工程力学教案
《工程力学》授课教案

《工程力学》授课教案第一章:引言1. 课程介绍1.1 课程背景1.2 课程目标1.3 课程内容2. 力学基本概念2.1 力的定义2.2 牛顿三定律2.3 势能与动能3. 工程应用实例3.1 桥梁设计中的力学原理3.2 建筑结构分析第二章:力学基本定律1. 第一定律:惯性定律1.1 定律内容1.2 应用实例2. 第二定律:加速度定律2.1 定律内容2.2 应用实例3. 第三定律:作用与反作用定律3.1 定律内容3.2 应用实例第三章:平面力分析1. 力的分解与合成1.1 力的分解1.2 力的合成2. 平衡条件2.1 静态平衡2.2 动态平衡3. 力矩与力偶3.1 力矩的定义3.2 力偶的作用第四章:材料力学性质1. 应力与应变1.1 应力的定义1.2 应变的概念2. 弹性模量与杨氏模量2.1 弹性模量的定义2.2 杨氏模量的计算3. 材料的最大强度与破坏3.1 最大强度定律3.2 材料的破坏形式第五章:梁与板的力学分析1. 梁的弯曲1.1 弯曲应力1.2 弯曲变形2. 板的弯曲2.1 薄板弯曲2.2 厚板弯曲3. 工程应用实例3.1 桥梁梁体的力学分析3.2 建筑板结构的计算第六章:剪力与弯矩1. 剪力的概念1.1 剪力的定义1.2 剪力的计算方法2. 弯矩的概念2.1 弯矩的定义2.2 弯矩的计算方法3. 剪力与弯矩的关系3.1 剪力与弯矩的相互影响3.2 剪力与弯矩的计算实例第七章:力学在机械设计中的应用1. 机械零件的受力分析1.1 轴承的受力分析1.2 齿轮的受力分析2. 机械设计的力学原理2.1 设计原则2.2 设计方法3. 工程应用实例3.1 发动机曲轴的力学分析3.2 吊车的设计计算第八章:流体力学基础1. 流体的性质1.1 流体的定义1.2 流体的分类2. 流体力学的基本定律2.1 连续性方程2.2 伯努利方程3. 流体动力学的应用实例3.1 泵与风机的原理与应用3.2 飞机翼型的设计与分析第九章:动力学1. 动力学基本概念1.1 动量的定义1.2 动量守恒定律2. 动力的计算方法2.1 动力定理2.2 动力方程的求解3. 工程应用实例3.1 汽车动力性能的分析3.2 火箭发射的力学原理1. 课程回顾1.1 重点内容的回顾1.2 难点的解答2. 工程力学在实际工程中的应用2.1 工程力学的广泛应用领域2.2 工程力学的发展趋势3. 课程考核与评价3.1 考核方式3.2 评价标准重点和难点解析一、力的分解与合成:力的分解与合成是理解力学问题的基础,学生需要掌握如何将复杂力分解为基本力和如何将基本力合成为复杂力。
《工程力学》授课教案

《工程力学》授课教案第一章:引言1.1 课程介绍解释工程力学的基本概念和重要性。
强调工程力学在工程领域中的应用和意义。
1.2 力学的基本原理介绍牛顿三定律和力学的基本原理。
解释力和运动的关系。
1.3 单位制和量纲介绍国际单位制(SI)和常用力学单位。
强调量纲一致性的重要性。
第二章:静力学2.1 概述介绍静力学的基本概念和应用。
解释平衡条件和平衡方程。
2.2 力的分解和合成讲解力的分解和合成的原理和方法。
提供实例演示和练习。
2.3 摩擦力介绍摩擦力的概念和计算方法。
讨论静摩擦和动摩擦的区别和应用。
第三章:运动学3.1 运动学基本概念介绍位移、速度、加速度等基本运动学概念。
解释瞬时速度和瞬时加速度的概念。
3.2 直线运动讲解直线运动的位移、速度和加速度的关系。
提供直线运动的实例和问题解决。
3.3 曲线运动介绍曲线运动的基本概念和特点。
解释圆周运动和抛物线运动等曲线运动的形式。
第四章:动力学4.1 牛顿第二定律介绍牛顿第二定律的内容和表达式。
解释力、质量和加速度之间的关系。
4.2 动量定理讲解动量定理的内容和应用。
提供动量定理的实例和问题解决。
4.3 动能和势能介绍动能和势能的概念和计算方法。
解释机械能守恒定律。
第五章:材料力学5.1 概述介绍材料力学的基本概念和应用。
解释应力、应变和材料强度等基本概念。
5.2 应力和应变讲解应力和应变的定义和计算方法。
提供应力和应变的实例和问题解决。
5.3 材料强度和失效介绍材料强度和失效模式的概念。
解释弹性极限、塑性极限和断裂极限等材料强度的性质。
第六章:梁的弯曲6.1 弯曲基本概念介绍梁的弯曲现象及其基本参数,如弯矩、剪力、弯曲应力。
解释梁的弯曲理论,包括弹性理论和塑性理论。
6.2 弯曲强度计算讲解梁在弯曲状态下强度的计算方法。
分析影响梁弯曲强度的因素,如材料属性、截面形状和尺寸、加载方式。
6.3 弯曲变形介绍梁弯曲变形的基本概念和计算方法。
讨论梁的弯曲变形对结构性能的影响。
工程力学教案

工程力学教案【篇一:《工程力学》教案(1)】课时计划科目:工程力学班级:教师:检查人:第页- 1 -- 2 -- 3 -课时计划科目:工程力学班级:教师:检查人:- 4 -- 5 -【篇二:工程力学教案】授课班级:10道桥1班、10道桥2班、10道桥3班、10道桥4班教学课题:绪论第一节工程力学的研究对象第二节工程力学的研究内容和任务第三节刚体、变形体及其基本假定第四节荷载的分类与组合第五节结构计算简图教学目的及要求:1、了解工程力学的研究对象、内容和任务,荷载的分类与组合,结构计算简图的概念和确定计算简图的原则2、初步掌握强度、刚度和稳定性的概念3、掌握刚体、变形固体的概念及变形固体的基本假设4、掌握杆件的几何特征、刚结点和铰结点的特征教学重点: 1、刚体、变形固体的概念及变形固体的基本假设1、结构简化的几个方面2、平面杆件结构的分类教学难点:支座的简化及其受力情况分析教学方法:理论讲授,图示法,教具:计算机多媒体作业:1、四种类型的支座(可动铰支座、固定铰支座、固定端支座、定向支座)简化及其受力情况分析图2、五类平面杆件结构(梁、拱、桁架、刚架、组合结构)的简化图教学过程及内容:绪论第一节工程力学的研究对象一、工程力学的研究对象结构——建筑物中承受荷载并起骨架作用的部分。
构件——组成结构中的单个部分。
(1)杆件结构(2)板、壳结构(3)块体结构二、杆件的几何特征1、主要几何要素:横截面:是垂直杆的长度的截面。
轴线:是所有截面形心的连线。
2、分为直杆和曲杆第二节工程力学的研究内容和任务一、工程力学的任务1、研究材料的力学性能2、研究构件的强度、刚度和稳定性等3、合理解决安全与经济之间的矛盾构件的强度、刚度和稳定性不仅与构件的形状有关,而且与所用材料的力学性能有关,因此在进行理论分析的基础上,实验研究是完成材料力学的任务所必需的途径和手段。
二、对构件的三项基本要求1、具有足够的强度(结构和构件抵抗破坏的能力)构件在外载作用下,抵抗破坏的能力。
《工程力学》授课教案

《工程力学》授课教案第一章:概述1.1 课程介绍解释工程力学的基本概念和重要性。
强调它在工程领域中的应用和必要性。
1.2 力学的基本原理介绍牛顿三定律和力的概念。
解释物体运动状态的改变及其原因。
1.3 单位制和量度介绍国际单位制(SI)及其在工程力学中的应用。
强调正确使用量度和单位的重要性。
第二章:牛顿定律2.1 第一定律:惯性定律解释惯性的概念和第一定律的含义。
探讨惯性对物体运动状态的影响。
2.2 第二定律:动力定律介绍牛顿第二定律的数学表达式。
解释质量、加速度和力之间的关系。
2.3 第三定律:作用与反作用定律解释作用力和反作用力的概念。
探讨它们在实际工程应用中的重要性。
第三章:力学中的能量3.1 动能和势能介绍动能和势能的概念及其在力学中的作用。
解释它们之间的相互转化关系。
3.2 机械能守恒定律解释机械能守恒定律的含义。
探讨其在不同情况下的适用性和限制。
3.3 能量转换和能量效率介绍能量转换的概念和能量效率的计算方法。
强调提高能量效率的重要性。
第四章:材料力学4.1 应力与应变解释应力和应变的概念及其在材料力学中的重要性。
介绍应力-应变曲线的特点和应用。
4.2 弹性模量和塑性极限解释弹性模量和塑性极限的概念及其在材料力学中的作用。
探讨不同材料的弹性模量和塑性极限的差异。
4.3 材料疲劳和断裂力学介绍材料疲劳和断裂力学的基本概念。
探讨其在工程设计和材料选择中的应用。
第五章:静力学5.1 力的分解和合成解释力的分解和合成的概念及其在静力学中的重要性。
探讨力的分解和合成对物体平衡的影响。
5.2 静力平衡的条件介绍静力平衡的数学表达式和条件。
解释如何应用静力平衡条件解决实际问题。
5.3 摩擦力解释摩擦力的概念及其在静力学中的作用。
探讨摩擦力的计算方法和减小摩擦力的方法。
第六章:动力学6.1 质点运动学介绍质点运动学的基本概念,包括速度、加速度和位移。
探讨运动学方程的建立和应用。
6.2 牛顿运动定律的扩展解释动量和动量守恒定律。
(完整)工程力学教案

0.1 工程力学的课程内容及其工程意义工程力学是一门关于力学学科在工程上的基本应用的课程,它通过研究物体机械运动的一般规律来对工程构件进行相关的力学分析和设计,其包含的内容极其广泛。
本书仅包括工程静力学和材料力学两部分。
机械运动是人们在日常生活和生产实践中最常见的一种运动形式,是物体的空间位置随时间的变化规律。
工程静力学研究的是机械运动的特殊情况,即物体在外力作用下的平衡问题,包括对工程物体的受力分析,对作用在工程物体上的复杂力系进行简化,总结力系的平衡条件和平衡方程,从而找出平衡物体上所受的力与力之间的关系。
构件,是工程上的机械、设备、结构的组成元素。
材料力学是研究工程构件在外力作用下,其内部产生的力,这些力的分布,以及将要发生的变形,这些变形中有些在外力解除后是可以恢复的,称为弹性变形;而另一些不可恢复的变形,则称为塑性变形。
为保证工程机械和结构的正常工作,其构件必须有足够的承载能力,即必须具有足够的强度、刚度和稳定性。
足够的强度,是保证工程构件在外力作用下不发生断裂和过大的塑性变形。
足够的刚度,是保证工程构件在外力作用下不发生过大的弹性变形。
足够的稳定性,是保证工程构件在外力作用下不失稳,即不改变其本来的平衡状态.在工程实际中,广泛地应用着工程力学的知识.例如图0—1所示的简易吊车,为了保证它能正常工作,首先需要用静力学知识分析和计算各构件所受的力,然后再应用材料力学知识,在安全、经济的前提下合理地确定各构件的材料和尺寸。
因此,工程力学是一门技术基础课程,它为后继专业课程和工程设计提供了必要的理论基础。
0。
2 工程力学的研究模型在工程力学中,由于工程静力学和材料力学所研究的问题不同,其工程模型也是各不相同的。
工程静力学的研究模型为刚体,即受力后理想不变形的物体。
因为大多数情形下,工程构件受力后产生的变形很小,忽略不计也不会对构件的受力分析产生影响。
而材料力学的研究模型是变形体。
因为材料力学是通过研究物体的变形规律来对工程构件进行安全性设计,所以构件的变形是不可忽略的。
工程力学教案

工程力学教案【课程名称】:工程力学【课程代码】:MECH101【开课学期】:大一下学期【教学目标】:1. 了解和掌握工程力学的基本概念和理论;2. 熟悉和掌握静力学和动力学的基本原理和计算方法;3. 培养学生的创新思维和解决工程问题的能力;4. 培养学生的合作精神和团队合作能力。
【教学内容】:一、静力学1. 重力和质点的平衡2. 刚体及其平衡3. 力的分解和合成4. 平面力系的平衡5. 三角形力系平衡6. 杆件受力分析7. 静摩擦和动摩擦二、动力学1. 直线运动的基本概念和公式2. 动量和动量守恒3. 动能和动能守恒4. 力和加速度的关系5. 动力学原理和方程三、实践应用1. 工程力学在工程实践中的应用2. 计算机辅助设计和分析3. 工程实践案例分析【教学方法】:1. 理论讲授:通过教师讲授相关理论知识,引导学生理解和掌握概念和原理。
2. 课堂讨论:通过提出问题和讨论,激发学生思考和解决问题的能力。
3. 实验实践:通过工程实践和实验,让学生亲自动手操作,加深对理论知识的理解和应用。
4. 小组合作:组织学生进行小组合作学习,提高团队合作和交流能力。
【教学评价】:1. 期中考试:对学生对工程力学理论知识的掌握和应用能力进行考查。
2. 实验报告:对学生在实验实践中的操作能力和数据分析能力进行评价。
3. 课堂表现:对学生在课堂上的主动参与和讨论能力进行评价。
4. 课程设计:通过小组合作设计和完成课程作业,对学生的团队合作和创新能力进行评价。
【教学参考书目】:1. 《工程力学》(第五版),作者:刘韬,机械工业出版社2. 《工程力学导论》(第四版),作者:罗豫章,高等教育出版社3. 《工程力学实验指导书》,作者:张先锋,机械工业出版社【教学进度安排】:第1-2周:静力学基本概念和力的平衡第3-4周:刚体平衡和力的分解和合成第5-6周:平面力系和三角形力系平衡第7-8周:杆件受力分析和摩擦力第9-10周:直线运动和力和加速度关系第11-12周:动量和动量守恒第13-14周:动能和动能守恒第15-16周:实践应用和案例分析第17周:期末考试和课程总结。
《工程力学》授课教案

《工程力学》授课教案一、教学目标1. 了解工程力学的基本概念和原理,掌握工程力学的基本分析方法。
2. 培养学生的空间想象能力和图形表达能力。
3. 提高学生解决实际工程问题的能力。
二、教学内容1. 工程力学的基本概念及力学的研究对象。
2. 力学的基本定律:牛顿运动定律、动量定理和动量守恒定律。
3. 静力学基本方程:平衡方程和力矩方程。
4. 物体受力的合成与分解。
5. 摩擦力、弹力和接触力的基本概念及计算方法。
三、教学方法1. 采用讲授法,系统地讲解工程力学的基本概念、原理和定律。
2. 结合图形和实物,帮助学生建立空间想象能力。
3. 利用实例分析和问题讨论,培养学生的实际问题解决能力。
4. 布置适量练习题,巩固所学知识。
四、教学准备1. 教案、教材、课件等教学资料。
2. 的黑板、粉笔等教学工具。
3. 实物模型、图片等教学辅助材料。
五、教学过程1. 引入新课:简要介绍工程力学的基本概念和研究对象,激发学生的学习兴趣。
2. 讲解基本概念:力的定义、分类和度量。
3. 讲解力学定律:牛顿运动定律、动量定理和动量守恒定律。
4. 讲解静力学基本方程:平衡方程和力矩方程。
5. 讲解物体受力的合成与分解:力的合成、力的分解和合力与分力的关系。
6. 讲解摩擦力、弹力和接触力的基本概念及计算方法。
7. 课堂练习:布置适量练习题,让学生巩固所学知识。
9. 布置课后作业:布置相关作业,帮助学生进一步巩固知识。
六、教学评价1. 评价方法:采用课堂提问、作业批改、期中考试和期末考试相结合的方式进行评价。
2. 评价内容:(1) 基本概念和原理的理解。
(2) 力学定律的应用能力。
(3) 空间想象能力和图形表达能力。
(4) 实际问题解决能力。
3. 评价标准:(1) 课堂提问:积极参与,回答问题准确。
(2) 作业批改:题目正确,解题过程清晰。
七、教学难点与解决策略1. 教学难点:(1) 静力学方程的灵活运用。
(2) 物体受力的合成与分解方法的掌握。
工程力学教案

第一章静力学基础力学包括静力学,动力学,运动学三部分,静力学主要研究物体在力系作用下的平衡规律,静力学主要讨论以下问题:1.物体的受力分析;2.力系的等效.与简化;3. 力系的平衡问题。
第1讲§ 1 - 1静力学的基本概念§1-2静力学公理【目的与要求】1 、使学生对静力学基本概念有清晰的理解,并掌握静力学公理及应用范围。
2、会利用静力学静力学公理解决实际问题。
【重点、难点】1、力、刚体、平衡等概念;2、正确理解静力学公理。
一、静力学的基本概念1、力和力系的概念一)力的概念1)力的定义:力是物体间的相互作用,这种作用使物体运动状态或形状发生改变。
(举例理解相互作用)2)力的效应:○1外效应(运动效应):使物体的运动状态发生变化。
(举例)○2内效应(变形效应):使物体的形状发生变化。
(举例)3)力的三要素:大小、方向、作用点。
力是定位矢量4)力的表示:○1图示○2符号:字母+箭头如:F二)力系的概念1)定义:作用在物体上的一组力。
(举例)2)力系的分类○1按力的的作用线现在空间分布的形式: A 汇交力系 b 平行力系 c 一般力系○2按力的的作用线是否在同一平面内 A 平面力系 B 空间力系3)等效力系与合力A 等效力系 ——两个不同力系,对同一物体产生相同的外效应,则称之B 合力——若一个力与一个力系等效,则这个力称为合力2.刚体的概念:1)定义:在力的作用下保持其大小和形状不发生变化。
2)理解:刚体为一力学模型。
3.平衡的概念:1)平衡——物体相对惯性参考系(如地面)静止或作匀速直线运动.2)平衡力系——作用在刚体上使物体处于平衡状态的力系。
3平衡条件——平衡力系应满足的条件。
二.静力学公里(一)公理一:二力平衡公里作用在刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力的大小相等,方向相反,且作用在同一直线上。
使刚体平衡的充分必要条件二力构件:在两个力作用下处于平衡的物体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绪 论 课题 第1讲——绪论 学时 1学时教学目的要求1、掌握工程力学的任务、地位、作用和学习方法,可变形固体的基本假设,工程力学的研究对象(杆件),杆件变形的形式。
2.理解工程力学的研究对象(杆件)的几何特征,使学生对工程力学这门课程的任务、研究对象有一个全面的概念。
3.了解工程的发展简史和学习本课程的方法。
主要内容工程力学的研究内容 重点难点变形固体及其基本假设 教学方法和手段以讲授为主,使用电子教案 课后作业练习 预习:第一章 静力学基本概念 一、工程力学的研究对象建筑物中承受荷载而起骨架作用的部分称为结构。
结构是由若干构件按一定方式组合而成的。
组成结构的各单独部分称为构件。
例如:支承渡槽槽身的排架是由立柱和横梁组成的刚架结构,如图1-1a 所示;单层厂房结构由屋顶、楼板和吊车梁、柱等构件组成,如图1-1b 所示。
结构受荷载作用时,如不考虑建筑材料的变形,其几何形状和位置不会发生改变。
结构按其几何特征分为三种类型:(1)杆系结构:由杆件组成的结构。
杆件的几何特征是其长度远远大于横截面的宽度和高度。
(2)薄壁结构:由薄板或薄壳组成。
薄板或薄壳的几何特征是其厚度远远小于另两个方向的尺寸。
(3)实体结构:由块体构成。
其几何特征是三个方向的尺寸基本为同一数量级。
(a ) (b )图0-1工程力学的研究对象主要是杆系结构。
二、工程力学的研究内容和任务工程力学的任务是研究结构的几何组成规律,以及在荷载的作用下结构和构件的强度、刚度和稳定性问题。
研究平面杆系结构的计算原理和方法,为结构设计合理的形式,其目的是保证结构按设计要求正常工作,并充分发挥材料的性能,使设计的结构既安全可靠又经济合理。
进行结构设计时,要求在受力分析基础上,进行结构的几何组成分析,使各构件按一定的规律组成结构,以确保在荷载的作用下结构几何形状不发生发变。
结构正常工作必须满足强度、刚度和稳定性的要求。
强度是指抵抗破坏的能力。
满足强度要求就是要求结构的构件在正常工作时不发生破坏。
刚度是指抵抗变形的能力。
满足刚度要求就是要求结构的构件在正常工作时产生的变形不超过允许范围。
稳定性是指结构或构件保持原有的平衡状态的能力。
满足稳定性要求就是要求结构的构件在正常工作时不突然改变原有平衡状态,以免因变形过大而破坏。
按教学要求,工程力学主要研究以下几个部分的内容。
(1)静力学基础。
这是工程力学的重要基础理论。
包括物体的受力分析、力系的简化与平衡等刚体静力学基础理论。
(2)杆件的承载能力计算。
这部分是计算结构承载能力计算的实质。
包括基本变形杆件的内力分析和强度、刚度计算,压杆稳定和组合变形杆件的强度、刚度计算。
(3)静定结构的内力计算。
这部分是静定结构承载能力计算和超静定结构计算的基础。
包括研究结构的组成规律、静定结构的内力分析和位移计算等。
(4)超静定结构的内力分析。
是超静定结构的强度和刚度问题的基础。
包括力法、位移法、力矩分配法和矩阵位移法等求解超静定结构内力的基本方法。
三、刚体、变形固体及其基本假设工程力学中将物体抽象化为两种计算模型:刚体和理想变形固体。
刚体是在外力作用下形状和尺寸都不改变的物体。
实际上,任何物体受力的作用后都发生一定的变形,但在一些力学问题中,物体变形这一因素与所研究的问题无关或对其影响甚微,这时可将物体视为刚体,从而使研究的问题得到简化。
理想变形固体是对实际变形固体的材料理想化,作出以下假设:(1)连续性假设。
认为物体的材料结构是密实的,物体内材料是无空隙的连续分布。
(2)均匀性假设。
认为材料的力学性质是均匀的,从物体上任取或大或小一部分,材料的力学性质均相同。
(3)向同性假设。
认为材料的力学性质是各向同性的,材料沿不同方向具有相同的力学性质,而各方向力学性质不同的材料称为各向异性材料。
本教材中仅研究各向同性材料。
按照上述假设理想化的一般变形固体称为理想变形固体。
刚体和变形固体都是工程力学中必不可少的理想化的力学模型。
变形固体受荷载作用时将产生变形。
当荷载撤去后,可完全消失的变形称为弹性变形;不能恢复的变形称为塑性变形或残余变形。
在多数工程问题中,要求构件只发生弹性变形。
工程中,大多数构件在荷载的作用下产生的变形量若与其原始尺寸相比很微小,称为小变形。
小变形构件的计算,可采取变形前的原始尺寸并可略去某些高阶无穷小量,可大大简化计算。
综上所述,工程力学把所研究的结构和构件看作是连续、均匀、各向同性的理想变形固体,在弹性范围内和小变形情况下研究其承载能力。
第一章静力学的基本概念第一节力、刚体和平衡的概念静力学是研究物体的平衡问题的科学。
主要讨论作用在物体上的力系的简化和平衡两大问题。
所谓平衡,在工程上是指物体相对于地球保持静止或匀速直线运动状态,它是物体机械运动的一种特殊形式。
一、刚体的概念工程实际中的许多物体,在力的作用下,它们的变形一般很微小,对平衡问题影响也很小,为了简化分析,我们把物体视为刚体。
所谓刚体,是指在任何外力的作用下,物体的大小和形状始终保持不变的物体。
静力学的研究对象仅限于刚体,所以又称之为刚体静力学。
二、力的概念力的概念是人们在长期的生产劳动和生活实践中逐步形成的,通过归纳、概括和科学的抽象而建立的。
力是物体之间相互的机械作用,这种作用使物体的机械运动状态发生改变,或使物体产生变形。
力使物体的运动状态发生改变的效应称为外效应,而使物体发生变形的效应称为内效应。
刚体只考虑外效应;变形固体还要研究内效应。
经验表明力对物体作用的效应完全决定于以下力的三要素:(1)力的大小是物体相互作用的强弱程度。
在国际单位制中,力的单位用牛顿(N)或千牛顿(kN),1kN=103N。
(2)力的方向包含力的方位和指向两方面的涵义。
如重力的方向是“竖直向下”。
“竖直”是力作用线的方位,“向下”是力的指向。
(3)力的作用位置是指物体上承受力的部位。
一般来说是一块面积或体积,称为分布力;而有些分布力分布的面积很小,可以近似看作一个点时,这样的力称为集中力。
如果改变了力的三要素中的任一要素,也就改变了力对物体的作用效应。
既然力是有大小和方向的量,所以力是矢量。
可以用一带箭头的线段来表示,如图1-1所示,线段AB 长度按一定的比例尺表示力F 的大小,线段的方位和箭头的指向表示力的方向。
线段的起点A 或终点B 表示力的作用点。
线段AB 的延长线(图中虚线)表示力的作用线。
本教材中,用黑体字母表示矢量,用对应字母表示矢量的大小。
一般来说,作用在刚体上的力不止一个,我们把作用于物体上的一群力称为力系。
如果作用于物体上的某一力系可以用另一力系来代替,而不改变原有的状态,这两个力系互称等效力系。
如果一个力与一个力系等效,则称此力为该力系的合力,这个过程称力的合成;而力系中的各个力称此合力的分力,将合力代换成分力的过程为力的分解。
在研究力学问题时,为方便地显示各种力系对物体作用的总体效应,用一个简单的等效力系(或一个力)代替一个复杂力系的过程称为力系的简化。
力系的简化是刚体静学的基本问题之一。
第二节 静力学的基本公理所谓公理就是无需证明就为大家在长期生活和生产实践中所公认的真理。
静力学公理是静力学全部理论的基础。
公理一 二力平衡公理作用于同一刚体上的两个力成平衡的必要与充分条件是:力的大小相等,方向相反,作用在同一直线上。
可以表示为:F=-F /或F+F /=0此公理给出了作用于刚体上的最简力系平衡时所必须满足的条件,是推证其它力系平衡条件的基础。
在两个力作用下处于平衡的物体称为二力体,若物体是构件或杆件,也称二力构件或二力杆件简称二力杆。
公理二 加减平衡力系公理在作用于刚体的任意力系中,加上或减去平衡力系,并不改变原力系对刚体作用效应。
推论一 力的可传性原理作用于刚体上的力可以沿其作用线移至刚体内任意一点,而不改变该力对刚体的效应。
证明:设力F 作用于刚体上的点A ,如图1-2所示。
在力F 作用线上任选一点B ,在点B 上加一对平衡力F 1和F 2,使F 1= - F 2=F 则F 1、F 2、F 构成的力系与F等效。
将平衡力系F 、F 2减去,则F 1与F 等效。
此时,相当于力F 已由点A 沿作用线移到了点B 。
由此可知,作用于刚体上的力是滑移矢量,因此作用于刚体上力的三要素为大小、方向和作用线。
图1-1图1-2公理三 力的平行四边形法则作用于物体上同一点的两个力可以合成为作用于该点的一个合力,它的大小和方向由以这两个力的矢量为邻边所构成的平行四边形的对角线来表示。
如图1-3a 所示,以F R 表示力F 1和力F 2的合力,则可以表示为:F R =F 1+F 2。
即作用于物体上同一点两个力的合力等于这两个力的矢量合。
在求共点两个力的合力时,我们常采用力的三角形法则:(如图1-3b )所示。
从刚体外任选一点a 作矢量ab 代表力F 1,然后从b 的终点作bc 代表力F 2,最后连起点a与终点c 得到矢量ac ,则ac 就代表合力矢F R 。
分力矢与合力矢所构成的三角形abc 称为力的三角形。
这种合成方法称为力三角形法则。
推论二 三力平衡汇交定理刚体受同一平面内互不平行的三个力作用而平衡时,则此三力的作用线必汇交于一点。
证明:设在刚体上三点A 、B 、C 分别作用有力F 1、 F 2、F 3,其互不平行,且为平衡力系,如图1-4所示,根据力的可传性,将力F 1和F 2移至汇交点O ,根据力的可传性公理,得合力F R 1,则力F 3与F R 1平衡,由公理一知,F 3与F R1必共线,所以力F 1的作用线必过点O 。
公理四 作用与反作用公理两个物体间相互作用力,总是同时存在,它们的大小相等,指向相反,并沿同一直线分别作用在这两个物体上。
物体间的作用力与反作用力总是同时出现,同时消失。
可见,自然界中的力总是成对地存在,而且同时分别作用在相互作用的两个物体上。
这个公理概括了任何两物体间的相互作用的关系,不论对刚体或变形体,不管物体是静止的还是运动的都适用。
应该注意,作用力与反作用力虽然等值、反向、共线,但它们不能平衡,因为二者分别作用在两个物体上,不可与二力平衡公理混淆起来。
公理五 刚化原理变形体在已知力系作用下平衡时,若将此变形体视为刚体(刚化),则其平衡状态不变。
此原理建立了刚体平衡条件与谈形体平衡条件之间的关系,即关于刚体的平衡条件,对于变形体的平衡来说,也必须满足。
但是,满足了刚体的平衡条件,变形体不一定平衡。
例如一段软绳,在两个大小相等,方向相反的拉力作用下处于平衡,若将软绳变成刚杆,平衡保持不变。
把过来,一段刚杆在两个大小相等、方向相反的压力作用下处于平衡,而绳索在此压力下则不能平衡。
可见,刚体的平衡条件对于变形体的平衡来说只是必要条件而不是充分条件。
第三节 约束与约束反力工程上所遇到的物体通常分两种:可以在空间作任意运动的物体称为自由体,如飞机、火箭等;受到其它物体的限制,沿着某些方向不能运动的物体称为非自由体。