转子动力学基本理论-韩守木

合集下载

多相流课件

多相流课件

煤燃烧国家重点实验室 SKLCC
单质或纯物质的相图
煤燃烧国家重点实验室 SKLCC
§1-2 多相流的定义和分类
定义: 必须同时考虑物质多相共存且具有明显相 界面的混合物流动力学 的 特殊流动问题称为 多相流。 在多相流动力学中,所谓的相不仅按物质的状
态,而且按化学组成、尺寸和形状等划分。
煤燃烧国家重点实验室 SKLCC
2、气固两相流
气体和固体颗粒混合在一起共同流动。 固体颗粒本身无流动性; 当流体流速足够大, 流体中所含的固体小颗粒 具有类似流体特性; 在某些条件下,可将颗粒相作为流体考虑,在 另一些条件下,必须考虑颗粒相本身的特点。
例:空气中夹带灰粒与尘土,沙漠风沙,飞雪,冰雹, 气力输送,气流干燥,煤粉燃烧,石油催裂化,矿物 的流化床焙烧,气力浮选等
1、气液两相流
气体和液体 物质 混合在一起共同流动。 单工质汽液两相流 ,如水-水蒸汽 汽、液两相均具有相同的化学成份; 在压力和温度发生变化时会发生相变。 双组分工质气液两相流, 如空气-水 两相具有不同的化学成份。
例:蒸发器、冷凝器、反应器、气液混合器、气液分离器 等。
煤燃烧国家重点实验室 SKLCC
煤燃烧国家重点实验室 SKLCC
5、气液液、气液固和液液固多相流
气体、液体和固体颗粒混合在一起共同流动称为气液固三 相流; 气体与两种不能均匀混合、互不相溶的液体混合物在一起 的流动称为气液液三相流; 两种不能均匀混合、互不相溶的液体与固体颗粒混合在一 起的共同流动称为液液固三相流。 例: 油田油井及井口内的原油-水-气-沙粒的三种以上相 态物质的混合物流动,烟气洗涤塔等
空气中夹带灰粒与尘土沙漠风沙飞雪冰雹气力输送气流干燥煤粉燃烧石油催裂化矿物的流化床焙烧气力浮选等煤燃烧国家重点实验室sklcc油田开采与地面集输分离排污中的油水两相流化工过程中的乳浊液流动物质提纯和萃取过程中的液液混合流等煤燃烧国家重点实验室sklcc气体与两种不能均匀混合互不相溶的液体混合物在一起的流动称为气液液三相流

转子动力学研究进展

转子动力学研究进展

转子动力学研究进展韩清凯;马辉【摘要】本文简要回顾了转子动力学的发展历程,指出了转子动力学的研究对象,如以汽轮发电机、燃气轮机、离心/轴流压缩机和航空发动机等大型装备为代表的复杂转子系统;主要研究内容涉及转子系统动力学建模、临界转速和振动响应计算、柔性转子动平衡技术、支承转子的各类轴承动力学特性、转子系统动力稳定性、转子系统非线性动力学、转子系统振动故障及其诊断技术、转子系统振动控制和多场耦合激励下转子系统振动,如机电耦合振动等.未来的研究主要聚焦在转静子系统耦合振动,基于大数据的转子系统智能诊断和考虑新材料、新结构的转子系统振动控制技术等方面.【期刊名称】《动力学与控制学报》【年(卷),期】2018(016)006【总页数】2页(P481-482)【关键词】旋转机械;转子动力学;稳定性;振动控制;智能诊断【作者】韩清凯;马辉【作者单位】大连理工大学机械工程学院,大连 116024;东北大学机械工程与自动化学院,沈阳 110819【正文语种】中文引言转子动力学是研究旋转机械转子及其部件和结构动力学特性的学科.转子动力学起源于十九世纪六十年代,目前已经成为机械动力学的重要分支.当代转子动力学的研究对象主要是以汽轮发电机组、燃气轮机、离心/轴流压缩机和航空发动机等重大装备为代表的复杂转子系统.转子系统的运动以涡动运动为典型形式.通常情况下,转子系统的振动问题一般比较突出,并且也十分复杂,不仅有转轴的弯曲振动和扭转振动,还包括叶轮的振动、叶轮上叶片的振动、机匣和基础振动,以及流体介质或轴承油膜等因素引起的涡动失稳等.目前转子动力学与振动研究主要涉及:1)转子系统动力学建模;2)临界转速和振动响应计算;3)柔性转子动平衡技术;4)支承转子的各类轴承动力学特性;5)转子系统动力稳定性;6)转子系统非线性动力学;7)转子系统振动故障及其诊断技术;8)转子系统振动控制;9)多场耦合激励下转子系统振动,如机电耦联振动等.1 转子动力学的发展历程转子动力学的研究已有百年历史.关于转子振动分析的最早记录是1869年英国物理学家Rankine发表的题为“论旋转轴的离心力”的论文,该论文得出了转子只能在一阶临界转速以下稳定运转的错误结论.Foppl(1895年)和Jeffcott(1919年)指出了转子在超临界运转时会产生自动定心现象,因而转子可以稳定工作.随着转子超临界运转,Newkirk发现了油膜轴承导致自激振动失稳现象,从而确定了油膜轴承稳定性在转子动力学分析中的重要地位.在油膜轴承稳定性的研究方面,Newkirk、Lund、Child和Muszynska等做出了突出贡献.在国内转子动力学研究领域.众多学者和工程技术人员开展了大量的研究工作,包括复杂转子系统动力学建模、转子系统非线性理论与失稳分析、转子系统碰摩等多种故障以及耦合故障的机理研究、转子系统振动故障诊断技术、轴承或齿轮系统动力学与振动故障诊断、转子系统动力学设计技术、以及转子系统振动控制理论与技术等,经过多年的辛勤努力,取得了大量的高水平成果.这些研究成果不仅极大地提升了我国在转子动力学领域的国际学术地位,而且对推动我国诸多工程领域的产品与技术的发展,发挥了至关重要的作用.2 转子动力学未来发展当前转子动力学的研究进入了新阶段.一方面,针对具有复杂结构的转子系统,特别是转子系统与静子系统刚度接近、存在振动耦合的情况,转子和静子结构连接面多且形式复杂,考虑服役退化,以及整机动力学的研究,振动响应的高精度预估研究等,得到了人们的高度重视.另一方面,面向转子系统振动与故障机理与诊断研究,强调了大数据与智能预测方法研究,揭示故障表征的新模式,促进故障机理研究,开展基于大数据的转子系统智能诊断,也已成为目前研究的热点问题之一.转子系统振动控制技术也拓展应用到采用新材料、新结构和提高预测控制能力等方面,提高转子系统振动控制能力及其可靠性和准确度.目前转子动力学在以下六个方面,已经取得了一些代表性成果:1)大型复杂转子系统的力学建模和分析手段,主要涉及连接件建模、大型复杂柔性转子系统、柔性转子系统-柔性基础系统、非同步旋转机械、特殊转子系统.2)考虑非线性的大型转子系统降维理论,主要涉及高维非线性动力学系统的降维方法和提高现有非线性动力学理论能够求解的维数.3)失稳机理分析和非线性分析,主要涉及油膜力、密封力、叶尖气隙力(Alford力)、转轴的刚度不对称、转轴材料的粘弹性和转轴的结构阻尼、转子和静子在间隙内的相互碰摩引起干摩擦力、充液转子等诱发的失稳和非线性振动.4)基于大数据的转子-轴承系统智能故障诊断,主要涉及浅层稀疏网络特征提取方法,建立具有深层结构的深度学习网络,研究旋转机械装备健康状态的多标记体系,全面高效地描述大数据下旋转机械系统的故障信息,形成融合多物理信息源的深度学习模型.5)转子-轴承系统的非线性动力学设计,主要涉及多目标优化设计,不但要设计合理的稳定裕度,还要设计失稳转速使其对参数变化最不敏感,使稳定裕度对一定范围内的制造工艺偏差及运行条件变化最不敏感.6)转子-轴承系统的振动控制,如采用弹性支承加挤压油膜阻尼器的低刚度、高阻尼特性的“滚动轴承与减振元件一体化”结构.3 专刊内容本专刊所收录的论文来自于2018年5月在苏州召开的第13届全国转子动力学会议.它包括复杂转子-支承系统动力学特性与振动响应分析、齿轮转子系统和考虑螺栓连接结合面的转子系统动力学特性研究、滚动轴承动力学特性研究、以及转子系统动力学吸振器减振研究等.期望专刊的出版能对我国转子系统动力学与振动的研究以及相关学科的发展起到积极的促进作用.。

转子动力学基础pdf

转子动力学基础pdf

转子动力学基础pdf
转子动力学是研究旋转系统的运动规律和振动特性的一门学科。

它主要涉及到刚体力学、动力学和振动学的知识,研究的对象包括各种旋转机械设备,如发电机、风力发电机、涡轮机、离心机等。

转子动力学基础包括以下几个方面:
1. 刚体力学:研究刚体的运动规律和受力情况。

在转子动力学中,我们将转子看作刚体,通过刚体力学理论分析转子受到的力和力矩,从而推导出转子的运动方程。

2. 动力学:研究物体的运动与受力之间的关系。

在转子动力学中,我们考虑转子受到的旋转力和惯性力的影响,通过牛顿第二定律和角动量定理等动力学原理,推导出转子的旋转运动方程。

3. 振动学:研究物体的振动特性。

在转子动力学中,由于旋转机械设备的运行过程中会产生振动,因此需要考虑转子的振动特性。

通过振动学理论,可以分析转子的固有频率、振型和振动幅值等参数,从而评估转子的稳定性和安全性。

4. 转子不平衡:转子不平衡是导致旋转机械设备振动和噪声产生的主要原因之一。

在转子动力学中,我们需要研究转子的不平衡现象,并通过对不平衡力的计算和分析,找到相应的解决方法,如平衡校正或使用动平衡系统。

5. 轴承动力学:转子在运行过程中需要依靠轴承支撑和导
向,轴承的性能将直接影响到转子的运动和振动特性。

因此,研究转子动力学还需要考虑轴承的摩擦、刚度和阻尼等特性,在设计和分析中进行综合考虑。

总之,转子动力学基础涉及到刚体力学、动力学、振动学以及轴承动力学等多个学科的知识。

通过对这些基础理论的研究和应用,可以更好地理解和掌握旋转机械设备的运动规律、振动特性以及相关问题的解决方法。

转子动平衡理论分析

转子动平衡理论分析
1~g
BALANC眦FOR唧RKⅡD TH吲)1阻n1IcAL ANALY圊S OF RoTOR 胁‰腼口f嗍驰撕
(髓∞‰由i册略∞知,‘如№凡o,5蛔‰W嘶)
1het㈧c日l 劬dract
a脚y8b 0f恤b日l曰Jlc崦0f恤蟛dI咖。
趋p豇f0如捌b,m嘲Ils 0f 8一c0胡ici咖k面ngⅡ10del aIld ontl七
马浩, 贾庆轩, 曲庆文, 柴山, 姚福生 山东工程学院科学技术研究院淄博 255012
机械工程学报 CHINESE JOURNAL OF MECHANICAL ENGINEERING 2000,36(3) 23次
参考文献(3条) 1.三轮修三.下村玄 旋转机械的平衡 1992 2.钟一谔 转子动力学 1987 3.姚福生 转子的动平衡理论分析 1981(01)
七町,丘炉,。w,c口,。垆,。时。
另外,引入符号
Zl=yl+i”
Z2 2 y2十jy2
Z3=旬+i:
* 国家“九五”●登计划预研资助项目(嗍21900)。19990715收
捌初稿.19盼Il∞收到肇改穑
圈肘(弘氍^.)十cI夕…:,珏岫南一
ic2乒4+七lpl+矗222一i膏l怔而一i七2t二五=
处轴承=向晃动值。此外,复数ml rlexp(愉)和
m2 r2—p(i成)在矢量图中表示与转子一起旋转的矢
量,其绝对值与在平面}=o。和e=n2上的不平衡
质量相一致,因此这就是不平衡矢量Ⅳl和Jlv2。于是 在知道公式中复数的物理意义后,可将式(4)改写
成矢量形式
Ⅳl=‘All+jBll)工l+(A12+i占12)盖2+
tlle№诎,龇relmive bma呦面Ⅱs 0.f TthaekiTrellagd曲蚰ck哪啪胁idt枷1.oneⅡba圮lm耐商“l嘴g v∞蛳ear0IfdtLhlel野e。v∞i蛳。叩Iligc

多自由度碰磨转子系统非线性动力学特性分析

多自由度碰磨转子系统非线性动力学特性分析

i n t o a n e i g h t d e g r e e o f f r e e d o m n o n l i n e a r s y s t e m wi t h g y r o s c o p i c mo me n t e f f e c t u s i n g L a — g r a n g e me t h o d .T h e i n v e s t i g a t i o n s t o t h e mo d e l e d s y s t e m s h o we d t h e n o n l i n e a r r u b b i n g f a u l t c h a r a c t e is r t i c s .T h i s h i g h d i me n s i o n a l n o n l i n a r s y s t e m c o u l d b e r e d u c e d i n t o a t wo d e g r e e o f f r e e d o m s y s t e m b y i n t r o d u c i n g t h e mo d i f i e d P OD me t h o d .Nu me i r c a l s i mu l a t i o n s d e mo n s t r a — t e d t h e e f f i c i e n c y o f t h e me t h o d b y c o mp a is r o n wi t h t h e c o mp u t e d r e s u l t s g i v e n f o r b o t h t h e O —
第3 0 卷 第1 期
2 0 1 4年 2 月

转子动力学会议手册-全文

转子动力学会议手册-全文
第11届全国转子动力学学术讨论会rotdyn2014201481517大连15笔记记录页笔记记录页第11届全国转子动力学学术讨论会rotdyn2014201481517大连16第11届全国转子动力学学术讨论会rotdyn2014201481517大连17第11届全国转子动力学学术讨论会rotdyn2014201481517大连18第11届全国转子动力学学术讨论会rotdyn2014201481517大连19第11届全国转子动力学学术讨论会rotdyn2014201481517大连2011届全国转子动力学学术讨论会与会代表通讯录姓名性别职称单位联系电话email冯国全研究员606研究员60613998186156史妍妍高工606研究员608工程师60813787806702ywxdlusinacom研究员60813973361196hnzzdwq163com助工60815773330868nwjxj163com研究员608073128593380wl6jh29163com研究员60813973375308wp608sinacom王月华高工60818073327061武昌耀工程师608工程师70313654506498kanglei27163com高工705工程师705高工北京东方极峰科技公司13911010255emax163com张大义讲师北京航空航天大学01082313803dayibuaaeducn研究生北京航空航天大学13401176387yuewei126com研究生北京航空航天大学15210967061wzyoungsjpbuaaeducn研究生北京航空航天大学13401177334dayibuaaeducn教授北京航空航天大学13426166834dayibuaaeducn马艳红教授北京航空航天大学13426166834dayibuaaeducn窦唯高工北京航天动力研究所15810046998dwdqpi126com教授北京化工大学13801023830hqwangmailbucteducn王维民副教授北京化工大学15810260050wwmbuct163com讲师北京化工大学13810033949yaojfmailbucteducn李启行研究生北京化工大学15001277679liqihang2012foxmailcom研究生北京科技大学13269529860vastera163com研究生北京科技

转子动力学

转子动力学

转子动力学是研究高速旋转机械动力学行为的基本理论和分析方法的一个近代力学学科分支。

有极强的工程应用背景。

我国在大型电站设备的自行研制中曾发生多次灾难性事故,其根本原因是国内对转子的非线性动力行为缺乏基础理论研究。

为此,大型机组安全运行问题成为1999年国家科技部第一批国家重点基础研究项目(973项目)的立项内容。

在这之前,国家自然科学基金会经5年论证,于1999年把非线性动力学问题作为重大项目立项。

20多年来,复旦大学力学系在转子动力学基础理论研究方面的成果,在国内获得公认的地位。

在复杂转子系统动力学方面的系统性理论成果,获1987年国家自然科学奖三等奖,在转子系统运动稳定性和整机动力学方面的理论成果,获1996年国家教委科技进步奖(基础类)二等奖。

基于上述理论成果解决了国内20余项国家和省部级重要实际项目,并为我国开发了一系列具有原创性的工程分析软件,用于航空发动机,汽轮机,离心机等的研制和排故上获得成功,曾获上海市科技进步奖一等奖(1993)、二等奖(1986),航空工业部科技进步奖一等奖(1991)和国家科技进步奖三等奖(1992)。

我们的工作得到国际的重视,论文二次发表在ASME Journal of Applied Mechanics 上。

张文应邀赴美国麻省利工学院(MIT)和哈佛大学合作研究二年。

1990年国际理论与应用力学联合会邀请张文参加十年一次的Symposium 作大会报告,还几次应邀担任国际会议的组织工作。

目前,高速旋转机械的国际设计趋势向高转速和轻柔结构方向发展,苛刻的工作环境常引发转子大变形扰动运动。

生产实际的需要推动了非线性转子动力学的发展。

目前我们已进入非线性转子动力学的工作,主要工作领域是非线性油膜力的力学建模理论,转子的非线性碰摩,充液转子运动稳定性等方面。

承担了国家重点基础研究项目(973项日)"大型机组安全运行问题"和国家自然科学基金会重大项目"大型旋转机械非线性动力学问题"的子课题研究。

转子系统动力学分析方法(5学时)

转子系统动力学分析方法(5学时)
加速度。
3
因系统对称性,系统的ቤተ መጻሕፍቲ ባይዱ平衡方程为:
对轴颈
k Fx k xx x k xy y d xx x d xy y k Fy k yx x k yy y d yx x d yy y
对轮盘
(1)
m ( x ) k 0 m( y ) k 0
第j个质点的受力可以表达为
Px m 0 x d Fx P 0 m y d Fyx j j y j k Fx k Fyx k Fxy x k xx k Fy y j k yx j d Fxy x d xx d Fy y j d yx j d xy x d yy y j j
, j p , jd 分别为单位长轴段的质量、极转动惯量和 赤道转动惯量。
10
1)质量集总: 集总到两端的质量按照总质量和质心位置均不变的 原则分配:
s R la k m j lj k 1 s l (l a ) s j L k R m l m j j k l k 1 k 1 j
转子系统动力学分析方法
滑动轴承支承转子系统的动态行为
除受制于转子本身的弹性、质量分布、
材料、运行速度等参数外,更大程度上
取决于滑动轴承的动态特性。
1
一、单质量弹性转子
1.单质量弹性转子系统稳定性
在线性范围内,滑动轴承-转子系统的稳定性,一 般是在小扰动情况下,根据拉格朗日方程或力平衡方程 导出系统的运动微分方程并求解,以判定系统的稳定性 状况或趋势。
(1)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(二)转子结构型式对临界转速的影响 叶轮装在轴上使轴的刚度有一定程度的 增加,因而提高了转子的临界转速。不同的 转子结构型式影响是不一样的。 1,整锻转子:使临界转速的计算数值提 高约2~4%。 2,套装转子 轮毂宽度不大的中压转子,临界转速提 高约10%;对末级叶轮轮毂宽较大的低压转 子,临界转速提高可达25%左右。
2.4 轴系稳定性和动压滑动轴承
汽轮发电机组功率的增加,导致转子轴颈的增大和 轴系临界转速的下降,进而影响转子轴系工作的稳定性。 五十年代以来国外发生的严重的转子事故中,振动原因 占四分之三,国内也有百余例严重的转子事故由轴系振 动引起 . 因此,必须特别关注轴系稳定性问题。
2.4.1 稳定性的基本概念 高速旋转机器的转轴支承在径向滑动轴承上, 转子轴颈为油膜所包阁,当外载荷W恒定并与油 膜压力F1相平衡,转子轴颈中心将处于平衡位置 Oj(c,0)(图2—15)。实际上转轴在运转时不可能 不受到扰动或冲击载荷(此时轴颈中心将偏离平 衡位置Oj)
2.3 转子振动响应
2.3.1 振动响应的物理定义 振动响应是旋转机械轴系重要的动态特性。它是指转 子上存在质量不平衡造成的振动响应,包括响应的幅值 和相位。这个特性用影响系数α来量度: α=
振动响应 不平衡量
(2-49)
不平衡响应特性决定了转子对已经存在的不平衡量或 运转过程中突然出现的不平衡的响应程度。从轴系安全 角度出发,希望这个响应越小越好。α小意味着同样的 不平衡量所造成的转子的振动小,小的不平衡响应,可 以减小动平衡的次数,减少运行中意外事故对设备带来 的不良后果。
(三)叶轮回转力矩对临界转速的影响 对于直径比较大不是装在两个支承的正中间, 甚至装在轴的悬臂端上的圆盘,在作弓形回旋时, 将会产生回转力矩,使转子的临界转速发生变化 (可能提高,也可能降低)。 (四)轴系的临界转速和联轴器对临界转速的影 响 把一个单跨,二支点的转子连成了一个多支点 的转子系统,称为轴系。在轴系中,由于相邻转子 通过联轴器连接起来,轴的端部就不再是自由端。 转子端部互相作用,就相当于在每个单跨转子的端 部多了一个约束条件,使转子的刚性增加,从而引 起该转子临界转速的加大。
2.2 转子的临界转速
当激振力的频率和转子系统的弯曲振动自振频 率相接近的时候,转子发生共振。这时候转子的转 速称为转子的临界转速。转子在该转速下运行时, 转子会发生剧烈的振动,而偏离该转速值(大于或 小于)一定范围后,旋转又趋于平稳。 一,单圆盘转子的临界转速 c 单圆盘转子加速过程中,当 o < ω < 的时
c ωc = m rad / s
相应的转速称为临界转速
1 nc = ωc / 2π = 2π c −1 s m
从以上讨论可以看出:转子的临界转速实质上 就是转子系统的偏心质量在转动过程中形成的激振 力和系统发生共振时的转速。
二、等直径、均布质量转轴的临界转速 由于透平转子相当长,直径又相当大。因此,用一个集 中质量来代替转子的质量并不能反映分布质量对临界转速的 影响。为此,我们需要讨论等直径转子的临界转速问题。
nπ S n ( x ) = An sin (K n x ) = An sin l n = 1,2,3LL x
它的一、二、三阶的主振型和主振型函数如图2-9所示。 从图中可以看到:第n阶主振型具有n-1个节点。在节点 二侧的质点,在振动时彼此相位相反
ω 1c = π 2
EI ρFL4
单个转子 -1 ′ n (min ) 轴 系 c
′ n 单个转子 c (% ) n 轴 系 c
60
95.0/94.4 88.2/87.2 90/89.6 84.8/83.8
六、转子临界转速的安全标准 为了保证转子安全运行,就必须: •尽可能避开共振 •对转子进行精确的平衡。
如果透平的工作转速n小于转子的第一阶临界转速 如果透平的工作转速 小于转子的第一阶临界转速
k xx , k yy , k xy , k yx ——刚度系数 设原方程的解为:
x = x0 e
λt
y = y0 e
λt
将其代入原方程后可得出特征方程
a0λ6 +a1λ5 +a2λ4 +a3λ3 +a4λ2 +a5λ +a6 = 0
辨识转子轴系的稳定性一般勿需详细求解运动 方程,只要求出复数特征根即可作出判断。若 特征根的实部为负,则转 子轴系的运转是稳定的( 如图2-16a所示),如果 特征根 的实部为正或只 要有一个特征根实部为正 值,则转子轴系的运转就 不稳定或出现“失稳”(如图 2–16b所示)。
a) b)
c)
图2—8 等直径转子图 a)转子各微元段质心分布 b)、c)转子段dx 受力分析
等直径均布质量的转子,在二端刚性支承的条件 下,转子的自振频率 ncn 为
n 2π ncn = 2 EI / ρ F S −1 2l n = 1, 2,3LL
从式(2-20)可以看到:一个均布质量的转轴具有 无穷多个自振频率,它在数值上和转子作横向振动的自 振频率一样。按照频率数值的大小排列,称为转子的各 阶自振频率 。由于临界转速现象是激振力频率和转子自 振频率相同时产生的共振现象。因此,转子的各阶自阶 振频率就是转子的各阶临界转速,记作 n c1 , n c 2 , n c 3 L L 。 转子具有无穷多阶临界转速。转子临界转速的大小,取 决于转子的材料、几何形状和结构型式。因此,对一个 具体的转子来说,临界转速的大小是一定的。转子系 统的刚性愈大,转子的临界转速愈大。
要求:
nc1>(1.2-1.25)n。
如果透平的工作转速n在转子的一阶和二阶临界转速之间 如果透平的工作转速 在转子的一阶和二阶临界转速之间
要求: 1.4nc1<n<0.7nc2。 我国电力部门提出,对于固定式发电用汽轮发 电机组,要求轴系的各阶临界转速一般应与工 作转速避开。轴系各阶临界转速的分布应保证 机组能够有安全的暖机转速,并进行超速试验。
和临界转速一样,不平衡响应可以用计算的 方法得到,也可以在现场实测得到。 不平衡响应的计算,国外大的汽轮机制造公 司对这个特性都有各自的设计规范。如西屋公司 的标准指出,对于规定的不平衡量, 在转速为25%一85%的工作转速范围内, 即3000r/min机组在750—2550r⁄min区间,轴系 各轴颈的响应峰峰值应小于0.229mm; 在转速为85%一125%的工作转速范围内, 即3000r⁄min机组在2550—3750r/min区间,轴 系各轴颈的响应峰峰值应小于0.076mm。
如果转轴受扰动后,轴颈中心随时间的增 加而逐渐趋向平衡位置,则认为是稳定的。如果 随时间的增加,转子振动的振幅越来越大、或轴 颈围绕平衡位置作“涡动”,则认为是不稳定的。 轴颈受扰动其中心偏离平衡位置后,新位置 的润滑油膜对轴颈产生一作用力,其方向与扰动 方向有一偏位角。该作用力为扰动而引起的不平 衡力,可分解为两个分力,即一个为沿扰动方向 的分力,它是抗拒扰动的,还有一个垂直于扰动 方向的分力,推动轴颈绕原平衡位置Ob涡动,其 方向与轴颈的自转方向一致或相反。 “涡动” 涡动” 是一种自激振动, 是一种自激振动,它不是由交变外力引起的强迫 振动, 振动,而是由转子自身结构和运转工况等原因引 起。
(a) b) 图2-16 转子轴系运转状态
根据特征根为纯虚数的临界状态,可以得出相对于 转子轴系临界转速的失稳转速比:
A12 A2 ⋅ 2 1 A3 − A0 A1 A2 − A12 A4 C 0 A1 + A3 2 式中 Wst——失稳转速 Wk——转子的临界转速 Wst = Wk A3
由此可知,失稳转速比与轴承型式、承载系数和转 子相对挠度有关,若已知转子轴系的临界转速WK,就可 计算失稳转速Wst。 转子失稳表现为下列特点; (1)振动频率为次同步或超同步; (2)自激振动的频率以转子本身的固有频率为主; (3)振幅可能发生突然急剧增加; (4)振幅的变化与转速或负荷关系密切;
ω 2 c = ( 2π ) 2
EI ρFL4
ω 3c = (3π ) 2
图2—9 刚性轴承支承时等直径均布质量转子的一、二、三阶主振型
EI ρFL4
三、影响临界转速的因素 (一)转子温度沿轴向变化对临界转速的影响 在汽轮机中,尤其是高参数汽轮机中,沿转子 轴向的温度变化是很大的。温度的变化引起转子材 料弹性模量E沿转子轴向的变化。由式(2-20)可 以看到,转子的临界转速与转子材料的弹性模量的 平方根成正比。因此,弹性模量E的下降必然引起 转子临界转速的下降。
转子在各阶自振频率下振动时的振型(弹性 曲线)S1(x), S2(x), S3(x)……称为转子的各阶主 振型。当转子按某一阶自振频率振动时,转子轴 线上各点将在同一个通过二端轴承中心联线的轴 向平面(称为子午面)上,即任一阶的主振型 Sn(x)都是一根平面曲线。对于等直径、均布质量 的转子,在二端刚性简支的条件下,它的各阶主 振型函数为:
图2-15 转子轴颈的油膜压力
转子轴系突然出现振幅很大的现象叫做“失稳”,。 转子轴系的刚度、阻尼特性决定了转子是否会失稳, 故在研究转子轴系稳定性时,常用包括交叉刚度在内的四 个刚度系数和包括交叉阻尼在内的四个阻尼系数(统称为 动力系数)列出X、Y两方向的运动方程。该运动方程是以 动压油膜对微小扰动的反应而得出,即
m
候,转子动挠度S随 ω 的增加而增加。当小。当 ω不断加
大时,转子又趋于稳定,动挠度S趋向于l 。
c m 的时候,挠度S急剧加大。但是当
ω
c > m
这个过程如图2-6所示。当转子的角速度 ω c 趋近于 m 的时候,转子动挠度增大到最 大,我们称这时的角速度为临界角速度 ωc :
表2-1是国产30万千瓦汽轮发电机组的临界 转速计算值。从表中可以看到:轴系的各阶临界 转速总比单个转子的临界转速数值大。 轴系是用联轴器连接。联轴器的刚性愈大, 转子之间连接刚性愈大,因而相对于单个转子, 轴系的临界转速升高亦愈多。 (五)支承弹性对临界转速的影响 实际上轴承座、轴瓦中起支承和润滑作用的 油膜都不是绝对刚性的。以国产30万千瓦汽轮机 的计算为例,对于单个转子,考虑支承弹性后, 高压、中压、低压透平转子的临界转速分别下降 了18%、16.3%和40%。。
相关文档
最新文档