131柱锥台的表面积与体积

合集下载

柱锥台球的体积与表面积

柱锥台球的体积与表面积

2 锥体的体积
V = 1/3πr²h
如何计算柱锥台球的体积
1
Step 1
测量柱体的半径(r)和高度(h)
Step 2
2
使用柱体的体积公式计算柱体的体积(Vc)
3
Step 3
测量锥体的半径(r)和高度(h)
Step 4
4
使用锥体的体积公式计算锥体的体积(Vc)
5
Step 5
将柱体的体积和锥体的体积相加得到柱锥台 球的总体积(V)
4
使用锥体的表面积公式计算锥体的表面积
(A c)
5
Step 5
将柱体的表面积和锥体的表面积相加得到柱 锥台球的总表面积(A)
柱锥台球的尺寸影响体积和表 面积吗?
柱锥台球的尺寸,如半径和高度,会直接影响它的体积和表面积。增加柱锥 台球的尺寸会增加其体积和表面积。
柱锥台球的体积和表面积之间 的关系
柱锥台球的体积和表面积之间是相互关联的。当柱锥台球的体积增加时,它 的表面积也会增加。
柱锥台球的表面积公式
1 柱体的表面积
A = 2πrh + 2πr²
2 锥体的表面积
A = πr(l + r)
如何计算柱锥台球的表面积径(r)和高度(h)
Step 2
2
使用柱体的表面积公式计算柱体的表面积
(A c)
3
Step 3
测量锥体的半径(r)和斜高(l)
Step 4
柱锥台球的体积与表面积
柱锥台球是一种特殊形状的台球,它由柱体和锥体两部分组成。在本演示中, 我们将讨论柱锥台球的体积和表面积,以及与数学和物理学的关系。
柱锥台球的形状
柱锥台球由一个底部较大的柱体和一个顶部较小的锥体组成。这种特殊形状 让它成为一个有趣的几何体。

1.3.1柱体、椎体、台体的表面积与体积

1.3.1柱体、椎体、台体的表面积与体积
S侧面积 = πrl S表面积 = πr2 + πrl = πr(r + l)
参照圆锥的侧面展开图,试想象圆台的侧面展 开图是什么 .
2r'
r 是扇环
S侧面积 = π(r' + r)l S表面积 = π(r'2 + r 2 + r'l + rl)
圆柱、圆锥、圆台的侧面积公式的关系:
h
正棱柱的侧面展开图
侧面展开
h' h'
正棱锥的侧面展开图
棱台的侧面展开图是什么?如何计算它的表面积?
侧面展开
h' h'
正棱台的侧面展开图
O
l
2 rl
r O 2 r
圆柱的侧面展开图是矩形
S侧面积 = 2πrl
S表面积 = 2πr2 + 2πrl = 2πr(r + l)
2r
l
rO
圆锥的侧面展开图是扇形
h
h
D
S
E OS
C
A
B
V锥体=
1 3
Sh
S
S
h
h
S S
V台体
=
1(S + 3
SS + S)h
V圆台
=
1π(r2 3
+
rr+r2 )h
柱体、锥体、台体的体积公式的关系.
上底扩大
上底缩小
V = Sh S = S
V = 1(S + 3
SS + S)h
S = 0 V = 1 Sh 3
例3.已知长方体的三个面的面积分别为 2, 3, 6, 求长方体的对角线长。

柱锥台表面积及体积

柱锥台表面积及体积

S侧= rl
S表= r 2 rl
S表 (r12 r12 r1 r2 )l
an'y S侧 (r1 r提升
an'y
学习新知
巩固新知
总结提升
解:一个花盆需要涂漆的面积为: S= ( 10+5) 10+ 52 - 12 =150 +25 - =174 cm2
an'y
3 2 2 6 1 6 3 cm3 4

4
cm3
学习新知
巩固新知
总结提升
2 cm
96 cm
2
an'y
a 6
3
学习新知
巩固新知
总结提升
知识总结:
an'y
思想方法总结:“分割思想”、“补体思想 ”及“等价转化思想”.
100个花盆需要油漆: 1 100 174 100=174 ml 10000
an'y
学习新知
巩固新知
总结提升
an'y
学习新知
巩固新知
总结提升
解:正六棱柱的体积 V1 =S底 h 圆柱的体积 1 2 V2 =S底 h = ( )1= cm3 2 4 所以螺帽的体积为 V V1 V2 6 3
圆台
S侧 (r1 r2 )l
r'0
圆锥
S侧 rl
预习落实
学习新知
巩固新知
总结提升
柱体 简单几何 体的体积 锥体
V柱 =Sh
1 V锥 = Sh 3 1 V台 = (S+ S S' +S’ )h 3
一底面为零
台体

第五课时§1、3、1柱锥台的表面积与体积(1)

第五课时§1、3、1柱锥台的表面积与体积(1)

二数学必修二第一章空间几何体的结构青岛天龙中学高二数学备课组二数学必修二第一章空间几何体的结构青岛天龙中学高二数学备课组第1页共2 页第 2 页共2 页1.3.1 柱体、锥体、台体的表面积与体积(一)学习目标:1、了解柱、锥、台的表面积计算公式;2、能运用柱锥台的表面积公式进行计算和解决有关实际问题.3、理解计算公式的由来.教学过程:一、复习准备:1. 讨论:正方体、长方体的侧面展开图?正方体、长方体的表面积计算公式?2. 讨论:圆柱、圆锥的侧面展开图?圆柱的侧面积公式?圆锥的侧面积公式?二、讲授新课:1. 教学表面积计算公式的推导:①讨论:如何求棱柱、棱锥、棱台等多面体的表面积?(展开成平面图形,各面面积和)②练习:求各面都是边长为10的等边三角形的正四面体S-ABC的表面积.一个三棱柱的底面是正三角形,边长为4,侧棱与底面垂直,侧棱长10,求其表面积.③讨论:如何求圆柱、圆锥、圆台的侧面积及表面积?(图→侧→表)圆柱表面积:圆柱S= ;圆锥表面积:圆锥S= ;圆台表面积:S圆台侧=()rRlπ+,S圆台表=22()r rl Rl Rπ+++.三、当堂检测:1.已知底面为正方形,侧棱长均是边长为5的正三角形的四棱锥S-ABCD,求其表面积2.若一个圆锥的轴截面是等边三角形,其面积为3,求这个圆锥的表面积. 一、讲授新课:1. 柱、锥、台的体积计算公式:①等底、等高的棱柱、圆柱的体积关系?(祖暅原理,教材P30)②根据正方体、长方体、圆柱的体积公式,推测柱体的体积计算公式?圆柱V=柱体V=③讨论:等底、等高的圆柱与圆锥之间的体积关系?等底面、等高的圆锥、棱锥之间的体积关系?④根据圆锥的体积公式公式,推测锥体的体积计算公式?圆锥V=锥体V=⑤台体的上底面积S’,下底面积S,高h,由此如何计算切割前的锥体的高?''1()3V S S S S h=++台(S,'S分别上、下底面积,h为高)''2211()()33V S S S S h r rR R hπ=++=++圆台(r、R分别为圆台上、下底半径)【探究】:柱、锥、台的体积计算公式有何关系?二、当堂检测:1. 有一个几何体的三视图及其尺寸如下(单位cm),则该几何体的表面积及体积为()A. B.C. D.以上都不正确2.某几何体的三视图如图所示,则该几何体的体积是 .【课堂小结】柱、锥、台的表面积与体积公式【课堂评价】把你对本节课的评价写出来(“满意”“比较满意”、“不满意”、)_______.。

柱体、锥体、台体的表面积和体积

柱体、锥体、台体的表面积和体积
总表面积 = 2πr² + 2πrh 其中,r 是底面半径,h 是高度。
柱体的体积公式
柱体的体积可以通过以下公式计算:
体积 = 底面积 × 高度 底面积 = πr² 其中,r 是底面半径,h 是高度。
锥体的定义和特征
• 锥体由一个圆锥面和一个尖顶组成。 • 锥体的高度是尖顶到底面的垂直距离。
锥体的表面积公式
柱体、锥体、台体的表面 积和体积
通过学习柱体、锥体和台体的表面积和体积公式,你将能够理解它们的定义、 特征以及在日常生活和建筑中的应用。
柱体的定义和特征
• 柱体由两个平行的圆面以及它们之间的侧面组成。 • 柱体的高度是两个平行圆面之间的垂直距离。
柱体的表面积公式
柱体的表面积可以通过以下公式计算:
锥体的表面积可以通过以下公式计算: 总表面积 = πr² + πrl 其中,r 是底面半径,l 是斜高。
锥体的体积公式
锥体的体积可以通过以下公式计算:
体积 = 1/3 × 底面积 × 高度 底面积 = πr² 其中,r 是底面半径,h由两个平行的圆面和它们之间的侧面组成。 • 底面和顶面是平行的,而侧面是梯形形状。

131柱锥台的表面积与体积

131柱锥台的表面积与体积

第一章空间几何体1.3空间几何体的表面积与体积1.3.1柱体、锥体、台体的表面积与体积一、教学目标1、知识与技能(1)通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法。

(2)能运用公式求解,柱体、锥体和台体的表面积,并且熟悉台体与柱体和锥体之间的转换关系。

(3)培养学生空间想象能力和思维能力。

2、过程与方法(1)学生经历几何表面积的侧面展开过程,感知几何体的形状。

(2)学生通对照比较,理顺柱体、锥体、台体三间的面积和体积的关系。

3、情感、态度与价值观通过学习,学生感受几何体表面积与体积的求解过程,对自己空间思维能力影响。

从而增强学习的积极性。

二、教学重点、难点重点:柱体、锥体、台体的表面积和体积的计算公式及其应用难点:表面积和体积计算公式的应用三、学法与教学用具1、学法:学生通过阅读教材,自主学习、思考、交流、讨论和概括,通过剖析实物几何体感受几何体的特征,从而更好地完成本节课的教学目标。

2、教学用具:实物几何体,投影仪四、教学设想一、课题导入,问题探究问题1:我们已经学过正方体和长方体的表面积,以及它们的展开图,你知道上述几何体的展开图与其表面积的关系吗?分析:正方体、长方体是由多个平面图形围成的几何体,它们的表面积就是各个面的面积的和.问题2:棱柱、棱锥、棱台也是由多个平面图形围成的几何体,如何计算它们的表面积?分析:棱柱的侧面展开图是平行四边形,其表面积等于围成棱柱的各个面的面积的和;棱锥的侧面展开图是由多个三角形拼接成的,其表面积等于围成棱锥的各个面的面积的和;棱台的侧面展开图是由多个梯形拼接成的,其表面积等于围成棱台的各个面的面积的和.问题3:类比棱柱和棱锥,如何根据圆柱、圆锥的几何结构特征,求它们的表面积?分析:由于它们的底面都是圆面,其底面积直接应用圆的面积公式即可,其中圆柱的侧面展开图是矩形,圆锥的侧面展开图是扇形,利用它们的侧面展开图来求得它们的侧面积,表面积等于侧面积与底面积的和.如果圆柱的底面半径为r ,母线长为l ,那么圆柱的底面面积为πr 2,侧面面积为2πrl ,因此,圆柱的表面积S=2πr 2+2πrl=2πr (r+l ).如果圆锥的底面半径为r ,母线长为l ,那么它的表面积S=πr 2+πrl=πr (r+l ).(设计意图:将空间图形问题转化为平面图形问题,是解决立体几何问题常用的方法.) 问题4:联系圆柱、圆锥的侧面展开图,你能想象圆台侧面展开图的形状,并且画出它吗?如果圆台的上、下底面半径分别是r',r ,母线长为l ,你能计算出它的表面积吗?分析:圆台的侧面展开图是一个扇环,它的表面积等于上、下两个底面的面积和加上侧面的面积,即S=π(r 2+r'2+rl+r'l ).二、类比思考,引起联想问题5:请同学们联想一下圆柱、圆锥和圆台的结构特征,它们的表面积之间有什么关系? 分析:圆柱和圆锥都可以看做是圆台变化而成的几何体,有如下的关系:)()(20,2122212121l r r S l r l r r r S l r r S r r r r r r +=−−−→−+++=−−−←+=====πππ圆锥表圆台表圆柱表)( 问题6:回顾长方体、正方体和圆柱,你能将它们的体积公式统一成一种形式吗,并依次类比出柱体的体积公式.分析:柱体的体积是V 柱体=Sh (S 为底面积,h 为柱体的高).问题7:怎么得到锥体和台体的体积公式呢?分析:锥体的体积公式Sh V 31=圆锥(S 为底面积,h 为锥体的高). 台体的体积公式h S S S S V )(圆锥++=''31,其中S',S 分别为上、下底面面积,h 为圆台(棱台)高.三、典型例题【例1】若一个正三棱柱的三视图如图所示,则这个正三棱柱的表面积为( )A.18B.15C.24+8D.24+16解析:该正三棱柱的直观图如图所示,且底面等边三角形的高为2,正三棱柱的高为2,则底面等边三角形的边长为4,所以该正三棱柱的表面积为3×4×2+2××4×2=24+8.答案:C【例2】已知棱长为a ,各面均为等边三角形的四面体S-ABC ,求它的表面积.解:先求△SBC 的面积,过点S 作SD ⊥BC ,交BC 于点D.因为BC=a ,SD=a 23,所以S △SBC =21BC ·SD=21a×23a=43a 2. 因此,四面体S-ABC 的表面积S=4×43a 2=3a 2. 【例3】(1)两个平行于圆锥底面的平面将圆锥的高分成相等的三段,那么圆锥被分成的三部分的体积的比是( )A.1∶2∶3B.1∶7∶19C.3∶4∶5D.1∶9∶27(2)三棱锥V-ABC 的中截面是△A 1B 1C 1,则三棱锥V-A 1B 1C 1与三棱锥A-A 1BC 的体积之比是( )A.1∶2B.1∶4C.1∶6D.1∶8(1)解析:因为圆锥的高被分成的三部分相等,所以两个截面的半径与原圆锥底面半径之比为1∶2∶3,于是自上而下三个圆锥的体积之比为(r 2h )∶[(2r )2·2h ]∶[(3r )2·3h ]=1∶8∶27,所以圆锥被分成的三部分的体积之比为1∶(8-1)∶(27-8)=1∶7∶19.答案:B(2)解析:中截面将三棱锥的高分成相等的两部分,所以截面与原底面的面积之比为1∶4,将三棱锥A-A 1BC 转化为三棱锥A 1-ABC ,这样三棱锥V-A 1B 1C 1与三棱锥A 1-ABC 的高相等,底面积之比为1∶4,于是其体积之比为1∶4.答案:B【例4】 有一堆规格相同的铁制(铁的密度是7.8 g/cm 3)六角螺帽,共重5.8 kg,已知底面是正六边形,边长为12 mm,内孔直径为10 mm,高为10 mm,问这堆螺帽大约有多少个?(π取3.14)解:六角螺帽的体积是六棱柱体积与圆柱体积的差,即V=×122×6×10-3.14×(210)2×10≈2 956(mm 3)=2.956(cm 3). 所以螺帽的个数为5.8×1 000÷(7.8×2.956)≈252(个).答:这堆螺帽大约有252个.四、作业精选,巩固提高1.如果一个空间几何体的正视图与侧视图均为全等的等边三角形,俯视图为一个半径为1的圆及其圆心,那么这个几何体的体积为( A )A. B. C.π D.2.向高为H 的水瓶中匀速注水,注满为止,如果注水量V 与水深h 的函数关系如图所示,那么水瓶的形状是( A )3.一个圆台的上、下底面面积分别是1 cm 2和49 cm 2,一个平行于底面的截面面积为25 cm 2,则这个截面与上、下底面的距离之比是( A )A.2∶1B.3∶1C.∶1D.∶14.已知一圆锥的侧面展开图为半圆,且面积为S ,则圆锥的底面面积是 .5.已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8、高为4的等腰三角形,侧视图是一个底边长为6、高为4的等腰三角形.求(1)该几何体的体积V ;(2)该几何体的侧面积S.解:由三视图可知该几何体是一个底面边长分别为6,8的矩形,高为4的四棱锥,设底面矩形为ABCD ,如图所示,AB=8,BC=6,高VO=4.(1)V=×(8×6)×4=64.(2)已知四棱锥侧面VAD ,VBC 是全等的等腰三角形,侧面VAB ,VCD 也是全等的等腰三角形,在△VBC 中,BC 边上的高为h 1==4,在△VAB 中,AB 边上的高为h 2==5.所以此几何体的侧面积S=2(×6×4×8×5)=40+24.五、布置作业1.柱锥台的表面积)()(20,2122212121l r r S l r l r r r S l r r S r r r r r r +=−−−→−+++=−−−←+=====πππ圆锥表圆台表圆柱表)( 2.柱锥台的表面积Sh V h S S S S V Sh V S SS 31310''''=−−→−++=−−−←===圆锥圆台圆柱体)( 五、布置作业课本P 28习题1.3A 组第1,2,3题.。

1.3.1 柱体、锥体、台体的表面积与体积

1.3.1 柱体、锥体、台体的表面积与体积

1.3空间几何体的表面积与体积1.3.1柱体、锥体、台体的表面积与体积课标要求1.通过对柱体、锥体、台体的研究,掌握柱体、锥体、台体的表面积与体积的求法.2.会求简单组合体的表面积与体积.学法指导1.通过几何体的展开过程,体会几何体的结构,通过几何体表面积、体积公式的推导过程,加深对公式的理解.2.通过几何体展开的过程,领会空间问题平面化的基本思想.新课导入——实例引领思维激活实例:一种圆台形花盆盆口直径为20 cm,盆底直径为15 cm,底部渗水圆孔直径为1.5 cm,盆壁长15 cm.为了美化花盆的外观,需要涂油漆.想一想若每平方米用100毫升油漆,如何计算涂100个花盆需要的油漆用量?(只要求出每一个花盆外壁的表面积,就可以求出油漆的用量)知识探究——自主梳理思考辨析1.柱体、锥体、台体的表面积(1)棱柱、棱锥、棱台的表面积棱柱、棱锥、棱台是由多个平面图形围成的多面体,它们的表面积就是各个面的和. (2)圆柱、圆锥、圆台的表面积公式几何体侧面展开图表面积公式圆柱S圆柱=2πr(r+l), r为底面半径, l为侧面母线长圆锥S圆锥=πr(r+l), r为底面半径, l为侧面母线长圆台S圆台=π(r′2+r2+r′l+rl) r′为上底面半径,r为下底面半径,l为侧面母线长思考1:圆柱、圆锥、圆台的侧面积之间有什么关系吗? (圆柱、圆锥、圆台的侧面积的关系如图所示.)2.柱体、锥体与台体的体积公式几何体体积说明柱体V柱体=Sh S为柱体的底面积,h为柱体的高锥体V锥体=13Sh S为锥体的底面积,h为锥体的高台体V台体=13(S′+S S +S)hS′,S分别为台体的上、下底面面积,h为台体的高思考2:柱体、锥体和台体的高如何确定?(柱体的高是指两底面之间的距离;锥体的高是指顶点到底面的距离;台体的高是指上、下底面之间的距离)思考3:比较柱体、锥体、台体的体积公式,你能发现三者之间的关系吗?(体积公式之间的关系: )题型探究——典例剖析 举一反三题型一 空间几何体的表面积【例1】 用油漆涂100个圆台形水桶(桶内、外侧都要涂),桶口直径为30 cm,桶底直径为25 cm,母线长是27.5 cm,已知1 m2需要油漆150 g,共需要多少油漆?(精确到0.1 kg)名师导引:给圆台形水桶内、外侧涂油漆,用量的多少与什么有关?(表面积)解:每个水桶需要涂油漆的面积为S=(S 桶底+S 侧)×2=π[20.252⎛⎫ ⎪⎝⎭+错误!未找到引用源。

柱、锥、台表面积与体积

柱、锥、台表面积与体积

柱、锥、台的表面积与体积
要点1 柱体的表面积
棱柱的侧面是平行四边形;圆柱的侧面展开图是矩形. 设柱体的底面周长为c ,高为h ,则S 侧=c·h ,S 表=S 侧+2S 底. 要点2 锥体的表面积
棱锥的侧面展开图是由若干个三角形拼成的,因此侧面积为各三角形面积之和;圆锥的侧面展开图为扇形.表面积公式为:S 表=S 侧+S 底. 要点3 台体的表面积
棱台的侧面展开图为若干个梯形拼接而成,因此侧面积为各梯形的面积之和,而圆台的侧面展开图为扇环,其侧面积可由大扇形的面积减去小扇形的面积而得到,它们的表面积公式为:S 表=S 侧+S 上底+S 下底. 要点4 柱体、锥体与台体的体积公式
V 柱体=Sh ,(S 为底面积,h 为柱体的高). V 锥体=1
3Sh ,(S 为底面积,h 为锥体的高). V 台体=1
3(S +SS ′+S ′)h , V 柱――――→S ′=S V 台――――→S ′=0
V 锥
例1 (1)已知棱长为5的各侧面均为正三角形的四棱锥
S -ABCD ,求它的侧面积、表面积.
(2)一个正方体和一个圆柱等高,并且侧面面积相等,求这个正方体和圆柱的体积之比.
例2(1)已知一圆台上底面半径为2,下底面的半径为3,截得此圆台的圆锥的高为6,求此圆台的体积.
例3某几何体的三视图如图所示,该几何体的体积等于________,表面积等于________.
空间几何体体积计算的常见技巧
1.等积变换法
例如图所示,三棱锥的顶点为P,PA、PB、PC为三条侧棱,且PA、PB、PC两两互相垂直,又PA=2,PB=3,PC=4,求三棱锥P -ABC的体积V.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章空间几何体
1.3空间几何体的表面积与体积
1.3.1柱体、锥体、台体的表面积与体积
一、教学目标
1、知识与技能
(1)通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法。

(2)能运用公式求解,柱体、锥体和台体的表面积,并且熟悉台体与柱体和锥体之间的转换关系。

(3)培养学生空间想象能力和思维能力。

2、过程与方法
(1)学生经历几何表面积的侧面展开过程,感知几何体的形状。

(2)学生通对照比较,理顺柱体、锥体、台体三间的面积和体积的关系。

3、情感、态度与价值观
通过学习,学生感受几何体表面积与体积的求解过程,对自己空间思维能力影响。

从而增强学习的积极性。

二、教学重点、难点
重点:柱体、锥体、台体的表面积和体积的计算公式及其应用
难点:表面积和体积计算公式的应用
三、学法与教学用具
1、学法:学生通过阅读教材,自主学习、思考、交流、讨论和概括,通过剖析实物几何体感受几何体的特征,从而更好地完成本节课的教学目标。

2、教学用具:实物几何体,投影仪
四、教学设想
一、课题导入,问题探究
问题1:我们已经学过正方体和长方体的表面积,以及它们的展开图,你知道上述几何体的展开图与其表面积的关系吗?
分析:正方体、长方体是由多个平面图形围成的几何体,它们的表面积就是各个面的面积的和.
问题2:棱柱、棱锥、棱台也是由多个平面图形围成的几何体,如何计算它们的表面积?
分析:棱柱的侧面展开图是平行四边形,其表面积等于围成棱柱的各个面的面积的和;棱锥的侧面展开图是由多个三角形拼接成的,其表面积等于围成棱锥的各个面的面积的和;棱台的侧面展开图是由多个梯形拼接成的,其表面积等于围成棱台的各个面的面积的和.
问题3:类比棱柱和棱锥,如何根据圆柱、圆锥的
几何结构特征,求它们的表面积?
分析:由于它们的底面都是圆面,其底面积直接应用圆的面积公式即可,其中圆柱的侧面展开图是矩形,圆锥的侧面展开图是扇形,利用它们的侧面展开图来求得它们的侧面积,表面积等于侧面积与底面积的和.
如果圆柱的底面半径为r ,母线长为l ,那么圆柱的底面面积为πr 2,侧面面积为2πrl ,因此,圆柱的表面积S=2πr 2+2πrl=2πr (r+l ).如果圆锥的底面半径为r ,母线长为l ,那么它的表面积S=πr 2+πrl=πr (r+l ).
(设计意图:将空间图形问题转化为平面图形问题,是解决立体几何问题常用的方法.) 问题4:联系圆柱、圆锥的侧面展开图,你能想象圆台侧面展开图的
形状,并且画出它吗?如果圆台的上、下底面半径分别是r',r ,母线长为l ,
你能计算出它的表面积吗?
分析:圆台的侧面展开图是一个扇环,它的表面积等于上、下两个底
面的面积和加上侧面的面积,即S=π(r 2+r'2+rl+r'l ).
二、类比思考,引起联想
问题5:请同学们联想一下圆柱、圆锥和圆台的结构特征,它们的表面积之间有什么关系? 分析:圆柱和圆锥都可以看做是圆台变化而成的几何体,有如下的关系:
)
()(20,2122212121l r r S l r l r r r S l r r S r r r r r r +=−−−→−+++=−−−←+=====πππ圆锥表圆台表圆柱表)( 问题6:回顾长方体、正方体和圆柱,你能将它们的体积公式统一成一种形式吗,并依次类比出柱体的体积公式.
分析:柱体的体积是V 柱体=Sh (S 为底面积,h 为柱体的高).
问题7:怎么得到锥体和台体的体积公式呢?
分析:锥体的体积公式Sh V 31=圆锥(S 为底面积,h 为锥体的高). 台体的体积公式h S S S S V )(圆锥++=''
31,
其中S',S 分别为上、下底面面积,h 为圆台(棱台)高.
三、典型例题
【例1】若一个正三棱柱的三视图如图所示,则这个正三棱柱的表面积为( )
A.18
B.15
C.24+8
D.24+16
解析:该正三棱柱的直观图如图所示,且底面等边三角形的高为2,正三棱柱的高为2,则底面等边三角形的边长为4,所以该正三棱柱的表面积为3×4×2+2××4×2=24+8.
答案:C
【例2】已知棱长为a ,各面均为等边三角形的四面体S-ABC ,求它的表面积.
解:先求△SBC 的面积,过点S 作SD ⊥BC ,交BC 于点D.
因为BC=a ,SD=a 2
3,
所以S △SBC =21BC ·SD=21a×23a=43a 2. 因此,四面体S-ABC 的表面积S=4×
43a 2=3a 2. 【例3】(1)两个平行于圆锥底面的平面将圆锥的高分成相等的三段,那么圆锥被分成的三部分的体积的比是( )
A.1∶2∶3
B.1∶7∶19
C.3∶4∶5
D.1∶9∶27
(2)三棱锥V-ABC 的中截面是△A 1B 1C 1,则三棱锥V-A 1B 1C 1与三棱锥A-A 1BC 的体积之比是( )
A.1∶2
B.1∶4
C.1∶6
D.1∶8
(1)解析:因为圆锥的高被分成的三部分相等,所以两个截面的半径与原圆锥底面半径之比为1∶2∶3,于是自上而下三个圆锥的体积之比为(r 2h )∶[(2r )2·2h ]∶[(3r )2·3h ]=1∶8∶27,所以圆锥被分成的三部分的体积之比为1∶(8-1)∶(27-8)=1∶7∶19.
答案:B
(2)解析:中截面将三棱锥的高分成相等的两部分,所以截面与原底面的面积之比为1∶4,将三棱锥A-A 1BC 转化为三棱锥A 1-ABC ,这样三棱锥V-A 1B 1C 1与三棱锥A 1-ABC 的高相等,底面积之比为1∶4,于是其体积之比为1∶4.
答案:B
【例4】 有一堆规格相同的铁制(铁的密度是7.8 g/cm 3)六角螺帽,共重5.8 kg,已知底面是正六边形,边长为12 mm,内孔直径为10 mm,高为10 mm,问这堆螺帽大约有多少个?(π取
3.14)
解:六角螺帽的体积是六棱柱体积与圆柱体积的差,即
V=×122×6×10-3.14×(2
10)2×10≈2 956(mm 3)=2.956(cm 3). 所以螺帽的个数为5.8×1 000÷(7.8×2.956)≈252(个).
答:这堆螺帽大约有252个.
四、作业精选,巩固提高
1.如果一个空间几何体的正视图与侧视图均为全等的等边三角形,俯视图为一个半径为1的圆及其圆心,那么这个几何体的体积为( A )
A. B. C.π D.
2.向高为H 的水瓶中匀速注水,注满为止,如果注水量V 与水深h 的函数关系如图所示,那么水瓶的形状是( A )
3.一个圆台的上、下底面面积分别是1 cm 2和49 cm 2,一个平行于底面的截面面积为25 cm 2,则这个截面与上、下底面的距离之比是( A )
A.2∶1
B.3∶1
C.∶1
D.∶1
4.已知一圆锥的侧面展开图为半圆,且面积为S ,则圆锥的底面面积是 .
5.已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长
为8、高为4的等腰三角形,侧视图是一个底边长为6、高为4的等腰三角形.求
(1)该几何体的体积V ;
(2)该几何体的侧面积S.
解:由三视图可知该几何体是一个底面边长分别为6,8
的矩形,高为4的四棱锥,设底面矩形为ABCD ,如图所
示,AB=8,BC=6,高VO=4.
(1)V=×(8×6)×4=64.
(2)已知四棱锥侧面VAD ,VBC 是全等的等腰三角形,侧
面VAB ,VCD 也是全等的等腰三角形,
在△VBC 中,BC 边上的高为h 1==4,
在△VAB 中,AB 边上的高为h 2==5.
所以此几何体的侧面积S=2(×6×4×8×5)=40+24.
五、布置作业
1.柱锥台的表面积
)
()(20,2122212121l r r S l r l r r r S l r r S r r r r r r +=−−−→−+++=−−−←+=====πππ圆锥表圆台表圆柱表)( 2.柱锥台的表面积
Sh V h S S S S V Sh V S S
S 31310''''=−−→−++=−−−←===圆锥圆台圆柱体)( 五、布置作业
课本P 28习题1.3A 组第1,2,3题.。

相关文档
最新文档