=π=x y,得 4sin 26π==C .因此,所求方程满足初始条件的特解为 2(3)sin 2+=x y ,即 2arcsi 3n2y x =+. 2.一曲线过点0(2,3)M 在两坐标轴间任意点处的切线被切点所平分,求此曲线的方程. 解 设曲线的方程为()y y x =,过点(,)M x y 的切线与x 轴和y 轴的交点分别为(2,0)A x 及(0,2)B y ,则点(,)M x y 就是该切线AB 的中点.于是有22'=-yy x ,即xy y '=-,且(2)3=y , 分离变量后,有11d d =-y x y x,积分得 ln ln ln =-y C x ,即 =C y x .由定解条件23==x y ,有6=C ,故 6=y x为所求的曲线. 3.一粒质量为20克的子弹以速度0200v =(米/秒)打进一块厚度为10厘米的木板,然后穿过木板以速度180v =(米/秒)离开木板.若该木板对子弹的阻力与运动速度的平方成正比(比例系数为k ),问子弹穿过木板的时间.解 依题意有2d d =-vmkv t,0200==t v , 即 21d d -=kv t v m,两端积分,得 10.02=+=+k kt C t C v m (其中20克=0.02千克), 代入定解条件0200==t v ,得1200=C ,故有200100001=+v kt .第十一章 微分方程习题详解设子弹穿过木板的时间为T 秒,则2000.1d 100001Tt kt =+⎰200ln(100001)10000=+Tkt k 1ln(100001)50=+kT k, 又已知=t T 时,180==v v 米/秒,于是20080100001=+kT ,从而,0.00015=kT ,为此有 0.1ln(1.51)500.00015=+⨯T,所以0.10.0075ln 2.5=⨯T 0.000750.00080.9162≈=(秒), 故子弹穿过木板运动持续了0.0008=T (秒).4.求下列齐次方程的通解或特解:(1)0;xy y '- (2)22()d d 0;x y x xy y +-= (3)332()d 3d 0;x y x xy y +-= (4)(12e )d 2e (1)d 0;x x yyxx y y++-=(5)22d d yx xy y x=-,11;x y == (6)22(3)d 2d 0y x y xy x -+=, 01x y==.解 (1)原方程变形,得'=+y y x ,令=yu x,即=y ux ,有''=+y u xu ,则原方程可进一步化为'+=u xu u分离变量,得1d =u x x ,两端积分得ln(ln ln +=+u x C ,即u Cx ,将=yu x代入上式并整理,得原方程的通解为2y Cx .(2)原方程变形,得22d d +=y x y x xy,即21d d x xy y x y ⎛⎫+ ⎪⎝⎭=. 令=yu x,即=y ux ,有''=+y u xu ,则原方程可进一步化为 21+'+=u u xu u, 即 1d d =u u x x ,两端积分,得 211ln 2=+u x C ,将=yu x代入并整理,得原方程的通解22(2ln )=+y x x C (其中12=C C ).(3)原方程变形,得332d d 3+=y x y x xy ,即32d 1()d 3()+=y y x x y x , 令=y ux ,有d d d d =+y uu x x x,则原方程可进一步化为 32d 1d 3++=u u u x x u , 即 3231d d 12u u x u x=-,两端积分,得311ln(12)ln ln 22--=-u x C , 即 23(12)-=x u C ,将=yu x代入上式并整理,得原方程的通解为 332-=x y Cx .(4)显然,原方程是一个齐次方程,又注意到方程的左端可以看成是以xy为变量的函数,故令=x u y ,即=x uy ,有d d d d =+x u u y y y,则原方程可化为 d ()(12e )2e (1)0d +++-=u u uu yu y, 整理并分离变量,得2e 11d d 2e +=-+u uu y u y, 两端积分,得ln(2e )ln ln +=-+u u y C ,第十一章 微分方程习题详解即 2e +=u C u y .将 =xu y代入并整理,得原方程的通解为 2e +=xy y x C .(5)原方程可化为2d d ⎛⎫=- ⎪⎝⎭y y y x x x . 令=yu x,有d d d d =+y u u x x x ,则原方程可进一步化为2d d +=-uu xu u x, 即 211d d -=u x u x ,两端积分,得 1ln =+x C u ,将=yu x代入,得 ln =+xx C y, 代入初始条件11==x y,得 1ln11=-=C .因此,所求方程满足初始条件的特解为1ln =+xy x.(6)原方程可写成22d 1320d -+=x x x y y y.令=x u y ,即=x uy ,有d d d d =+x uu y y y,则原方程成为 2d 132()0d -++=uu u u yy, 分离变量,得221d d 1=-u u y u y,两端积分,得 2ln(1)ln ln -=+u y C ,即 21-=u Cy ,代入=xu y并整理,得通解 223-=x y Cy .由初始条件01==x y,得1=-C .于是所求特解为322=-y y x .5.设有连结原点O 和(1,1)A 的一段向上凸的曲线弧OA ,对于OA 上任一点(,)P x y ,曲线弧OP 与直线段OP 所围成图形的面积为2x ,求曲线弧OA 的方程.解 设曲线弧的方程为()=y y x ,依题意有201()d ()2-=⎰xy x x xy x x ,上式两端对x 求导,11()()()222'--=y x y x xy x x ,即得微分方程4'=-yy x, 令=yu x,有d d d d =+y u u x x x ,则微分方程可化为d 4d +=-u u xu x ,即d 4d =-u x x, 积分得4ln =-+u x C ,因=yu x,故有 (4ln )=-+y x x C .又因曲线过点(1,1)A ,故1=C .于是得曲线弧的方程是(14ln )=+y x x .6.化下列方程为齐次方程,并求出通解:(1)(1)d (41)d 0--++-=x y x y x y ; (2)()d (334)d 0+++-=x y x x y y . 解 (1)原方程可写成d 1d 41-++=+-y x y x y x , 令10410x y y x --=+-=⎧⎨⎩,解得交点为1=x ,0=y .作坐标平移变换1=+x X ,=y Y ,有d d d d d(1)d ==+y Y Yx X X, 所以原方程可进一步化为d d 4-=+Y Y XX Y X(※) 这是齐次方程.设=Y u X ,则=Y uX ,d d d d =+Y u u X X X,于是(※)式可化为 1d d 41YY X Y X X-=⋅+, 即第十一章 微分方程习题详解d 1d 41-+=+u u u XX u , 变量分离,得2411d d 41+=-+u u X u X, 两端积分,得2111ln(41)arctan(2)ln 22++=-+u u X C , 即 22ln (41)arctan(2)⎡⎤++=⎣⎦X u u C 1(2)=C C ,将1==-Y y u X x 代入,得原方程的通解为 222ln 4(1)arctan1⎡⎤+-+=⎣⎦-yy x C x . (2)原方程可写成d d 43()+=-+y x yx x y , 该方程属于d ()d =++yf ax by c x类型,一般可令=++u ax by c . 令=+u x y ,有d d 1d d =-y u x x,则原方程可化为 d 1d 43-=-u ux u, 即34d 2d 2-=-u u x u ,积分得 32ln 22+-=+u u x C ,将=+u x y 代入上式,得原方程的通解为32ln 2+++-=x y x y C .习 题 11—31.求下列微分方程的通解:(1)22e -'+=x y xy x ; (2)23'-=xy y x ; (3)d tan 5d yx y x-=; (4)1ln '+=y y x x ; (5)2(6)d 2d 0-+=y x y y x ; (6)d 32d ρρθ+=. 解 (1) ()d ()d e ()e d -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰p x x p x x y q x x C ()222d 2d e e e d e d x x x xx x x x C x x C ---⎛⎫⎰⎰=+=+ ⎪⎝⎭⎰⎰2221e e 2x x C x --=+. (2)原方程可化为3'-=y y x x, 故通解为33d d 3321e e d ---⎡⎤⎛⎫⎰⎰=+=-=-⎢⎥ ⎪⎝⎭⎣⎦⎰x x x x y x x C x C Cx x x .(3)原方程可化为d cos 5cos d sin sin -=y x x y x x x, 故通解为cos cos d d sin sin 5cos e e d sin ⎛⎫- ⎪⎝⎭⎡⎤⎰⎰=+⎢⎥⎢⎥⎣⎦⎰x x x x x x x y x C x 25cos sin d sin 5sin x x x C C x x ⎡⎤=+=-⎢⎥⎣⎦⎰. (4)所给方程的通解为()11d d ln ln 1e ed ln d ln -⎡⎤⎰⎰=+=+⎢⎥⎣⎦⎰⎰x xx x x x y x C x x C x1(ln )ln ln -=-+=+C xx x x C x x x. (5)方程可化为 2d 6d 2x x y y y -=,即 d 31d 2x x y y y -=-,故通解为 33d d 1e e d 2-⎡⎤⎰⎰=-+⎢⎥⎢⎥⎣⎦⎰y yy y x y y C3211d 2y y C y ⎛⎫=-+ ⎪⎝⎭⎰312⎛⎫=+ ⎪⎝⎭y C y . (6)()3d 3d 33e 2e d e 2e d θθθθρθθ--⎡⎤⎰⎰=+=+⎢⎥⎣⎦⎰⎰C C 33322e e e 33C C θθθ--⎛⎫=+=+ ⎪⎝⎭.2.求下列微分方程的特解: (1)d tan sec d yy x x x -=,00x y ==; (2)cos d cot 5e d x y y x x +=,24π==-x y ; (3)23d 231d y x y x x -+=,10x y ==.第十一章 微分方程习题详解解 (1)tan d tan d e sec e d -⎛⎫⎰⎰=⋅+ ⎪⎝⎭⎰x xx x y x x C ()lncos lncos e sec ed -=+⎰x xx x C()1sec cos d cos x x x C x=⋅+⎰cos +=x Cx, 代入初始条件0,0==x y ,得0=C .故所求特解为 cos =xy x. (2) cot d cot d cos e 5e e d -⎛⎫⎰⎰=⋅+ ⎪⎝⎭⎰x x x x x y x C ()cos 15esin d sin xx x C x=⋅+⎰()cos 15e sin =-+x C x, 代入初始条件,42π==-x y ,得1C =,故所求特解为cos 15e sin -=xy x, 即 cos sin 5e 1+=x y x .(3) 332323d d ee d ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭⎡⎤⎰⎰=+⎢⎥⎢⎥⎣⎦⎰x x x x x x y x C 22113ln 3ln e e d ⎛⎫-++ ⎪⎝⎭⎡⎤=+⎢⎥⎢⎥⎣⎦⎰x x xx x C 222211113332e 11e d ee d 2x x x x x x C x C x x --⎛⎫⎡⎤⎛⎫⎪=+=-+⎢⎥ ⎪ ⎪⎝⎭⎢⎥⎣⎦⎪⎝⎭⎰⎰ 2221133311e e e 22x x x x x C Cx -⎛⎫=+=+ ⎪ ⎪⎝⎭,代入初始条件1,0==x y ,得12e=-C ,故所求特解为 21311e 2-⎛⎫=- ⎪ ⎪⎝⎭x x y . 3.求一曲线的方程,这曲线通过原点,并且它在点(,)x y 处的切线斜率等于2+x y . 解 设曲线方程为()=y y x ,依题意有2'=+y x y ,即2'-=y y x .从而有()d de 2e d e2ed --⎛⎫⎰⎰=+=+ ⎪⎝⎭⎰⎰x x xxy x x C x x Ce (2e 2e )22e x x x x x C x C --=--+=--+. 由0=x ,0=y ,得2=C .故所求曲线的方程为2(e 1)=--x y x .4.设曲线积分2()d [2()]d +-⎰Lyf x x xf x x y 在右半平面(0>x )内与路径无关,其中()f x 可导,且(1)1=f ,求()f x .解 依题意及曲线积分与路径无关的条件,有2[2()][()]0∂-∂-=∂∂xf x x yf x x y,即 2()2()2()0'+--=f x xf x x f x .记()=y f x ,即得微分方程及初始条件为112'+=y y x,11==x y . 于是,)11d d22e e d -⎛⎫⎰⎰=+=+ ⎪⎝⎭⎰x xx x y x C x C23⎫=⎪⎭C x 代入初始条件 1,1==x y ,得13=C ,从而有 2()3=f x x5.求下列伯努利方程的通解:(1)2d ;d yx y xy x+= (2)42323;y y x y x '+=(3)4d 11(12);d 33y y x y x +=- (4)3d [(1ln )]d 0-++=x y y xy x x . 解 (1)方程可以化为21d 11d --+=y y y x x. 令1-=z y ,则2d d d d -=-z y y x x ,即2d d d d -=-y z y x x .代入方程,得d 11d -+=z z x x,即 d 11d -=-z z x x, 其通解为11d de (e )d ln -⎛⎫⎰⎰=-+=- ⎪⎝⎭⎰x xx x z x C Cx x x ,所以原方程的通解为1ln =-Cx x x y. (2)原方程化为41233d 23d --+=y yy x x x. 令13-=z y ,则43d 1d d 3d -=-z y y x x ,即43d d 3d d -=-y z y x x .代入方程,得2d 233d -+=z z x x x,即2d 2d 3-=-z z x x x,第十一章 微分方程习题详解其通解为22d d 233e (e )d -⎡⎤⎰⎰=-+⎢⎥⎣⎦⎰x x x xz x x C2433()d ⎡⎤=-+⎢⎥⎣⎦⎰x x x C273337⎛⎫=- ⎪⎝⎭x C x .所以原方程的通解为 12733337-=-yCx x .(3)原方程化为4311(12)33--'+=-y y y x .令3-=z y ,则43-''=-z y y ,于是原方程化为21z x z '-=-,其通解为d d 21e ()e d e ()e 21d x x x x z x C x x x C --⎡⎤⎰⎰⎡⎤=+=+⎢⎥⎣⎦⎣--⎦⎰⎰ e (21)e 21e x x xx C x C -⎡⎤=--+=--+⎣⎦,所以原方程的通解为 321e -=--+x y x C .(4)原方程化为31(1ln )'-=+y y x y x ,即3211ln --'-=+y y y x x. 令2-=z y ,则32-''=-z y y ,则原方程化为22(1ln )'+=-+z z x x,其通解为 22d de 2(1ln )e d -⎡⎤⎰⎰=-++⎢⎥⎣⎦⎰x xx x z x x C222(1ln )d x x x x C -⎡⎤=-++⎣⎦⎰233221(1ln )d 33x x x x x C x -⎡⎤=-++⋅+⎢⎥⎣⎦⎰23322(1ln )39x x x x C -⎡⎤=-+++⎢⎥⎣⎦222(1ln )39x x x Cx -=-+++,所以原方程的通解为 2222(1ln )39--=-+++y x x x Cx ,或写成233242ln 93=--+x x x x C y .习 题 11—41.求下列全微分方程的通解:(1)21d ()d 0;2xy x x y y ++= (2)3222(36)d (46)d 0;x xy x y x y y +++=(3)e d (e 2)d 0;y y x x y y +-= (4)(cos cos )sin sin 0x y x y y x y '+-+=. 解 (1)易知,=P xy ,21()2=+Q x y .因为∂∂==∂∂P Q x y x ,所以原给定的方程为全微分方程.而21(,)0d ()d 2x yu x y s x t t =++⎰⎰22221111()2224x y y x y y =+=+,于是,所求方程的通解为221124+=x y y C . (2)易知,2236=+P x xy ,3246=+Q y x y .因为12∂∂==∂∂P Qxy y x, 所以原给定的方程为全微分方程.而2320(,)3d (46)d xyu x y s s t x t t =++⎰⎰34223x y x y =++, 于是,所求方程的通解为 34223++=x y x y C .(3)易知,e y P =,e 2y Q x y =-.因为 e y P Qy x∂∂==∂∂,原方程为全微分方程.将原方程的左端重新组合,得2(e d e d )2d d(e )y y y x x y y y x y +-=-,于是,所求方程的通解为 2e y x y C -=.(4)原方程可化为(cos cos )d (sin sin )d 0x y x y y x y x ++-+=,易知,sin sin P y x y =-+,cos cos Q x y x =+.因为 sin cos P Qx y y x∂∂=-+=∂∂,原方程为全微分方程.方程的左端重新组合,得(cos d sin d )(cos d sin d )0x y y y x x y y x x ++-=, d(sin )d(cos )d(sin cos )0x y y x x y y x +=+=,于是,所求方程的通解为 sin cos x y y x C +=.第十一章 微分方程习题详解2.用观察法求出下列方程的积分因子,并求其通解:(1)2()d d 0;x y x x y =-+ (2)22(3)d (13)d 0y x y x xy y -+-=. 解 (1)用21x 乘方程,便得到了全微分方程 211d d 0⎛⎫+-= ⎪⎝⎭y x y x x ,将方程左端重新组合,得2d d d d 0-⎛⎫+=-= ⎪⎝⎭y x x y y x x x x . 于是,通解为 -=yx C x. (2)原方程可化为232d 3d d 3d 0xy x y x y xy y -+-=,即232d d 3(d d )0xy x y y x xy y +-+=,用21y 乘方程,便得到了全微分方程 21d d 3(d d )0+-+=x x y y x x y y , 221111d d 3d()d 3022x xy x xy y y ⎛⎫⎛⎫⎛⎫--=--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,于是,原方程的通解为21132--=x xy C y. 3.用积分因子法解下列一阶线性方程:(1)24ln xy y x '+=; (2)tan y y x x '-=. 解 (1)将原方程写成24ln '+=xy y x x, 此方程两端乘以2d 2eμ⎰==xx x 后变成224ln '+=x y xy x x ,即 2()4ln '=x y x x ,两端积分,得2224ln d 2ln ==-+⎰x y x x x x x x C ,于是,原方程的通解为 22ln 1=-+C y x x . (2)方程两端乘以tan d e cos μ-⎰==x xx ,则方程变为cos sin cos '-=y x y x x x ,即 (cos )cos '=y x x x ,两端积分,得cos cos d sin cos ==++⎰y x x x x x x x C ,于是,原方程的通解为 tan 1cos =++Cy x x x.习 题 11—51.求下列微分方程的通解: (1)211y x ''=+; (2)e x y x '''=; (3)(5)(4)10y y x -=.解(1)1121d arctan 1'=+=++⎰y x C x C x , ()212121arctan d arctan ln(1)2y x C x C x x x C x C =++=-+++⎰.(2)11e d e e ''=+=-+⎰x x x y x x C x C ,1212(e e )d e 2e x x x x y x C x C x C x C '=-++=-++⎰, 2112323(e 2e )d e 3e 2x x x x C y x C x C x C x x C x C =-+++=-+++⎰. (作为最后的结果,这里12C 也可以直接写成1C ). (3)令(4)=z y ,则有d 10d -=z z x x,可知=z Cx ,从而有 44d d =yCx x , 再逐次积分,即得原方程的通解53212345=++++y C x C x C x C x C .2.求下列微分方程的通解:(1);y y x '''=+ (2)0;xy y '''+= (3)310;y y ''-= (4)()3y y y ''''=+. 解 (1)令'=y p ,则'''=y p ,且原方程化为'-=p p x .利用一阶线性方程的求解公式,得()d d 11e e d eed x x xxp x x C x x C --⎛⎫⎰⎰=+=+ ⎪⎝⎭⎰⎰()11e e e 1e x x x x x C x C --=--+=--+.第十一章 微分方程习题详解即11e x p x C =--+,再积分,得通解21121(1e )d e 2x x y x C x x x C C =--+=--++⎰.(2)令'=y p ,则'''=y p ,且原方程化为0'+=xp p ,分离变量,得d d =-p xp x,积分得 11ln ln ln =+p C x,即 1=C p x,再积分,得通解 112d ln ==+⎰C y x C x C x .(3)令'=y p ,则d d ''=py py,且原方程化为 3d 10d -=py py, 分离变量,得 31d d =p p y y ,积分得 2121=-+p C y ,故'==y p , 再分离变量,得d =±x .由于||sgn()=y y y ,故上式两端积分,sgn()d =±⎰y x,即12sgn(=±+y C x C ,两边平方,得()221121-=+C y C x C .(4)令'=y p ,则d d ''=p y py ,且原方程化为3d d =+ppp p y,即 2d (1)0d ⎡⎤-+=⎢⎥⎣⎦p p p y . 若0≡p ,则≡y C .≡y C 是原方程的解,但不是通解. 若0≡p ,由于p 的连续性,必在x 的某区间有0≠p .于是2d (1)0d -+=pp y,分离变量,得2d d 1=+py p ,积分得 1arctan =-p y C ,即()1tan =-p y C ,亦即 ()1cot d d -=y C y x .积分得()12ln sin ln -=+y C x C .即 ()12sin e -=x y C C ,也可写成()21arcsin e =+x y C C .由于当20=C 时,1=y C ,故前面所得的解≡y C 也包含在这个通解之内.3.求下列初值问题的解:(1)sin ''=+y x x ,(0)1=y ,(0)2'=-y ; (2)2(1)2'''+=x y xy ,(0)1=y ,(0)3'=y ; (3)2e y y ''=,(0)0=y ,(0)0'=y ; (4)()21'''+=y y ,(0)0=y ,(0)0'=y .解 (1)易知,211cos 2'=-+y x x C ,3121sin 6=-++y x x C x C .由初值条件(0)2'=-y ,知1201-=-+C ,得11=-C ;由(0)1=y ,知21000=-++C ,得21=C .故特解为31sin 16=--+y x x x .(2)令'=y p ,则'''=y p ,且原方程化为2(1)2'+=x p xp ,变量分离,得212d d 1=+x p x p x,两端积分,得 21(1)'==+y p C x .再两端积分,得 3121()3=++y C x x C .由初值条件(0)3y '=,有213(10)=+C ,解得,13=C ,由初值条件(0)1y =,有22113(00)3=+⋅+C ,解得,21=C ,故所给初值条件的微分方程的特解为 331=++y x x .(3)令'=y p ,则d d py py ''=,且原方程化为 2d e d y ppy=,即2d e d y p p y =,第十一章 微分方程习题详解两端积分得22111e 22yp C =+. 代入初始条件(0)0=y ,(0)0y '=,得 112C =-,从而22111e 222y p =-,即22e 1y p =-,亦即 '=y .分离变量后积分d =±⎰x ,即d -=⎰y x ,得2arcsin(e )-=+y x C ,代入初始条件(0)0y =,得2π=2C .于是,符合所给初值条件的特解为 e sin -π⎛⎫=⎪2⎝⎭y x , 即 lncos lnsec =-=y x x .(4)令'=y p ,则d d py py''=,且原方程化为 2d 1d ppp y+=, 分离变量,得2d d 1pp y p =-,两端积分,得 211ln(1)2--=+p y C , 代入初始条件(0)0y =,(0)0y '=,得 10=C .从而,21ln(1)2=--y p ,即'==y p再分离变量,得d =±y x d =±y y x .两端积分,得2arch(e )=±+y x C ,代入初始条件(0)0=y ,得20=C ,从而有满足所给初始条件的特解为arch(e )=±y x ,即e ch()ch()=±=y x x ,或写成 ln ch()=y x .4.试求''=y x 的经过点(0,1)M 且在此点与直线112=+y x 相切的积分曲线. 解 由于直线112=+y x 在(0,1)M 处的切线斜率为12,依题设知,所求积分曲线是初值问题''=y x ,01==x y ,012='=x y 的解.由''=y x ,积分得2112'=+y x C ,再积分,得 21216=++y x C x C ,代入初始条件01==x y ,012='=x y ,解得 112=C ,21=C ,于是所求积分曲线的方程为 211162=++y x x .5.对任意的0>x ,曲线()=y f x 上的点(,())x f x 处的切线在y 轴上的截距等于1()d xf t t x ⎰, 且()=y f x 存在二阶导数,求()f x 的表达式.解 设曲线的方程为()=y f x ,其中()=y f x 有二阶导数,则在点(,())M x f x 处的切线方程为()()()'-=-Y f x f x X x ,令0=X ,知切线在y 轴上的截距为()()'=-Y f x xf x ,据题意,有1()d ()()'=-⎰x f t t f x xf x x ,即20()()()d '-=⎰x xf x x f x f t t . 两端求导,得2()()2()()()''''+--=f x xf x xf x x f x f x ,即[]()()0x f x xf x '''+=,已知0>x ,故有()()0f x xf x '''+=,令'=y p ,则'''=y p ,且原方程化为d 0d pp xx+=, 分离变量,得11d d =-p x p x,两端积分,得 1ln ln ln =-p C x ,即1'==C y p x.第十一章 微分方程习题详解再对两端积分,得12ln =+y C x C ,即12()ln =+f x C x C .习 题 11—61.下列函数组中,在定义的区间内,哪些是线性无关的. (1)e x ,e ;x - (2)23sin x ,21cos ;x - (3)cos2x ,sin 2;x (4)ln x x ,ln x . 解 (1)因为1e x y =,2e x y -=满足:212e e exx x y y -==≠常数, 所以函数组e x ,e x -是线性无关的.(2)因为213sin y x =,221cos y x =-满足:21223sin 31cos y x y x==-, 所以函数组23sin x ,21cos -x 是线性相关的.(3)因为1cos2y x =,2sin 2y x =满足:12cos2cot 2sin 2y x x y x==≠常数, 所以函数组cos2x ,sin 2x 是线性无关的.(4)因为1ln y x x =,2ln y x =满足:12ln ln y x x x y x==≠常数, 所以函数组ln x x ,ln x 是线性无关的.2.验证1cos y x ω=及2sin y x ω=都是方程20y y ω''+=的解,并写出该方程的通解. 证明 由1cos y x ω=,得1sin y x ωω'=-,21cos y x ωω''=-; 由2sin y x ω=,得1cos y x ωω'=,21sin y x ωω''=-. 可见,2sin 0i y x ωω''+= (1,2)i =,故1cos y x ω=及2sin y x ω=都是方程20y y ω''+=的解.又因为12cot y x y ω=≠常数,故1cos y x ω=与2sin y x ω=线性无关.于是所给方程的通解为 1212cos sin y y y C x C x ωω=+=+.3.验证21e x y =及22e x y x =都是微分方程24(42)0y xy x y '''-+-=的解,并写出该方程的通解.证明 由21e x y =,得212e x y x '=,221(24)e x y x ''=+; 由22e x y x =,得222(12)e x y x '=+,232(64)e x y x x ''=+. 因为2222221114(42)(24)e 42e (42)e 0x x x y xy x y x x x x '''-+-=+-⋅+-=; 22223222224(42)(64)e 4(12)e (42)e 0x x x y xy x y x x x x x x '''-+-=+-⋅++-=, 所以21e x y =及22e x y x =都是方程24(42)0y xy x y '''-+-=的解.又因为21y x y =≠常数,故21e x y =与22e x y x =线性无关,于是所给方程的通解为 21212()e x y y y C C x =+=+.4.若13y =,223y x =+,22e 3x y x =++都是方程()()()y P x y Q x y f x '''++=(()0)f x ≠的特解,当()P x ,()Q x ,()f x 都是连续函数时,求此方程的通解.解 因为221y y x -=,32e x y y -=,所以2x 及e x 都是方程()()()y P x y Q x y f x '''++=对应齐次方程的特解.又因为32221e xy y y y x -=≠-常数,所以21y y -与32y y -线性无关.因此,所给方程()()()y P x y Q x y f x '''++=的通解为212e 3x y C x C =++.习 题 11—71.求下列微分方程的通解.(1)40;y y '''-= (2)3100;y y y '''--= (3)960;y y y '''++= (4)0;y y ''+=(5)6250;y y y '''-+= (6)(4)5360''+-=y y y .解 (1)所给方程对应的特征方程为240r r -=,解之,得10r =,24r =,所以原方程的通解为412e x y C C =+.(2)所给方程对应的特征方程为23100r r --=解之,得15r =,22r =-,所以原方程的通解为第十一章 微分方程习题详解5212e e x x y C C -=+.(3)所给方程对应的特征方程为29610r r ++=解之,得 1213r r ==-,所以原方程的通解为1312()ex y C C x -=+.(4)所给方程对应的特征方程为210r +=,解之,得 1i r =,2i r =-,所以原方程的通解为12cos sin y C x C x =+.(5)所给方程对应的特征方程为26250r r -+=,解之,得 134i r =-,234i r =+,所以原方程的通解为312e (cos 4sin 4)x y C x C x =+.(6)所给方程对应的特征方程为425360r r +-=,解之,得 1,22r =±,3,43i r =±,所以原方程的通解为221234e e cos3sin3x x y C C C x C x -=+++.2.求下列微分方程满足所给初始条件的特解: (1)00430,6,10==''''-+===x x y y y y y ; (2)00440,2,0==''''++===x x y y y y y ; (3)00250,2,5=='''+===x x y y y y ; (4)004130,0,3==''''-+===x x y y y y y .解 (1)所给方程对应的特征方程为2430r r -+=,解之,得 11r =,23r =,所以原方程的通解为312e e x x y C C =+,从而,312e 3e x x y C C '=+,代入初始条件006,10x x y y =='==,得12126,310,C C C C +=⎧⎨+=⎩ 解得124,2,C C =⎧⎨=⎩ 故所求特解为34e 2e x x y =+.(2)所给方程对应的特征方程为24410r r ++=,解之,得 1,212r =-,所以原方程的通解为1212()ex y C C x -=+,从而,12211221211e ee 22x x x C C C x y ----'=-, 代入初始条件002,0x x y y =='==,得1122,10,2C C C =⎧⎪⎨-+=⎪⎩ 解得,122,1,C C =⎧⎨=⎩ 故所求特解为12(2)ex y x -=+.(3)所给方程对应的特征方程为2250r +=,解之,得 1,25i r =±,所以原方程的通解为12cos5sin5y C x C x =+,从而,125sin55cos5y C x C x '=-+,代入初始条件002,5x x y y =='==,得122,55,C C =⎧⎨=⎩ 解得,122,1,C C =⎧⎨=⎩ 故所求特解为2cos5sin5y x x =+.(4)所给方程对应的特征方程为24130r r -+=,解之,得 1,223i r =±,所以原方程的通解为212e (cos3sin 3)x y C x C x =+,从而,21221e [(23)cos3(23)sin3]x y C C x C C x '=++-,代入初始条件000,3x x y y =='==,得1120,233,C C C =⎧⎨+=⎩ 解得120,1,C C =⎧⎨=⎩ 故所求特解为2e sin3x y x =.3.设圆柱形浮筒,直径为0.5米,铅直放在水中,当稍向下压后突然放开,浮筒在水第十一章 微分方程习题详解中上下振动的周期为2秒,求浮筒的质量.解 设x 轴的正向铅直向下,原点在水面处.平衡状态下浮筒上一点A 在水平面处,又设在时刻t ,点A 的位置为()x x t =,此时它受到的恢复力的大小为21000||gV g R x ρ=π排水(R 是浮筒的半径),恢复力的方向与位移方向相反,故有21000mx g R x ''=-π,其中m 是浮筒的质量.记221000g R mωπ=,则得微分方程20x x ω''+=.其对应的特征方程为220r ω+=,解得1,2i r ω=±,故12cos sin sin()x C t C t A t ωωωϕ=+=+,A 1sin C Aϕ=. 由于振动周期22T ωπ==,故ω=π,即221000g R m π=π,从中解出浮筒的质量为 21000195gR m =≈π(千克).习 题 11—81.求下列微分方程的特解*y 的形式(不必求出待定系数). (1)2331;y y x ''-=+ (2);y y x '''+= (3)2e ;x y y y '''-+= (4)23e ;x y y y -'''--= (5)32e ;x y y y x '''-+= (6)22(3)e ;x y y x x '''-=+- (7)276e sin ;x y y y x '''++= (8)245e sin ;x y y y x '''-+= (9)2222e cos ;x y y y x x '''-+= (10)22e sin x y y y x x '''-+=.解 (1)2()31f x x =+属于e ()λx m P x 型(其中,2()31m P x x =+,0λ=),对应齐次方程的特征方程为230r -=.易知,0λ=不是特征方程的根,所以特解*y 的形式为*2y Ax Bx C =++ (这里A 、B 和C 为待定系数).(2)()f x x =属于e ()λx m P x 型(其中,()m P x x =,0λ=),对应齐次方程的特征方程为20r r +=.易知,0λ=是特征方程的一个单根,所以特解*y 的形式为*2()y x Ax B Ax Bx =+=+ (这里A 和B 为待定系数).(3)()e x f x =属于e ()λx m P x 型(其中,()1m P x =,1λ=),对应齐次方程的特征方程为2210r r -+=,易知,1λ=是特征方程的二重根,所以特解*y 的形式为*2e x y Ax = (其中A 为待定系数).(4)()e x f x -=属于e ()λx m P x 型(其中,()1m P x =,1λ=-),对应齐次方程的特征方程为2230r r --=,易知,1λ=-是特征方程的一个单根,所以特解*y 的形式为*e x y Ax -= (其中A 为待定系数).(5)()e x f x x =属于e ()λx m P x 型(其中,()m P x x =,1λ=),对应齐次方程的特征方程为2320r r -+=,易知,1λ=是特征方程的一个单根,所以特解*y 的形式为*2()e ()e x x y x Ax B Ax Bx =+=+ (其中A 和B 为待定系数).(6)2()(3)e x f x x x =+-是e ()λx m P x 型(其中,2()3m P x x x =+-,1λ=),对应齐次方程的特征方程为220r r -=,易知,1λ=是不是特征方程的根,所以特解*y 的形式为*2()e x y Ax Bx C =++ (其中A 、B 和C 为待定系数).(7)2()e sin x f x x =属于[]e ()cos ()sin x l n P x x P x x λωω+型(其中2λ=,1ω=,()0l P x =,()1n P x =).对应齐次方程的特征方程为2760r r ++=,易知,i 2i λω+=+不是特征方程的根,所以应设其特解为*2e (cos sin )x y A x B x =+ (其中A 、B 为待定系数).(8)2()e sin x f x x =属于[]e ()cos ()sin x l n P x x P x x λωω+型(其中2λ=,1ω=,()0l P x =,()1n P x =).对应齐次方程的特征方程为2450r r -+=,易知,i 2i λω+=+是特征方程的根,所以应设其特解为*2e [cos sin )]x y x A x B x =+ (其中A 和B 为待定系数).(9)由2()2e cos xf x x x =属于[]e ()cos ()sin x l n P x x P x x λωω+型(其中2λ=,1ω=,()2l P x x =,()0n P x =),对应齐次方程的特征方程为2220r r -+=,易知,i 2i λω+=+不是特征方程的根,所以应设其特解为*2e [()cos ()sin )]x y Ax B x Cx D x =+++ (其中A 、B 、C 和D 为待定系数).(10)()e sin x f x x x =属于[]e ()cos ()sin x l n P x x P x x λωω+型(其中1λ=,1ω=,()0l P x =,()n P x x =).对应齐次方程的特征方程为2220r r -+=,易知,i 1i λω±=±是特征方程的根,所以应设其特解为[]*e ()cos ()sin )x y x Ax B x Cx D x =+++(其中A 、B 、C 和D 为待定系数).2.求下列各微分方程的通解.(1)22e ;x y y y '''+-= (2)323e ;x y y y x -'''++= (3)369(1)e ;x y y y x '''-+=+ (4)e cos ''+=+x y y x .解 (1)()2e x f x =是e ()λx m P x 型(其中,()2m P x =,1λ=),对应齐次方程的特征方第十一章 微分方程习题详解程为2210r r +-=,解得 112r =,21r =-,故对应齐次方程的通解为 1212e e x x Y C C -=+.因为1λ=不是特征方程的根,所以特解*y 的形式为*e x y A =,代入原方程得2e e e 2e x x x x A A A +-=.消去e x ,有1A =,即 *e x y =,故原方程的通解为1*212e e e x x x y Y y C C -=+=++.(2)()3e x f x x -=是e ()λx m P x 型(其中,()3m P x x =,1λ=-),对应齐次方程的特征方程为 2320r r ++=,解得 11r =-,22r =-,故对应齐次方程的通解为212e e x x Y C C --=+.因为1λ=-是特征方程的单根,所以特解*y 的形式为*2()e ()e x x y x Ax B Ax Bx --=+=+,代入原方程并消去e x -,得2(2)3Ax A B x ++=.比较系数,得32A =,3B =-,即 *233e 2x y x x -⎛⎫=- ⎪⎝⎭,故原方程的通解为 *22123e e 3e 2x x x y Y y C C x x ---⎛⎫=+=++- ⎪⎝⎭.(3)3()(1)e x f x x =+是e ()λx m P x 型(其中,()1m P x x =+,3λ=),对应齐次方程的特征方程为 2690r r -+=,解得 1,23r =,故对应齐次方程的通解为312()e x Y C C x =+.因为3λ=是特征方程的二重根,所以特解*y 的形式为*23323()e ()e x x y x Ax B Ax Bx =+=+,代入原方程并消去e x ,得621Ax B x +=+.比较系数,得16A =,12B =,即 *32311e 62x y x x ⎛⎫=+ ⎪⎝⎭,故原方程的通解为*33231211()e e 62x x y Y y C C x x x ⎛⎫=+=+++ ⎪⎝⎭.(4)原方程对应的齐次方程的特征方程为210r +=,解得1,2i r =±,故对应齐次方程的通解为。
第十二章 微分方程习题课 (一)(二)

(3) y′ =
3x + y − 6x + 3 2x y − 2 y
2 2
d y 3( x − 1)2 + y2 = 化方程为 dx 2y( x − 1)
dy dy dt dy = = 令t=x–1,则 dx d t dx d t dy 3t 2 + y2 (齐次方程 齐次方程) 齐次方程 = dt 2t y 令y=ut
y 方法 1 这是一个齐次方程 . 令 u = x 方法 2 化为微分形式
( 6x3 + 3x y2 )dx + ( 3x2 y + 2y3 )dy = 0
∂P ∂Q ∵ = 6x y = ∂y ∂x
故这是一个全微分方程 故这是一个全微分方程 .
5
求下列方程的通解: 例2. 求下列方程的通解 (1) x y′ + y = y( ln x + ln y )
22
为通解的微分方程 .
提示: 提示 由通解式可知特征方程的根为
(7) y′′ + 2 y′ + 5y = sin2x
特征根: 特征根 齐次方程通解 通解: 齐次方程通解 Y = e−x (C1 cos 2x + C2 sin 2x ) 令非齐次方程特解为 令非齐次方程特解为 特解 代入方程可得 A题1,2,3(1), (2), (3), (4), (5), (9), (10) , ,
(题3只考虑方法及步骤 题 只考虑方法及步骤 只考虑方法及步骤)
P326 题2 求以 为通解的微分方程. 为通解的微分方程 ( x + C )2 + y2 = 1 消去 C 得 提示: 提示 2( x + C )+ 2 y y′ = 0 P327 题3 求下列微分方程的通解 求下列微分方程的通解: 提示: 提示 令 u = x y , 化成可分离变量方程 : 提示: 提示 这是一阶线性方程 , 其中
高数同济第五版第十二章答案

习题12-11. 试说出下列各微分方程的阶数:(1)x (y ')2-2yy '+x =0; 解 一阶. (2)x 2y '-xy '+y =0; 解 一阶. (3)xy '''+2y '+x 2y =0; 解 三阶. (4)(7x -6y )dx +(x +y )dy =0; 解 一阶. (5)022=++C Qdt dQ Rdt Q d L; 解 二阶(6)θρθρ2sin =+d d . 解 一阶. 2. 指出下列各题中的函数是否为所给微分方程的解:(1)xy '=2y , y =5x 2; 解 y '=10x . 因为xy '=10x 2=2(5x 2)=2y , 所以y =5x 2是所给微分方程的解 (2)y '+y =0, y =3sin x -4cos x ; 解 y '=3cos x +4sin x . 因为y '+y =3cos x +4sin x +3sin x -4cos x =7sin x -cos x ≠0, 所以y =3sin x -4cos x 不是所给微分方程的解.(3)y ''-2y '+y =0, y =x 2e x ; 解 y '=2xe x +x 2e x , y ''=2e x +2xe x +2xe x +x 2e x =2e x +4xe x +x 2e x . 因为y ''-2y '+y =2e x +4xe x +x 2e x -2(2xe x +x 2e x )+x 2e x =2e x ≠0,所以y =x 2e x 不是所给微分方程的解. (4)y ''-(λ1+λ2)y '+λ1λ2y =0, x x e C e C y 2121λλ+=. 解 x x e C e C y 212211λλλλ+=', x x e C e C y 21222211λλλλ+=''. 因为y y y 2121)(λλλλ+'+-'')())((2121212121221121222211x x x x x x e C e C e C e C e C e C λλλλλλλλλλλλλλ++++-+==0, 所以x x e C e C y 2121λλ+=是所给微分方程的解.3. 在下列各题中, 验证所给二元方程所确定的函数为所给微分方程的解:(1)(x -2y )y '=2x -y , x 2-xy +y 2=C ; 解 将x 2-xy +y 2=C 的两边对x 求导得2x -y -xy '+2y y '=0, 即 (x -2y )y '=2x -y , 所以由x 2-xy +y 2=C 所确定的函数是所给微分方程的解. (2)(xy -x )y ''+xy '2+yy '-2y '=0, y =ln(xy ). 解 将y =ln(xy )的两边对x 求导得 y yx y '+='11, 即x xy y y -='. 再次求导得)(1)()()1()(2222y y y y yxx xy x xy y y y x x xy y x y y x xy y y '+'-'-⋅-=-+-'-=--'+--'=''. 注意到由y y x y '+='11可得1-'='y x y yx, 所以)2(1])1([12y y y y x xxy y y y y y x x xy y '+'-'-⋅-='+'-'-'-⋅-='', 从而 (xy -x )y ''+xy '2+yy '-2y '=0,即由y =ln(xy )所确定的函数是所给微分方程的解.4. 在下列各题中, 确定函数关系式中所含的参数, 使函数满足所给的初始条件: (1)x 2-y 2=C , y |x =0=5; 解 由y |x =0=0得02-52=C , C =-25, 故x 2-y 2=-25. (2)y =(C 1+C 2x )e 2x , y |x =0=0, y '|x =0=1; 解 y '=C 2e 2x +2(C 1+C 2x )e 2x . 由y |x =0=0, y '|x =0=1得⎩⎨⎧=+=1121C C C , 解之得C 1=0, C 2=1, 故y =xe 2x .(3)y =C 1sin(x -C 2), y |x =π=1, y '|x =π=0. 解 y '=C 1cos(x -C 2). 由y |x =π=1, y '|x =π=0得⎩⎨⎧=-=-0)cos(1)sin(2121C C C C ππ, 即⎩⎨⎧=-=0cos 1sin 2121C C C C , 解之得C 1=1, 22π=C , 故)2sin(π-=x y , 即y =-cos x .5. 写出由下列条件确定的曲线所满足的微分方程: (1)曲线在点(x , y )处的切线的斜率等于该点横坐标的平方;解 设曲线为y =y (x ), 则曲线上点(x , y )处的切线斜率为y ', 由条件y '=x 2, 这便是所求微分方程.(2)曲线上点P (x , y )处的法线与x 轴的交点为Q , 且线段PQ 被y 轴平分. 解 设曲线为y =y (x ), 则曲线上点P (x , y )处的法线斜率为y '-1, 由条件第PQ 中点的横坐标为0, 所以Q 点的坐标为(-x , 0), 从而有y x x y '-=+-10, 即yy '+2x =0. 6. 用微分方程表示一物理命题: 某种气体的气压P 对于温度T 的变化率与气压成正比, 所温度的平方成反比. 解2TPk dT dP =, 其中k 为比例系数. 习题12-21. 求下列微分方程的通解: (1)xy '-y ln y =0; 解 分离变量得dx xdy y y 1ln 1=, 两边积分得⎰⎰=dx xdy y y 1ln 1, 即 ln(ln y )=ln x +ln C ,故通解为y =e Cx . (2)3x 2+5x -5y '=0; 解 分离变量得5dy =(3x 2+5x )dx , 两边积分得⎰⎰+=dx x x dy )53(52,即 123255C x x y ++=, 故通解为C x x y ++=232151, 其中151C C =为任意常数.(3)2211y y x -='-; 解 分离变量得2211xdx ydy -=-,两边积分得⎰⎰-=-2211xdx ydy 即 arcsin y =arcsin x +C , 故通解为y =sin(arcsin x +C ).(4)y '-xy '=a (y 2+y ');解 方程变形为(1-x -a )y '=ay 2, 分离变量得dx x a a dy y --=112,两边积分得⎰⎰--=dx x a a dy y112, 即 1)1l n (1C x a a y----=-, 故通解为)1ln(1x a a C y --+=, 其中C =aC 1为任意常数.(5)sec 2x tan ydx +sec 2y tan xdy =0;解 分离变量得dx x x y y y tan sec tan sec 22-=, 两边积分得⎰⎰-=dx xxy y y tan sec tan sec 22, 即 ln(tan y )=-ln(tan x )+ln C , 故通解为tan x tan y =C .(6)y x dx dy+=10; 解 分离变量得10-ydy =10xdx , 两边积分得⎰⎰=-dx dy xy1010, 即10ln 10ln 1010ln 10Cx y +=--, 或 10-y =10x +C ,故通解为y =-lg(C -10x ).(7)(e x +y -e x )dx +(e x +y +e y )dy =0; 解 方程变形为e y (e x +1)dy =e x (1-e y )dx ,分离变量得dx e e dy e e x x y y +=-11, 两边积分得⎰⎰+=-dx e e dy e e xxy y 11, 即 -ln(e y )=ln(e x +1)-ln C , 故通解为(e x +1)(e y-1)=C . (8)cos x sin ydx +sin x cos ydy =0; 解 分离变量得dx x x dy y y sin cos sin cos -=, 两边积分得⎰⎰-=dx xxdy y y sin cos sin cos , 即 ln(sin y )=-ln(sin x )+ln C , 故通解为sin x sin y =C .(9)0)1(32=++x dxdyy ; 解 分离变量得 (y +1)2dy =-x 3dx ,两边积分得⎰⎰-=+dx x dy y 32)1(,即 14341)1(31C x y +-=+,故通解为4(y +1)3+3x 4=C (C =12C 1). (10)ydx +(x 2-4x )dy =0. 解 分离变量得dx xx dy y )411(4-+=, 两边积分得⎰⎰-+=dx x x dy y )411(4, 即 ln y 4=ln x -ln(4-x )+ln C , 故通解为y 4(4-x )=Cx .2. 求下列微分方程满足所给初始条件的特解: (1)y '=e 2x -y , y |x =0=0; 解 分离变量得e y dy =e 2x dx , 两边积分得⎰⎰=dx e dy e x y 2, 即 C e e xy +=221, 或 )21l n (2C e y x +=. 由y |x =0=0得0)21ln(=+C , 21=C ,所以特解)2121ln(2+=x e y . (2)cos x sin ydy =cos y sin xdx , 4|0π==x y ;解 分离变量得tan y dy =tan x dx , 两边积分得⎰⎰=xdx ydy tan tan , 即 -ln(cos y )=-ln(cos x )-ln C , 或 cos y =C cos x . 由4|0π==x y 得C C ==0cos 4cosπ, 21=C , 所以特解为x y cos cos 2=.(3)y 'sin x =y ln y , e y x ==2π;解 分离变量得dx xdy y y sin 1ln 1=, 两边积分得⎰⎰=dx x dy y y sin 1ln 1, 即 C x y ln )2ln(tan )ln(ln +=, 或 2t a n xC ey =. 由e y x ==2π得4tan πC ee =, C =1, 所以特解为2tan xe y =.(4)cos ydx +(1+e -x )sin ydy =0, 4|0π==x y ;解 分离变量得dx e e dy y y x x +=-1cos sin , 两边积分得⎰⎰+=-dx ee dy y y xx1cos sin , 即 ln|cos y |=ln(e x+1)+ln |C |, 或 cos y =C (e x+1).由4|0π==x y 得)1(4cos 4+=ππe C , 42=C , 所以特解为)1(42cos +=xe y . (5)xdy +2ydx =0, y |x =2=1. 解 分离变量得dx x dy y 21-=, 两边积分得⎰⎰-=dx xdy y 21,即 ln y =-2ln x +ln C , 或 y =Cx -2. 由y |x =2=1得C ⋅2-2=1, C =4, 所以特解为24xy =.3. 有一盛满了水的圆锥形漏漏斗, 高为10cm , 顶角为60︒, 漏斗下面有面积为0. 5cm 2的孔, 求水面高度变化的规律及流完所需的时间.解 设t 时该已流出的水的体积为V , 高度为x , 则由水力学有x dtdV)9802(5.062.0⨯⨯⨯=, 即dt x dV )9802(5.062.0⨯⨯⨯=. 又因为330tan x x r =︒=, 故 dx x dx r V 223ππ-=-=,从而 dx x dt x 23)9802(5.062.0π-=⨯⨯⨯, 即 dxx dt 2398025.062.03⨯⨯⨯=π,因此 C x t +⨯⨯⨯-=2598025.062.032π. 又因为当t =0时, x =10, 所以251098025.062.053⨯⨯⨯⨯=πC , 故水从小孔流出的规律为645.90305.0)10(98025.062.0532252525+-=-⨯⨯⨯⨯=x x t π.令x =0, 得水流完所需时间约为10s .4. 质量为1g (克)的质点受外力作用作直线运动, 这外力和时间成正比, 和质点运动的速度成反比. 在t =10s 时, 速度等于50cm/s , 外力为4g cm/s 2, 问从运动开始经过了一分钟后的速度是多少? 解 已知v t k F =, 并且法t =10s 时, v =50cm/s , F =4g cm/s 2, 故50104k =, 从而k =20, 因此v tF 20=. 又由牛顿定律, F =ma , 即vt dt dv 201=⋅, 故v dv =20t d t . 这就是速度与时间应满足的微分方程. 解之得C t v +=221021, 即C t v 2202+=.由初始条件有C +⨯=⨯2210105021, C =250. 因此500202+=t v .当t =60s 时, cm/s 3.26950060202=+⨯=v .5. 镭的衰变有如下的规律: 镭的衰变速度与它的现存量R 成正比. 由经验材料得知, 镭经过1600年后, 只余原始量R 0的一半. 试求镭的量R 与时间t 的函数关系. 解 由题设知, R dtdR λ-=, 即dt RdR λ-=, 两边积分得ln R =-λt +C 1,从而 )( 1C t e C Ce R ==-λ. 因为当t =0时, R =R 0, 故R 0=Ce 0=C , 即R =R 0e -λt. 又由于当t =1600时, 021R R =, 故λ16000021-=e R R , 从而16002ln =λ. 因此 t t e R eR R 000433.0010002ln 0--==. 6. 一曲线通过点(2, 3), 它在两坐标轴间的任一切线线段均被切点所平分, 求这曲线方程.解 设切点为P (x , y ), 则切线在x 轴, y 轴的截距分别为2x , 2y , 切线斜率为x y x y -=--2002, 故曲线满足微分方程: xy dx dy -=, 即dx x dy y 11-=,从而 ln y +ln x =ln C , xy =C .因为曲线经过点(2, 3), 所以C =2⨯3=6, 曲线方程为xy =6. 7. 小船从河边点O 处出发驶向对岸(两岸为平行直线). 设船速为a , 船行方向始终与河岸垂直, 又设河宽为h , 河中任一点处的水流速度与该点到两岸距离的乘积成正比(比例系数为k ). 求小船的航行路线.解 建立坐标系如图. 设t 时刻船的位置为(x , y ), 此时水速为)(y h ky dtdxv -==, 故dx =ky (h -y )dt . 又由已知, y =at , 代入上式得dx =kat (h -at )dt , 积分得 C t ka kaht x +-=3223121. 由初始条件x |t =0=0, 得C =0, 故3223121t ka kaht x -=. 因此船运动路线的函数方程为⎪⎩⎪⎨⎧=-=ayy t ka kaht x 3223121, 从而一般方程为)312(32y y h a k x -=. 习题12-31. 求下列齐次方程的通解:(1)022=---'x y y y x ; 解 原方程变为1)(2--=xyx y dx dy . 令x y u =, 则原方程化为12-+=+u u dx du x u , 即dx x du u 1112=-,两边积分得C x u u ln ln )1ln(2+=-+, 即Cx u u =-+12,将x y u =代入上式得原方程的通解Cx x yx y =-+1)(2, 即222Cx x y y =-+.(2)xyy dx dy xln =; 解 原方程变为x y x y dx dy ln =. 令xyu =, 则原方程化为 u u dxdu xu ln =+, 即dx x du u u 1)1(ln 1=-, 两边积分得ln(ln u -1)=ln x +ln C , 即u =e Cx +1, 将xy u =代入上式得原方程的通解y =xe Cx +1. (3)(x 2+y 2)dx -xydy =0; 解 这是齐次方程. 令xyu =, 即y =xu , 则原方程化为 (x 2+x 2u 2)dx -x 2u (udx +xdu )=0, 即dx xudu 1=, 两边积分得u 2=ln x 2+C , 将xyu =代入上式得原方程的通解y 2=x 2(ln x 2+C ). (4)(x 3+y 3)dx -3xy 2dy =0; 解 这是齐次方程. 令xyu =, 即y =xu , 则原方程化为 (x 3+x 3u 3)dx -3x 3u 2(udx +xdu )=0, 即dx x du u u 121332=-,两边积分得C x u ln ln )21ln(213+=--, 即2312x Cu -=, 将xyu =代入上式得原方程的通解x 3-2y 3=Cx . (5)0ch 3)ch 3sh2(=-+dy xyx dx x y y x y x ;解 原方程变为x y x y dx dy +=th 32. 令xyu =, 则原方程化为 u u dxdu x u +=+th 32, 即dx xdu uu 2sh ch 3=,两边积分得3ln(sh u )=2ln x +ln C , 即sh 3u =Cx 2, 将x y u =代入上式得原方程的通解22sh Cx xy=. (6)0)1(2)21(=-++dy y x e dx e yx yx. 解 原方程变为yx yxee y xdydx 21)1(2+-=. 令yxu =, 则原方程化为u ue eu dy du y u 21)1(2+-=+, 即uu e e u dy du y 212++-=,分离变量得dy y du eu e uu 1221-=++, 两边积分得ln(u +2e u )=-ln y +ln C , 即y (u +2e u)=C , 将yxu =代入上式得原方程的通解C e y x y y x=+)2(, 即C yex yx=+2.2. 求下列齐次方程满足所给初始条件的特解: (1)(y 2-3x 2)dy +2xydx =0, y |x =0=1; 解 这是齐次方程. 令xyu =, 即y =xu , 则原方程化为 (x 2u 2-3x 2)(udx +xdu )+2x 2udx =0,即 dx x du u u u 1332=--, 或dx x du u u u 1)11113(=-+++-两边积分得-3ln |u |+ln|u +1|+ln|u -1|=ln|x |+ln|C |, 即u 2-1=Cxu 3, 将xyu =代入上式得原方程的通解y 2-x 2=Cy 3. 由y |x =0=1得C =1, 故所求特解为y 2-x 2=y 3. (2)xyy x y +=', y |x =1=2; 解 令x y u =, 则原方程化为u u dx du x u +=+1, 即dx xudu 1=, 两边积分得C x u +=ln 212, 将xyu =代入上式得原方程的通解 y 2=2x 2(ln x +C ). 由y |x =1=2得C =2, 故所求特解为y 2=2x 2(ln x +2).(3)(x 2+2xy -y 2)dx +(y 2+2xy -x 2)dy =0, y |x =1=1. 解 这是齐次方程. 令xyu =, 即y =xu , 则原方程化为 (x 2+2x 2u -x 2u 2)dx +(x 2u 2+2x 2u -x 2)(udx +xdu )=0, 即dx x du u u u u u 1112232-=+++-+, 或 dx x du u u u 1)1211(2=+-+, 两边积分得ln|u +1|-ln(u 2+1)=ln|x |+ln|C |, 即u +1=Cx (u 2+1), 将xy u =代入上式得原方程的通解x +y =C (x 2+y 2). 由y |x =1=1得C =1, 故所求特解为x +y =(x 2+y 2).3. 设有连结点O (0, 0)和A (1, 1)的一段向上凸的曲线弧A O , 对于A O上任一点P (x , y ),曲线弧P O 与直线段OP 所围图形的面积为x 2, 求曲线弧A O 的方程.解 设曲线弧A O 的方程为y =y (x ). 由题意得20)(21)(x x xy dx x y x =-⎰,两边求导得x x y x x y x y 2)(21)(21)(='--, 即 4-='xy y . 令x yu =, 则有4-=+u dx du xu , 即dx xdu u 41-=, 两边积分得u =-4ln x +C . 将xyu =代入上式得方程的通解y =-4x ln x +Cx . 由于A (1, 1)在曲线上, 即y (1)=1, 因而C =1, 从则所求方程为y =-4x ln x +x .习题12-41. 求下列微分方程的通解:(1) )()()(C x e C dx e e e C dx e e e y x x x x dxx dx +=+⋅=+⎰⋅⎰=-----⎰⎰.(2)原方程变为x x y x y 231++=+'.])23([11C dx e xx e y dx x dx x +⎰⋅++⎰=⎰-])23([1])23([12C dx x x x C xdx x x x +++=+++=⎰⎰ xC x x C x x x x +++=+++=22331)22331(1223.(3) )(cos sin cos C dx e e e y xdxx dx +⎰⋅⎰=⎰--)()(sin sin sin sin C x e C dx e e e x x x x +=+⋅=---⎰. (4) )2sin (tan tan C dx e x e y xdx xdx +⎰⋅⎰=⎰-)2sin (cos ln cos ln C dx e x e x x +⋅=⎰-⎰+⋅=)c o s 1c o s s i n 2(c o s C dx xx x x =cos x (-2cos x +C )=C cos x -2cos 2x .(5)原方程变形为1cos 1222-=-+'x x y x x y . )1cos (1221222C dx e x x e y dx x xdx x x+⎰⋅-⎰=⎰--- )(s i n 11])1(1c o s [112222C x x C dx x x x x +-=+-⋅--=⎰. (6) )2(33C d e e d d +⎰⋅⎰=⎰-θρθθ)2(33C d e e +=⎰-θθθθθθ33332)32(--+=+=Ce C e e . (7) )4(22C dx e x e y xdxxdx +⎰⋅⎰=⎰-)4(22C dx e x e x x +⋅=⎰-2222)2(x x x Ce C e e --+=+=.(8)原方程变形为yx y y dy dx 1ln 1=+. )1(ln 1ln 1C dy e y e x dy y y dyyy +⎰⋅⎰=⎰- )ln 1(ln 1C ydy y y +⋅=⎰yCy C y y ln ln 21)ln 21(ln 12+=+=. (9)原方程变形为2)2(221-=--x y x dx dy . ])2(2[21221C dx e x e y dx x dx x +⎰⋅-⎰=⎰--- ⎰+-⋅--=]21)2(2)[2(2C dx x x x =(x -2)[(x -2)2+C ]=(x -2)3+C (x -2). (10)原方程变形为y x y dy dx 213-=-. ])21([33C dy e y e x dy y dy y +⎰⋅-⎰=⎰- )121(33C d y y y y +⋅-=⎰32321)21(Cy y C y y +=+=.2.)sec (tan tan C dx e x e y xdxxdx+⎰⋅⎰=⎰-)(c o s 1)c o s s e c (c o s 1C x xC x d x x x +=+⋅=⎰. 由y |x =0=0, 得C =0, 故所求特解为y =x sec x .(2) )sin (11C dx e x x e y dx x dx x +⎰⋅⎰=⎰-)cos (1)sin (1C x xC xdx x x x +-=+⋅=⎰. 由y |x =π=1, 得C =π-1, 故所求特解为)cos 1(1x xy --=π.(3) )5(cot cos cot C dx e e e y xdxx xdx +⎰⋅⎰=⎰-)5(s i n 1)s i n 5(s i n 1c o s c o s C e xC x d x e x xx +-=+⋅=⎰. 由4|2-==πx y , 得C =1, 故所求特解为)15(sin 1cos +-=x e xy . (4) )8(33C dx e e y dxdx +⎰⋅⎰=⎰-x x x x x Ce C e e C dx e e 3333338)38()8(---+=+=+=⎰.由y |x =0=2, 得32-=C , 故所求特解为)4(323x e y --=. (5) )1(32323232C dxe ey dx x x dx x x +⎰⋅⎰=⎰---)21()1(22221131313C e e x C dx e xex x x x x +=+=--⎰.由y |x =1=0, 得e C 21-=, 故所求特解为)1(211132--=x e x y .3. 解 由题意知y '=2x +y , 并且y |x =0=0. 由通解公式得)2()2(C dx xe e C dx xe e y x x dxdx +=+⎰⎰=⎰⎰--=e x (-2xe -x -2e -x +C )=Ce x -2x -2.由y |x =0=0, 得C =2, 故所求曲线的方程为y =2(e x -x -1). 4.由牛顿定律F =ma , 得v k t k dtdvm21-=, 即t m k v m k dt dv 12=+. 由通解公式得)()(222211C dt e t mk eC dt et mk ev tm k tmk dtm k dtm k +⋅=+⎰⋅⎰=⎰⎰--)(22222121C ek mk tek k etmk tmk tmk +-=-. 由题意, 当t =0时v =0, 于是得221k mk C =. 因此)(22122121222k mk e k mk te k k ev tm k tm k tmk +-=-即 )1(222121tmk ek mk t k k v ---=.5.由回路电压定律知01025sin 20=--i dtdi t , 即t i dtdi 5sin 105=+.由通解公式得t dtdt Ce t t C dt e t e i 5555cos 5sin )5sin 10(--+-=+⎰⋅⎰=⎰.因为当t =0时i =0, 所以C =1. 因此)45s i n (25c o s 5s i n 55π-+=+-=--t e e t t i t t (A).6.因为当x >0时, 所给积分与路径无关, 所以])(2[)]([2x x xf xx yf y -∂∂=∂∂, 即 f (x )=2f (x )+2xf '(x )-2x , 或 1)(21)(=+'x f xx f .因此 xC x C dx x xC dx eex f dxx dx x +=+=+⎰⋅⎰=⎰⎰-32)(1)1()(2121. 由f (1)=1可得31=C , 故xx x f 3132)(+=.7. (1)原方程可变形为x x ydx dy y sin cos 112-=+, 即x x y dx y d cos sin )(11-=---.])c o s s i n ([1C dx e x x e y dxdx +⎰⋅-⎰=--⎰x Ce C dx e x x e x x x sin ])sin (cos [-=+-=⎰-,原方程的通解为x Ce yx sin 1-=. (2)原方程可变形为x y x dxdy y =-1312, 即x xy dx y d -=+--113)(. ])([331C dx e x eyxdxxdx+⎰⋅-⎰=⎰--)(222323C dx xe e x x +-=⎰-31)31(222232323-=+-=--x x xCe C e e, 原方程的通解为311223-=-x Ce y .(3)原方程可变形为)21(31131134x ydx dy y -=+, 即12)(33-=---x y dx y d .])12([3C dx e x e y dxdx +⎰⋅-⎰=--⎰x x x Ce x C dx e x e +--=+-=⎰-12])12([,原方程的通解为1213--=x Ce yx .(4)原方程可变形为x y dx dy y =-4511, 即x y dx y d 44)(44-=+--. ])4([444C dx e x e y dx dx +⎰⋅-⎰=⎰-- )4(44C dx xe e x +-=⎰-x Ce x 441-++-=, 原方程的通解为x Ce x y44411-++-=.(5)原方程可变形为)ln 1(11123x yx dx dy y +=⋅-⋅, 即)ln 1(22)(22x y x dx y d +-=+--.])ln 1(2[222C dx ex e y dxx dxx +⎰⋅+-⎰=⎰--])ln 1(2[122C dx x x x++-=⎰ x x x xC 94ln 322--=, 原方程的通解为x x x x C y 94ln 32122--=. 8. 解 原方程可变形为)()(xy xg xy yf dx dy -=. 在代换v =xy 下原方程化为 )()(22v g x v vf x vdx dvx-=-, 即 dx x du v f v g v v g 1)]()([)(=-, 积分得C x d u v f v g v v g +=-⎰ln )]()([)(,对上式求出积分后, 将v =xy 代回, 即得通解. 9. (1) 令u =x +y , 则原方程化为21u dx du =-, 即21ududx +=. 两边积分得x =arctan u +C . 将u =x +y 代入上式得原方程的通解x =arctan(x +y )+C , 即y =-x +tan(x -C ). (2) 令u =x -y , 则原方程化为111+=-udx du , 即dx =-udu . 两边积分得1221C u x +-=.将u =x +y 代入上式得原方程的通解12)(21C y x x +--=, 即(x -y )2=-2x +C (C =2C 1). (3)令u =xy , 则原方程化为u x u x u x u dx du x x ln )1(2=+-, 即du uu dx x ln 11=.两边积分得ln x +ln C =lnln u , 即u =e Cx . 将u =xy 代入上式得原方程的通解 xy =e Cx , 即Cx e xy 1=.(4)原方程变形为y '=(y +sin x -1)2-cos x . 令u =y +sin x -1, 则原方程化为x u x dx du cos cos 2-=-, 即dx du u=21. 两边积分得 C x u +=-1. 将u =y +sin x -1代入上式得原方程的通解C x x y +=-+-1sin 1, 即Cx x y +--=1sin 1.(5)原方程变形为)1()1(22y x xy x xy y dx dy +++-=. 令u =xy , 则原方程化为)1()1(1222u u x u u x u dx du x +++-=-, 即)1(1223u u x u dx du x ++=. 分离变量得du u u u dx x )111(123++=. 两边积分得u u uC x ln 121ln 21+--=+. 将u =xy 代入上式得原方程的通解xy xy yx C x ln 121ln 221+--=+,即 2x 2y 2ln y -2xy -1=Cx 2y 2(C =2C 1). 习题12-51. 判别下列方程中哪些是全微分方程, 并求全微分方程的通解: (1)(3x 2+6xy 2)dx +(6x 2y +4y 2)dy =0; 解 这里P =3x 2+6xy 2, Q =6x 2y +4y 2. 因为xQ xy y P∂∂==∂∂12, 所以此方程是全微分方程, 其通解为C dy y y x dx xyx=++⎰⎰02202)46(3,即 C y y x x =++3223343. (2)(a 2-2xy -y 2)dx -(x +y )2dy =0; 解 这里P =a 2-2xy -y 2, Q =-(x +y )2. 因为xQ y x y P∂∂=--=∂∂22, 所以此方程是全微分方程, 其通解为C dy y x dx a yx=+-⎰⎰0202)(,即 a 2x -x 2y -xy 2=C .(3)e ydx +(xe y-2y )dy =0; 解 这里P =e y, Q =xe y-2y . 因为xQ e y Py ∂∂==∂∂, 所以此方程是全微分方程, 其通解为C dy y xe dx e yy x=-+⎰⎰00)2(,即 xe y -y 2=C .(4)(x cos y +cos x )y '-y sin x +sin y =0;解 原方程变形为(x cos y +cos x )dy -(y sin x +sin y )dx =0. 这里P =-(y sin x +sin y ), Q =x cos y +cos x . 因为xQ x y y P∂∂=-=∂∂s i n c o s , 所以此方程是全微分方程, 其通解为C dy x y x dx yx=++⎰⎰0)cos cos (0,即 x sin y +y cos x =C . 解(5)(x 2-y )dx -xdy =0;解 这里P =x 2-y , Q =-x . 因为xQ y P∂∂=-=∂∂1, 所以此方程是全微分方程, 其通解为 C x d y dx x yx=-⎰⎰02,即C xy x =-331. (6)y (x -2y )dx -x 2dy =0;解 这里P =y (x -2y ), Q =-x 2. 因为y x y P4-=∂∂, x xQ 2-=∂∂, 所以此方程不是全微分方程. (7)(1+e 2θ)d ρ+2ρe 2θd θ=0; 解 这里P =1+e 2θ, Q =2ρe 2θ. 因为xQ e y P∂∂==∂∂θ22, 所以此方程是全微分方程, 其通解为C d e d =+⎰⎰θθρθρρ02022,即 ρ(e 2θ+1)=C . (8)(x 2+y 2)dx +xydy =0. 解 这里P =x 2+y 2, Q =xy . 因为y y P2=∂∂, y xQ =∂∂, 所以此方程不是全微分方程.2. 利用观察法求出下列方程的积分因子, 并求其通解: (1)(x +y )(dx -dy )=dx +dy ; 解 方程两边同时乘以yx +1得 yx dydx dy dx ++=-, 即d (x -y )=d ln(x +y ), 所以yx +1为原方程的一个积分因子, 并且原方程的通解为 x -y =ln(x +y )+C . (2)ydx -xdy +y 2xdx =0; 解 方程两边同时乘以21y 得 02=+-x d x y x d y y d x , 即0)2()(2=+x d y x d ,所以21y 为原方程的一个积分因子, 并且原方程的通解为C x y x =+22. (3)y 2(x -3y )dx +(1-3y 2x )dy =0; 解 原方程变形为xy 2dx -3y 3dx +dy -3x 2dy =0, 两边同时乘以21y 并整理得 0)33(2=+-+x d y y d x y dy xdx , 即0)(3)1()2(2=--xy d yd x d , 所以21y为原方程的一个积分因子, 并且原方程的通解为C xy yx =--3122. (4)xdx +ydy =(x 2+y 2)dx ; 解 方程两边同时乘以221y x +得022=-++dx y x ydy xdx , 即0)]ln(21[22=-+dx y x d ,所以221yx +为原方程的一个积分因子, 并且原方程的通解为 x 2+y 2=Ce 2x . (5)(x -y 2)dx +2xydy =0; 解 原方程变形为 xdx -y 2dx +2xydy =0, 两边同时乘以21x 得 0222=-+x dxy xydy x dx , 即0)()(ln 2=+x y d x d , 所以21x为原方程的一个积分因子, 并且原方程的通解为 C xy x =+2ln , 即x ln x +y 2=Cx .(6)2ydx -3xy 2dx -xdy =0. 解 方程两边同时乘以x 得2xydx -x 2dy -3x 2y 2dx =0, 即yd (x 2)-x 2dy -3x 2y 2dx =0, 再除以y 2得 03)(2222=--dx x y dyx x yd , 即0)(32=-x yx d 所以2y x为原方程的一个积分因子, 并且原方程的通解为 032=-x yx . 3. 验证)]()([1xy g xy f xy -是微分方程yf (xy )dx +xg (xy )dy =0的积分因子, 并求下列方程的通解:解 方程两边乘以)]()([1xy g xy f xy -得0])()([)]()([1=+-dy xy xg dx xy yf xy g xy f xy ,这里)]()([)(xy g xy f x xy f P -=, )]()([)(xy g xy f y xy g Q -=.因为x Q xy g xy f xy g xy f xy g xy f y P∂∂=-'-'=∂∂2)]()([)()()()(, 所以)]()([1xy g xy f xy -是原方程的一个积分因子.(1)y (x 2y 2+2)dx +x (2-2x 2y 2)dy =0;解 这里f (xy )=x 2y 2+2, g (xy )=2-2x 2y 2 , 所以3331)]()([1y x xy g xy f xy =-是方程的一个积分因子. 方程两边同乘以3331y x 得全微分方程032323222232=-++dy y x y x dx y x x ,其通解为C dy yx y x dx x x y x=-++⎰⎰132221323232, 即 C yx y x =-+-)11ln (ln 31222, 或2212y x e Cy x =.(2)y (2xy +1)dx +x (1+2xy -x 3y 3)dy =0.解 这里f (x y )=2x y +1, g (x y )=1+2x y -x 3 y 3 , 所以441)]()([1yx xy g xy f xy =-是方程的一个积分因子. 方程两边同乘以441yx 得全微分方程 02112433334=-+++dy y x y x xy dx y x xy ,其通解为 C dy y x y x xy dx x x y x=-+++⎰⎰14333142112,即C y y x y x =++||ln 3113322. 4. 用积分因子法解下列一阶线性方程: (1)xy '+2y =4ln x ; 解 原方程变为x xy x y ln 42=+', 其积分因子为 22)(x e x dxx =⎰=μ,在方程x xy x y ln 42=+'的两边乘以x 2得 x 2y '+2xy =4x ln x , 即(x 2y )'=4x ln x , 两边积分得C x x x x d x x y x +-==⎰222ln 2ln 4, 原方程的通解为21ln 2x Cx y +-=.(2)y '-tan x ⋅y =x .解 积分因子为x e x xdxcos )(tan =⎰=-μ,在方程的两边乘以cos x 得cos x ⋅y '-sin x ⋅y =x cos x , 即(cos x ⋅y )'=x cos x , 两边积分得C x x x x d x x y x ++==⋅⎰c o s s i n c o s c o s , 方程的通解为xC x x y cos 1tan ++=.习题12-61. 求下列各微分方程的通解: (1)y ''=x +sin x ; 解 12cos 21)sin (C x x dx x x y +-=+='⎰, 21312s i n 61)c o s 21(C x C x x dx C x x y ++-=+-=⎰, 原方程的通解为 213s i n 61C x C x x y ++-=. (2)y '''=xe x ;解 12C e xe dx xe y x x x +-==''⎰,21122)2(C x C e xe dx C e xe y x x x x ++-=+-='⎰,3221213)22(C x C x C e xe dx C x C e xe y x x x x +++-=++-=⎰, 原方程的通解为32213C x C x C e xe y x x +++-=. (3)211x y +=''; 解 12arctan 11C x dx xy +=+='⎰x C dx x xx x dx C x y 1211arctan )(arctan ++-=+=⎰⎰212)1l n (21a r c t a n C x C x x x +++-=, 原方程的通解为2121ln arctan C x C x x x y +++-=.(4)y ''=1+y '2;解 令p =y ', 则原方程化为p '=1+p 2, 即dx dp p =+211, 两边积分得arctan p =x +C 1, 即y '=p =tan(x +C 1),211|)c o s (|ln )tan(C C x dx C x y ++-=+=⎰,原方程的通解为21|)c o s (|ln C C x y ++-=.(5)y ''=y '+x ;解 令p =y ', 则原方程化为p '-p =x ,由一阶线性非齐次方程的通解公式得1)()(111--=+=+⎰⋅⎰=⎰⎰--x e C C dx xe e C dx e x e p x x x dx dx , 即 y '=C 1e x-x -1,于是 221121)1(C x x e C dx x e C y x x +--=--=⎰, 原方程的通解为22121C x x e C y x +--=. (6)xy ''+y '=0;解 令p =y ', 则原方程化为x p '+p =0, 即01=+'p xp , 由一阶线性齐次方程的通解公式得x C e C e C p x dx x 1ln 111==⎰=--,即 xC y 1=', 于是 211ln C x C dx x C y +==⎰, 原方程的通解为y =C 1ln x +C 2 .(7)yy ''+'=y '2;解 令p =y ', 则dydp p dx dy dy dp y =⋅='', 原方程化为 21p d y d p yp =+, 即dy y dp p p 112=-, 两边积分得||ln ||ln |1|ln 2112C y p +=-, 即22121y C p ±-. 当|y '|=|p |>1时, 方程变为2211y C y +±=', 即dx dy y C ±=+21)(11,两边积分得arcsh(C 1y )=±C 1x +C 2,即原方程的通解为)(sh 1121x C C C y ±=. 当|y '|=|p |<1时, 方程变为2211y C y -±=', 即dx dy y C ±=-21)(11, 两边积分得arcsin(C 1y )=±C 1x +C 2,即原方程的通解为)(s i n 1121x C C C y ±=.(8)y 3y ''-1=0;解 令p =y ', 则dy dp p y ='', 原方程化为013=-d yd p py , 即pdp =y -3dy , 两边积分得 122212121C y p +-=-, 即p 2=-y -2+C 1, 故 21--±='y C y , 即dx dy y C ±=--211, 两边积分得)(12121C x C y C +±=-,即原方程的通解为 C 1y 2=(C 1x +C 2)2 .(9)y y 1='';解 令p =y ', 则dy dp py ='', 原方程化为 y dy dp p 1=, 即dy ypdp 1=, 两边积分得122221C y p +=, 即1244C y p +=, 故 12C y y +±=', 即dx dy C y ±=+11,两边积分得原方程的通211231]2)(32[C C y C C y x ++-+±=.(10)y ''=y '3+y '.解 令p =y ', 则dy dp py ='', 原方程化为 p p d y d p p +=3, 即0)]1([2=+-p dydp p . 由p =0得y =C , 这是原方程的一个解.由0)1(2=+-p dydp 得 arctan p =y -C 1, 即y '=p =tan(y -C 1), 从而 )s i n (ln )tan(1112C y dy C y C x -=-=+⎰, 故原方程的通解为12a r c s i n C e y C x +=+.2. 求下列各微分方程满足所给初始条件的特解:(1)y 3y ''+1=0, y |x =1=1, y '|x =1=0;解 令p =y ', 则dy dp p y ='', 原方程化为 013=+d y d p p y , 即dy ypdp 31-=, 两边积分得1221C y p +=, 即y y C y 211+±='. 由y |x =1=1, y '|x =1=0得C 1=-1, 从而y y y 21-±=', 分离变量得dx dy y y=-±21,两边积分得221C x y +=-±, 即22)(1C x y +-±=.由y |x =1=1得C 2=-1, 2)1(1--=x y , 从而原方程的通解为22x x y -=.(2)y ''-ay '2=0, y |x =0=0, y '|x =0=-1;解 令p =y ', 则原方程化为02=-ap dx dp , 即adx dp p =21,两边积分得11C ax p +=-, 即11C ax y +-='. 由y '|x =0=-1得C 1=1, 11+-='ax y , 两边积分得 2)1l n (1C ax ay ++-=. 由y |x =0=0得C 2=0, 故所求特解为)1ln(1+-=ax ay . (3)y '''=e ax, y |x =1=y '|x =1=y ''|x =1=0;解 11C e a dx e y ax ax +==''⎰. 由y ''|x =1=0得a e a C 11-=. 2211)11(C x e a e a dx e a e a y a ax a ax +-=-='⎰. 由y '|x =1=0得a a e a e a C 2211-=. dx e a e a x e a e a y a a a ax )1111(22⎰-+-= 322311211C x e ax e a x e a e a a a a ax +-+-=. 由y |x =1=0得a a a a e a e a e a e a C 32312111-+-=, 故所求特解为 322232)22()1(2aa a e a x a e a x e a e y a a a ax ----+-=. (4)y ''=e 2y , y |x =0=y '|x =0=0;解 令p =y ', 则dy dp py ='', 原方程化为 y e dydp p2=, 即pdp =e 2y dy , 积分得p 2=e 2y +C 1, 即12C e y y +±='. 由y |x =0=y '|x =0=0得C 1=-1, 故12-±='y e y , 从而d x d ye y ±=-112,积分得-arcsin e -y=±x +C 2.由y |x =0=0得22π-=C , 故 x x e y c o s )2s i n (=-=-π , 从而所求特解为y =-lncos x .(5)y y 3='', y |x =0=1, y '|x =0=2;解 令p =y ', 则dy dp py ='', 原方程化为 y d yd p p 3=, 即dy y pdp 3=, 两边积分得12322221C y p +=, 即1232C y y +±='. 由y |x =0=1, y '|x =0=2得C 1=0, 432y y =', 从而dx dy y 243=-, 两边积分得24124C x y +=, 即42)4121(C x y +=. 由y |x =0=1得C 2=4, 故原方程的特解为4)121(+=x y .(6)y ''+y '2=1, y |x =0=0, y '|x =0=0.解 令p =y ', 则dydp p y ='', 原方程化为 12=+p d y d p p , 即2222=+p dydp , 于是 1)2(211222+=+⎰⋅⎰=--⎰y dy dy e C C dy e e p ,即 121+±='-y e C y .由y |x =0=0, y '|x =0=0得C 1=-1, y e y 21--±='.故dx dy e y ±=--211,两边积分得 22)1l n (C x e e y y +±=-+.由y |x =0=0得C 2=0, x e e y y ±=-+)1ln(2,从而得原方程的特解y =lnch x .3. 试求y ''=x 的经过点M (0, 1)且在此点与直线121+=x y 相切的积分曲线. 解 1221C x y +=', 21361C x C x y ++=. 由题意得y |x =0=1, 21|0='=x y . 由21|0='=x y 得211=C , 再由y |x =0=1得C 2=1, 因此所求曲线为 121613++=x x y . 4. 设有一质量为m 的物体, 在空中由静止开始下落, 如果空气阻力为R =c 2v 2(其中c 为常数, v 为物体运动的速度), 试求物体下落的距离s 与时间t 的函数关系.解 以t =0对应的物体位置为原点, 垂直向下的直线为s 正轴, 建立坐标系. 由题设得⎪⎩⎪⎨⎧==-===0| |0022t t v s v c mg dt dv m .将方程分离变量得d t v c mg mdv =-22, 两边积分得1||ln C kt mg cv mgcv +=-+(其中m gc k 2=)由v |t =0=0得C 1=0, kt mg cv mgcv =-+||ln , 即kt e mg cv mgcv =-+.因为mg >c 2v 2, 故kt e cv mg mg cv )(-=+, 即 )1()1(kt kt e mg e cv -=+,或 ktkt e e c mg dt ds +-⋅-=11, 分离变量并积分得211ln C e e ck mgs ktkt +++-=-. 由s |t =0=0得C 2=0, 故所求函数关系为kt kt ee ck mgs ++-=-11ln , 即)(ch ln 2t m g c c m s =. 习题12-71. 下列函数组在其定义区间内哪些是线性无关的?(1)x , x 2;解 因为x xx =2不恒为常数, 所以x , x 2是线性无关的. (2)x , 2x ;解 因为22=xx , 所以x , 2x 是线性相关的. (3)e 2x , 3e 2x ;解 因为332=x x ee , 所以e 2x , 3e 2x 是线性相关的. (4)e -x ; e x ;解 因为x x x e ee 2=-不恒为常数, 所以e -x ; e x 是线性无关的. (5)cos2x , sin2x ;解 因为x x x 2tan 2cos 2sin =不恒为常数, 所以cos2x , sin2x 是线性无关的. (6) 2x e , 22x xe ;。
微分方程第2章习题解

∂( μ(xy)M ) = ∂( μ(xy)N )
∂y
∂x
即
μ(xy)(∂M − ∂N ) = N ∂μ(xy) − M ∂μ(xy)
∂y ∂x
∂x
∂y
µ(xy)(∂M − ∂N ) = ( yN − xM ) dµ(xy) ,
∂y ∂x
d (xy)
∂M ∂N −
∂y
∂x
dµ ( xy)
=
⋅
1
= g(xy) ,
µ(x, y) =
1
。
xM (x, y) + yN (x, y)
方法 3 用定义求积分因子。
由积分因子的定义,只需证明二元函数 µ(x, y) =
1
满足
xM (x, y) + yN (x, y)
∂(µM ) ∂(µN )
=
即可。为此,我们计算
∂y
∂x
∂( M )
∂(µM ) xM + yN
=
∂y
∂y
仅依赖于 x 的积分因子。 证 必要性。若方程 dy − f (x, y)dx = 0 为线性方程,则方程可写为
dy − (P(x) y + Q(x))dx = 0,令
M = −(P(x) y + Q(x)) , N = 1 ,
∂M ∂N
−
∂M
∂y
由题有 连续,
∂x = −P(x) ,
∂y
N
由定理 2-2 的结论 1 方程有积分因子 e∫ −P( x) dx ,仅依赖于 x 。
x m{[M (1,u) + N (1, u)u]dx + xN (1,u)du} = 0 ,
可以看出上方程为可分离变量的方程,只要给上式乘以积分因子
微分习题1

4)解:设艇速 v=v(t),阻力 R= - kv 艇的质量为 m ) , 则
dv m = kv , v = Ce dt
20 3600
k t m
∵ v t = 0 = 10 ∴ v = 10e
k t m
∵v
= 6 ∴ 10e
k 20 m 3600
k 5 = 6, = 180 ln m 3
∴v =
求下列微分方程满足所给初始条件的特解: 4 、 求下列微分方程满足所给初始条件的特解 :
2 y 3 dx + 2( x 2 xy 2 )dy = 0 , x = 1时, y = 1 ; x(1+ 2ln y) y = 0
1
三、已知某曲线经过点( 1 , 1 ) ,它的切线在纵轴上的截 距等于切点的横坐标, 距等于切点的横坐标,求它的方程 . y = x xln x
y=y(x),p(x,y)是曲线上的任一点 1)解: 设曲线方程 y=y(x),p(x,y)是曲线上的任一点 AP弦的方程 AP弦的方程 y 1 y 1 Y 1= ( X 0), 即 Y = X +1 x0 x
由题意
梯形面积可不用定积分
x 0 x y 1 xy x 3 ( X + 1)dX , 即 x = ∫ ydx 0 x 2 2
ln( u cos u) = ln x + ln C ,
2
两边积分
C ∴ u cos u = 2 , x
y y C ∴ cos = 2 , 所求通解为 xy cos y = C . x x x x
求通解 xy′ + 2 y = 3x3 y . 4 2 2 解 原式可化为 y′ + y = 3 x y 3 , 伯努利方程 x 4 2 1 即 y 3 y′ + y 3 = 3 x 2 , x 1 2 3 令 z= y , 3 z′ + z = 3 x 2 , 原式变为 x 2 z = x2 , 即 z′ 一阶线性非齐方程 3x 1 7 2 3 3 方程的通解为 3 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.求解下列微分方程:
(1) ;
解这里 ,因此原方程不是恰当方程,由于
,பைடு நூலகம்
于是原方程有积分因子
.
将它乘原方程两边,得到一个恰当方程
,
改写为
,
即
.
由此可求得通积分
.
(2) ;
解把方程改写为
.
容易观察出一个积分因子为 ,将它乘原方程两边,得
.
即
.
从而原方程的通积分为
.
(3) ;
解这里 ,因此原方程不是恰当方程,由于
,
于是原方程有积分因子
.
将它乘原方程两边,得
,
从而原方程的通积分为
.
(4) ;
解把方程改写为
.
不难看出,前一组有积分因子 和通积分 ,因而它有更一般的积分因子 ,前一组有积分因子 和通积分 ,故它有更一般的积分因子 .为使关系式
成立,可取
, .
从而得到原方程的积分因子 ,以它乘方程的两端,得到
.
从而原方程的通积分为
.
求解③式得
.
将此结果应用到下列各种情形,有
(1)具有 形式的积分因子的充要条件:
.
(2)具有 形式的积分因子的充要条件:
.
(3)具有 形式的积分因子的充要条件:
.
(4)具有 形式的积分因子的充要条件:
.
(5)具有 形式的积分因子的充要条件:
.
5.设函数 , , , 都是连续可微的,而且 , 是微分方程
①
的两个积分因子, 不恒为常数.试证明: 是方程①的一个通积分.证明因为 , 是微分方程①的两个积分因子,所以
,
,
从而有 ,
,
故 ,则 与 函数相关,即 .又 且 不恒为常数.又 ,令 ,所以 ,
而 是方程①的一个通积分.故 是方程①的一个通积分.
.
此外,原方程还有解 .
2.证明方程
①
有形如 的积分因子的充要条件是
②
并写出这个积分因子,然后将结果应用到下述各种情形,得出存在每一种类型积分因子的充要条件:
(1) ;(2) ;
(3) ;(4) ;
(5) .
证明方程有积分因子 的充要条件是
.
令 ,则有
,
即 满足下列微分方程
③
由于上式左端只与 有关,所以右端亦然,因此微分方程①有形如 的积分因子的充要条件是