第6讲—期望效用和随机占优
期望效用函数理论

其中,E[u(X)]表示关于随机变量X的期望效用。因此U(X)称为期望效用函数,又叫做冯·诺依曼—摩根斯坦 效用函数(VNM函数)。另外,要说明的是期望效用函数失去了保序性,不具有序数性。
受到挑战
EU理论及SEU理论描述了“理性人”在风险条件下的决策行为。但实际上人并不是纯粹的理性人,决策还受 到人的复杂的心理机制的影响。因此,EU理论对人的风险决策的描述性效度一直受到怀疑。例如,EU理论难以解 释阿莱悖论、Ellsberg悖论等现象;没有考虑现实生活中个体效用的模糊性、主观概率的模糊性;不能解释偏好 的不一致性、非传递性、不可代换性、“偏好反转现象”、观察到的保险和赌博行为;现实生活中也有对EU理论 中理性选择上的优势原则和无差异原则的违背;实际生活中的决策者对效用函数的估计也违背EU理论的效用函数。
该理论是将个体和群体合而为一的。阿罗和德布鲁(Arrow and Debreu)将其吸收进瓦尔拉斯均衡的框架中, 成为处理不确定性决策问题的分析范式,进而构筑起现代微观经济学并由此展开的包括宏观、金融、计量等在内 的宏伟而又优美的理论大厦。
函数简介
如果某个随机变量X以概率Pi取值xi,i=1,2,…,n,而某人在确定地得到xi时的效用为u(xi),那么,该随 机变量给他的效用便是:
期望收入=(结果1的概率)×(结果1的收入)+(结果2的概率)×(结果2的收入)。工作A=1600。工作B=1450则 你应该选择工作A,而期望效用(expected utility)一般在单赌的情况下值为u(g)=pu(A)+(1-P)u(B)当u(g1) > u(g2)时,则可认为毕业时在g_1与g_2之间更偏好g_1。也就是说,当寻找工作的毕业生有多种未知的情况,而要 选择时,他们能够依靠期望效用的极大化来代表分析自己的主观选择。
决策理论与方法——随机优势

但是在实际的决策过程中,由于决策人的认识偏差及 量化误差,确定惟一的、足够准确的效用函数存在较 大困难。
也就是说,决策分析人员经常得不到决策人偏好的完 全信息,只能获得关于偏好的部分信息;而由部分信 息,只能将各可行方案排成偏序。
3.Markowitz模型
由于E - V准则条件太强,很难满足,应 用范围很窄。
Markowitz(1952)提出的有价证券选择 (portfolio selection)模型大大扩大了E - V 准则的应用范围。
3.Markowitz模型
3.Markowitz模型
其中,ij 是Ri 和Rj 的协方差
5.7 随机优势小结
5.7 随机优势小结
5.7 随机优势小结
作业5:
P128: 五、决策人的效用函数 …
P128: 六、决策人所面临的决策问题收 益如下表所示
2 . 随机优势决策规则的有关概 念和定义
2 . 随机优势决策规则的有关概 念和定义
2 . 随机优势决策规则的有关概 念和定义
通常投资决策问题的求解包括两个步骤:
(1)第一步是决策分析人员根据决策人提供的偏 好信息,把可行集Fs中的所有方案先扫描(审核) 一遍,筛分成有效集Es和无效集Is。一般的有效集 Es中包含一个以上的投资方案;
E-V有效前沿
E
N
FS M
V
图5.1 E-V有效前沿
5.2 随机优势决策规则
1 . 为什么要研究随机优势决策规则 2 . 随机优势决策规则的有关概念和定义
1 . 为什么要研究随机优势决策 规则
1 . 为什么要研究随机优势决策 规则
金融数学1-期望效用理论

23
序数效用函数定理证明
情况1. 当x~x*时,定义U (x) 1; 情况2. 当x~y*时,定义U (x) 0; 情况3. 当x* x y*时,性质2存在唯一的 (0,1)
使x~x* 1 y*, 此时我们定义U (x) 。
日常生活中,我们时常要比较不同商品或者服 务给我们生理、心理上带来的感受或者说效用 (utility)。
例如,看一场电影还是吃一块鸡腿,是需要经 过激烈思想斗争的,尤其是当荷包里所剩无几 的时候。
这便涉及到效用大小比较的问题。
5
在18世纪的古典经济学家眼中,效用和黄油、 大炮一样是看得见、摸得着的,他们把效用视为快 乐的代名词,看做是一个人的整个福利的指数。
若1 U (x) U ( y) 0,此时令1 U (x),2 U ( y),
由U的定义, x~1x* 11 y*, y~2 x* 12 y*
因为1 U (x) U ( y) 2 , 由性质1
必有x y。
29
(2)证明:x ~ y 当且仅当U (x) U ( y)。
必要性
任取x, y B,设x y, 证U (x) U ( y),
若x y与y x同时成立,则x和y偏好无差异,记作x ~ y。
若x y但y x不成立,则x严格地比y好,记作x y。
自返性保证了消费者对同一商品的偏好具有明显的一 贯性;
可比较性假定保证了消费者具备选别判断的能力; 传递性保证了消费者在不同商品之间选择的首尾一贯性。
12
通常认为这三条并没有给消费者施加过分严格 的限制条件,只要是消费者是理性的都可以做 到这一点。
要解构整个金融体系,要理解金融产品、资本市场、 金融中介在跨期资源配置中的所具有的功能作用及其 实现形式,投资者行为就是一个自然的起点。
随机优势

以下条件是FSD的必要条件: F的期望收益一定大于G的期望收益
F FSD G EF[x] > EG[x]
这可以从分部积分以及至少存在一点x0 ,使得F(x0) < G(x0) EF[x] – EG[x]
f ( x) g ( x)xdx
b a
b a b
EF[x] – EG[x] F ( x) G( x)x a F ( x) G( x)dx
x geo (F ) x geo (G)
n
x geo i 1 xi i
且xi 0 "xi
3. 二阶随机占优(Second degree stochastic dominance, SSD) 为研究有风险厌恶性质的效用函数,我们把这类效用函数约束到
U1的一类严格凹函数中,它们在I上有连续的二阶导数,记作
要被ES中的所有元素占优。
最优决策规则:占优的充分必要决策规则。
对于一个给定信息集,决策规则是最可行的,意味着给定有关偏 好的假设,ES是最小的。对于一个效用函数U,决策规则 是最 优的,当且仅当 xA xB E[U(xA)] E[U(xB)] U0U E[U0(xA)] > E[U0(xB)] 注意:决策规则必须与期望效用一致。 "UU
b a
F SSD G EF[x] EG[x] 注意,积分对于某个x0 必须是严格正的,但是在x = b只需是非 负的。 F的几何平均一定大于或等于G的几何平均
F SSD G x geo (F ) x geo (G)
“剩余尾部”条件:F SD G Min F (x) Min G (x)
效用函数U1类的占优:一个投资组合xA 占优于投资组合xB 当且 仅当
期望效用理论公式

期望效用理论公式
期望效用理论是一个关于经济学的非常基础的理论,也是人们研究决策行为的
重要的基础原理之一。
期望效用理论的基本原则可以分为以下三个关键部分:首先,人们在做选择时会考虑期望效用,而期望效用指的是人对某一结果发生的可能概率乘以该结果发生时带给自己的感知价值;其次,人们会为较高的期望效用而做选择,以此来最大化自己的利益;最后,期望效用会随着利润拿到的期望而改变,从而影响人们的决策行为。
期望效用理论的具体计算公式描述为:E=∑(Pn*Vn),其中E 为期望效用,
P 为事件n发生的可能性,V 为事件n发生时带来的期望价值。
P 和V 的乘积正
是一个人做出此次决策的参考值,可以说是决策的基石。
期望效用理论在生活中也十分普通,比如在做投资时,人们因为有概率原因会
偏向投资期望效用更高的项目,而对于期望差的项目反之;又比如就业和谈恋爱时,也会有期望效用的考虑,人们会选择拥有比较高期望效用的工作或者对象。
由此可见,期望效用理论在经济学领域和日常生活中都有着广泛的运用。
总而言之,期望效用理论是一套实用的经济学理论,其基本原理可以用于衡量
不同的决策的期望效用,同时,也可以用于日常生活中的决定和选择,使人们能够更好地从投资、就业、恋爱等方面发挥自身优势,从而最大化自身利益。
期望效用理论 PPT

π=-(σ2/2) [U’’(W)/ U’(W)]
其中,σ2就是x得方差。 [-U’’(W)/ U’(W)]可作为风险厌 恶度量指标。
风险态度及其度量
阿罗-普拉特指标(Arrow-Pratt absolute risk aversion)定义:
(1)Ra’(W)<0,递减绝对风险厌恶,随着财富增加,投 资者要求得风险溢价降低; (2)Ra’(W)>0,递增绝对风险厌恶,随着财富增加,投 资者要求得风险溢价降低; (3)Ra’(W)=0,不变绝对风险厌恶。
期望效用理论运用
保险需求 案例分析 结论:在消费者不能影响损失得概率下,该消费者将
为其可能得损失数量全额投保;在保险业完全竞争 下,保费率为发生风险得概率。 注意:如果消费者得行动确实影响损失得概率呢?
期望效用理论
不确定环境中效用函数可表示成不同状态下 消费计划效用得期望值:
U (c) u (c0 , c1 )
在时间可加条件下,等价于:
U (c) u0 (c0 ) u1(c1 )
期望效用函数
唯一性问题 如果U就是一个描述不确定环境中得期望效用函
数,那么任何一反射变换(即乘以一个正数加上一个 实数)仍为期望效用函数。
C=(c0,c1) 其中,t=0期消费c0,t=1期消费c1。 如果0期为当期,则c0为确定。而 t=1时受到自 然状态影响,消费水平c1不确定。 消费计划就是一个随机变量,其概率分布性质由 相应时间得概率分布决定,每个消费计划都对应一 个概率分布。
偏好定义
偏好关系: ~
在确定环境下,x y~,被称为消费者在商品束x,y中 “弱偏好于”x,即消费者认为x至少与y一样好。
L2=(10/11,1/11;5000000, 0); 发现:
期望效用理论

期望效用理论简析期望效用函数理论是20世纪50年代,冯·纽曼和摩根斯坦在公理化假设的基础上,运用逻辑和数学工具,建立了不确定条件下对理性人选择进行分析的框架。
这一理论适用于对一不确定性事件的最终效用的评估,即当有一不确定事件的时候,假设这一事件的结果一共有i种可能,而每一结果发生的可能性是Pi,相对应的每一结果发生最后造成的效用是Xi,所以对于这一不确定事件的效用评估就可以用其期望效用来表示即U(x)=P1X1+P2X2 ... +PnXn,而人们会跟据不同事件的期望效用的不同而进行决策,即人们会选择期望效用高的选项。
期望效用理论的建立很好的推动了现代的经济学,金融学,计量学的发展,他为人们有效合理的评估一不确定事件建立了一个规范的框架,这样有利于学科的发展,同样也让人们对于不同的不确定事件可以进行有效的比较。
但是这一理论的基础却是建立在理性人的假设上面,而这一假设已经被卡尼曼等人推翻了,人并不是理性人,或者说人并不是完全理性的,决策会受到人们复杂的心理行为的左右。
例如著名的阿莱悖论,实验者提供给被试两种选择,赌局A:100%的机会得到100万元。
赌局B:10%的机会得到500万元,89%的机会得到100万元,1%的机会什么也得不到。
如果按照期望效用理论来分析赌局A的期望值是100万,而赌局B的期望值是139万,人们应该更倾向于赌局A,但是实验结果却是绝大多数人选择A而不是B。
即赌局A的期望值(100万元)虽然小于赌局B 的期望值(139万元),但是A的效用值大于B的效用值。
所以从这里就可以很明显的看出期望值和效用值并不能完全的等同。
同样的卡尼曼等人提出的前景理论也对期望效用理论有一定的补充,一是大多数人在面临获得时是风险规避的这一条就很好的解释了阿莱悖论即人们在面临获得时更加的倾向于获得确定性的收益;二是大多数人在面临损失时是风险偏爱的,这一条的真实含义通俗的来讲就是人们如果面临的有关损失的选择,一个是确定性的损失,而另一个是不确定性的损失,可能损失的更多也可能损失的少一点,人们更倾向于去赌一把选择不确定的损失;三是人们对损失比对获得更敏感即损失100块比得到100块的效用的绝对值更高。
不确定条件的选择理论资料

讲解
• 早期学者将不确定性和风险区分开来,将 不确定性分为确定的确定性(即风险)和 不确定、不可度量的不确定性(如奈特, 1957),现在一般不加区分。
• 所谓不确定性是指未来有多种可能情形发 生,每种情形下的结果(收益)已知,而 且各种情形发生的概率已知。通常用彩票 来代替之。
图示
• A Simple lottery: L=(x1,p1;…;xS,pS)
p1
x1 x2
p2
L
ps
xs
pS
xS
A Simple lottery and Machina Triangle
• The set of all lotteries on outcomes X is denoted {( p1,..., pS ) RS p1 ... pS 1}
不确定条件下的选择理论1期望效用理论2随机占优理论一期望效用理论vm公理化体系展望理论及其他1不确定条件下的选择公理体记号
不确定条件下的选择理论
熊和平 2009年秋季
主要内容
• 引言:问题的提出和简单历史 • 不确定条件下的选择公理与期望效用理论 • 期望效用理论的挑战 • 期望效用理论的一些替代 • 随机占优理论 • 风险厌恶及其度量 • 一些常见的效用函数
• C=(A,0.25) D=(B,0.25) • 结论?
A 选项7
6,000 (45%)
B 选项7
3,000 (90%)
C
6,000
选项8
(1%)
D 选项8
3,000 (2%)
0 (55%)
0 (10%)
0 ( 99%)
0 (98%)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9
“圣彼德堡悖论”
1738 年发表《对机遇性 赌博的分析》提出解决 “圣彼德堡悖论”的“风 险度量新理论”。指出用 “钱的数学期望”来作为 决策函数不妥。应该用 “钱的函数的数学期望”。
Daniel Bernoulli (1700-1782)
金融经济学第六讲 10
金融经济学第六讲
11
6.2 von Neumann--Morgenstern 期望效用函数的公理化陈述
金融经济学第六讲
Maurice Allais (1911-) 1986 年诺贝尔经济 奖获得者。
25
6.3 Allais 悖论和 Kahneman-Tversky 的研究
金融经济学第六讲
26
金融经济学第六讲
27
金融经济学第六讲
28
金融经济学第六讲
29
金融经济学第六讲
30
金融经济学第六讲
31
金融经济学第六讲
12
金融经济学第六讲
13
期望效用函数
1944 年在巨著 《对策论与经济行 为》中用数学公理 化方法提出期望效 用函数。这是经济 学中首次严格定义 风险。
Oskar Morgenstern (1902-1977)
金融经济学第六讲 14
John von Neumann (1903-1957)
金融经济学第六讲 15
一个简化的公理体系
公理 1 “不确定利益”是随机变量所构成的一 个集合 L ,并且对于任何两个“不确定利益” x,y 来说,“以概率 p 获得 x,以概率 1-p 获 得 y” 也是“不确定利益”。这一“不确定利 益”可称为 x 以概率 p 与 y 的“平均”,并 记为(x,y;p). 公理 2 任何两个“不确定利益”都可比较好坏。 公理 3 “不确定利益”中有一个最好的以及一个 最差的。
金融经济学第六讲 17
金融经济学第六讲
18
金融经济学第六讲
19
金融经济学第六讲
20
金融经济学第六讲
21
金融经济学第六讲
22
金融经济学第六讲
23Байду номын сангаас
金融经济学第六讲
24
期望效用函数的争论
期望效用函数似乎是相当人 为、相当主观的概念。一开 始就受到许多批评。其中最 著名的是“ Allais 悖论” (1953)。 由此引起许多非期望效用函 数的研究,涉及许多古怪的 数学。但都不很成功。
48
金融经济学第六讲
49
金融经济学第六讲
50
金融经济学第六讲
51
金融经济学第六讲
52
6.5 若干典型期望效用函数
金融经济学第六讲
53
金融经济学第六讲
54
金融经济学第六讲
55
6.6 随机占优的概念
金融经济学第六讲
56
金融经济学第六讲
57
金融经济学第六讲
58
金融经济学第六讲
59
金融经济学第六讲
Daniel Kahneman, (1934-) 2002 年诺贝 尔经济学奖获得者
32
金融经济学第六讲
Kahneman 诺贝尔演说的问题
问题 1. 假设有一场这样的赌博:你赢 150 元 的概率是 50%, 而你输 100 元的概率也是 50%. 你能接受这样的赌博吗?如果你身边的钱少 于 100 元,你是否会改变你的决定? 调查结果是:除非把所赢的钱提高到 200 元 以上,绝大多数的人都不接受这样的赌博, 只有少数人接受这样的赌博。但对于后一种 情况,所有人都不接受。
金融经济学第六讲 16
一个简化的公理体系 (续)
公理 4 如果有三个“不确定利益”一个比 一个好,那么处于中间的 “不确定利益” 相当于另外两个“不确定利益”的对某个 概率的“平均” 。反之,两个“不确定利 益”的对某个概率的“平均” 的好坏必处 于两者之间。 假定 b “最好”,w “最坏”。那么任何 x 一 定相当于 b 关于概率 p 与 w 的“平均”。 取 u(x)=p, 即得所求期望效用函数。
Jacob Bernoulli (1654-1705)
金融经济学第六讲 6
“圣彼德堡悖论”问题
有这样一场赌博:第一次赢得 1 元,第 一次输第二次赢得 2 元,前两次输第三 次赢得 4 元,……一般情形为前 n-1 次 n1 输,第 n 次赢得 2 元。问:应先付多 少钱,才能使这场赌博是“公平”的? 如果用数学期望来定价,答案将是无穷!
60
金融经济学第六讲
61
金融经济学第六讲
62
金融经济学第六讲
63
金融经济学第六讲
64
金融经济学第六讲
65
金融经济学第六讲
66
第六讲 von NeumannMorgenstern 期望效用函数
金融经济学第六讲
2
金融经济学第六讲
3
金融经济学第六讲
4
6.1 “圣彼德堡悖论”的讨论
金融经济学第六讲
5
概率论的早期历史
1713 年发表《猜 度术 (Ars Conjectandi)》。这 是当时最重要、最 有原创性的概率论 著作。由此引起所 谓“圣彼德堡悖论” 问题。
金融经济学第六讲
7
金融经济学第六讲
8
“圣彼德堡悖论”的金融学含义
“倍赌策略”是一种“套利策略”。在一个有 等价概率鞅测度的“二叉树”“存贷-赌博” 市场上,采用“倍赌策略”,如果允许无限 借贷和无限次赌博,那么其“赢钱概率”为 1。 它可以作为某些股票在一定时期内会“疯涨” 的理由。
金融经济学第六讲
金融经济学第六讲 43
金融经济学第六讲
44
Arrow-Pratt 风险厌恶度量
这就归结为函 数 u 的凸性的 比较。它的程 度可用 –u’’/u’ 来度量。它由 Arrow (1965) 和 Pratt (1964) 所提出。
金融经济学第六讲 45
金融经济学第六讲
46
金融经济学第六讲
47
金融经济学第六讲
金融经济学第六讲 33
Kahneman 诺贝尔演说的问题
问题 2. 现在有这样两种情况:一种情况是肯 定损失 100 元;另一种情况是参加这样的赌 博:你赢 50 元的概率是 50%, 而你输 200 元 的概率也是 50%. 对于这样的两种情况你选择 哪一种?如果你身边的钱多于 100 元,你是 否会改变你的决定? 调查结果是绝大多数的人选择赌博,即使身 边有多于 100 元的钱也并没有多大影响。
Kahneman-Tversky 理论
Kahneman 与 Amos Tversky, (1937-1996) 两位心理学家于 1979 年发表的论文“展望理论 (Prospect Theory)”已成为《计 量经济学 (Econometrica)》有 史以来被引证最多的经典。他 们企图改变期望效用函数理论 框架。
用期望效用函数来刻划风险
所谓期望效用函数是定义在一个随机变量集 合上的函数,它在一个随机变量上的取值等 于它作为数值函数在该随机变量上取值的数 学期望。用它来判断有风险的利益,那就是 比较“钱的函数的数学期望”。 假定 (x,y,p) 表示以概率 p 获得 x, 以概率 (1-p) 获得 y 的机会,那么其期望效用函数值为 u((x,y,p))=pu(x)+(1-p)u(y).
金融经济学第六讲 34
金融经济学第六讲
35
金融经济学第六讲
36
金融经济学第六讲
37
金融经济学第六讲
38
金融经济学第六讲
39
金融经济学第六讲
40
金融经济学第六讲
41
6.4 Arrow--Pratt 风险厌恶度量
金融经济学第六讲
42
有风险与无风险之间的比较
机会 (x,y,p) 与肯定得到 px+(1-p)y 之间的 利益比较就是比较 u((x,y,p))=pu(x)+(1-p)u(y) 与 u(px+(1-p)y) 之间的大小。如果它们相等,表示对风险中 性 (不在乎);一般取 <,表示对风险厌恶。 取 > 表示对风险爱好。 把 u 理解为“定价”,这就是“非线性 定价”与“P-F 线性定价”之间的比较。