结晶学与矿物学 第二章 晶体生长模型

合集下载

晶体生长模型ppt课件

晶体生长模型ppt课件

a.纯水中石盐晶形的影响
16
4.粘度
粘度的加大,会防碍涡流 的产生,溶质的供给只能通过扩 散的方式来进行,造成物质供给 不足。产生骸晶。
石盐的骸晶
17
5. 结晶速度 结晶速度大,则结晶中心增多,晶体长的 细小,且往往长成针状、树枝状。反之,结晶速 度小,晶体长得粗大。
6.生长顺序与生长空间
18
第五节 歪晶与面角守恒定 律
1.歪晶 偏离理想形态的晶体。
a
b
石英的理想晶体 石英的歪晶
19
2.面角守恒定律
r ∧ m =141.47° r∧z =133°44′ m∧m =120° a b
石英的理想晶体 石英的歪晶
“同种晶体之间, 对应晶面间的夹角恒等”
20
注意:晶面夹角与面角(晶面法线的夹角)的区别! 它们互为补角!
21
思考题
1.简述晶体生长的“层生长”理论。由此可以解 释 哪些晶体生长现象。
2.布拉维法则的内容是什么?
3.晶体颗粒越大,晶面越多,对吗?
22
斯里兰卡蓝宝石中的环带
9
4)
阶梯状生长
10
2.螺旋生长理论
石墨表面的 生长螺纹 晶体中存在螺旋位错,形成二面凹角
生长台阶围绕螺旋位错轴线螺旋状前进
11
第三节 晶面发育理论
一、布拉维法则
实际晶体的晶面常常平行于面网结点密度最大的 面网。 为什么?
面网密度: AB>DC>BC 生长速度: AB<DC<BC
火山玻璃脱玻化形成的雏晶
石墨
金刚石
非晶质体向晶体的 转变
同质多象转变
5
第二节
晶体的生长理论

结晶学与矿物学-晶体生长简介

结晶学与矿物学-晶体生长简介

➋ 在一个晶体上,各晶面间相对的 生长速度与其本身的面网密度成反比。
即 面网密度越Βιβλιοθήκη 的晶面,其生长速度越慢;而 面网密度小的晶面的生长速度则快, 以至最终消失了。
∴ 晶体上得以保存下来的晶面 是面网密度大的晶面。
实际晶体为面网密度大的面网所包围。
小结:
1.重点: 晶体生长和晶面发育的3个基本理论:
按空间格子规律,自发地集结成体积达 一定大小但仍极其微小的微晶粒即晶核。
一、层生长理论
晶体的自限性是晶体在生长过程中
按格子构造中的某些原子面网逐层 平行生长的结果。
层生长理论:科塞尔-斯特兰斯基二维成核理论。
在理想条件下,晶体的生长过程是在晶核 的基础上先长完一条行列,再长相邻的行列,
长满一层面网,再开始长第二层面网, 逐层地向外平行推移。当生长停止时, 其最外层的面网便表现为实际晶面。
意义: 解释:
➊ 晶体自发地长成面平、棱直的
规则的凸几何多面体;(晶体的自限性)
➋ 矿物晶体的环带构造;
➌ 同种矿物的不同晶体对应晶面之间 的夹角不变;(面角守恒定律)
➍ 生长锥或砂钟状构造。
注意: 实际晶体生长并非完全按照 二维生长机制进行,往往一层未长完 另一层又开始生长。
(过饱和度或过冷却度低时)
这意味着,即使是在溶液的过饱和度很低
的情况下,晶体仍可以按螺旋生长机理 而不断地生长。
➋ 晶体按螺旋生长模型生长最终会 在晶面上形成各种各样的螺旋纹。
三、布拉维法则
晶体上的实际晶面 平行于对应空间格子中 面网密度大的面网,且面网密度越大, 相应晶面的重要性也越大。
注意:
➊ 晶面的重要性, 可由晶面本身的大小, 在各个晶体上出现的频数, 以及是否平行于解理面等来衡量。

02晶体生长结晶学与矿物学讲解

02晶体生长结晶学与矿物学讲解
长程有序(long-range order) 即晶体内部的原子排列具有 延绵不断的有序性; 反之叫短程有序 (罗谷风,2010)
准晶体 Quasicrystal:
Encyclopæ dia Britannica
quasicrystal, also called quasi-periodic crystal, matter formed atomically in a manner somewhere between the amorphous solids of glasses (special forms of metals and other minerals, as well as common glass) and the precise pattern of crystals. Like crystals, quasicrystals contain an ordered structure, but the patterns are subtle and do not recur at precisely regular intervorder,结晶学概念。指整体性的有序现象。 例如在一个单晶体的范围内,质点的有序分布延伸到整个晶格 的全部,亦即从整个晶体范围来看,质点的分布都是有序的。
教科书上(李胜荣,2012) 在晶体中若每种质点(黑点或圆圈)在整个图形中各自都呈现 规律的周期性重复。把周期重复的点用直线联结起来,可获 得平行四边形网格。可以想像,在三维空间,这种网格将构 成空间格子,这种在图形中贯彻始终的规律称为远程规律或 长程有序。
long-range order
McGraw-Hill Dictionary of Scientific & Technical Terms

结晶学与矿物学前六章

结晶学与矿物学前六章

结晶学&矿物学通论第一章、晶体与晶体的基本性质1、结晶学:又作晶体学,以晶体为研究对象。

我们主要研究晶体显微和宏观空间的对称规律、研究晶体的共同规律不涉及具体的晶体种类。

特点:空间性抽象性逻辑性共性。

2、矿物学:矿物晶体为研究对象,主要研究各具体矿物晶体的成分、物理性质、成因特点等。

特点:经验性、感性、具体性、归纳分类性、个性3、晶体具有远程规律但没有重复周期这是什么意思呢?在晶体中一种质点周围的另一种质点的排列相同,即每个质点都被分布于三角定点的三个圆圈所围绕,而每个圆圈均居于以两个质点为端点的直线中央的质点的局部分布规律性叫做进程有序或短程有序。

质点排布方式在整个晶体中贯穿始终的规律成为长程有序或远程有序。

4、准晶体与晶体、非晶体的关系?晶体:内部质点在三维空间呈周期性平移重复排列而形成的格子构造的固体,既具有近程有序又具有远程有序。

非晶体:质点虽然可以是短程有序的,但不存在远程规律,与液体的结构相似,如玻璃。

准晶体:不是介于晶体与非晶体之间的过渡态、特殊太。

原子呈无序排列。

非晶体与晶体不同的是它没有固定的熔点,而且有的是各向同性5、导出空间格子的方法:首先在晶体结构中找出相当点,再将相当点按照一定的规律连接起来就形成了空间格子,相当点(两个条件:1、性质相同,2、周围环境相同。

)6、空间格子与具体的晶体结构是什么关系?可以认为具体的晶体结构是多套空间格子组成的。

空间格子仅仅是一个体现晶体结构中的周期重复规律的几何图形,比具体晶体结构要简单的多。

7、空间格子的要素:★结点: 空间格子中的点,代表具体晶体结构中的相当点.★行列: 结点在直线上的排列.(引出: 结点间距)★面网: 结点在平面上的分布.(引出: 面网间距、面网密度,它们之间的关系)8、面网间距依次减小,面网密度也是依次减小的.所以: 面网密度与面网间距成正比.★平行六面体(晶胞): 结点在三维空间形成的最小单位(引出: 晶胞参数:a, b, c; α,β,γ,也称为轴长与轴角)平行六面体的形状一共有7种,对应有7套晶胞参数的形式,也对应7个晶系。

2-2.2晶体生长理论部分全解

2-2.2晶体生长理论部分全解

3.由固相直接转为固相
环境的变化可以引起矿物的成分在固态情况下产生改组, 使原矿物的颗粒变大或生成新的矿物。这种再结晶可有以下 几种情况: 1)同质多象转变 某种晶体在热力学条件改变时,转变为另一种在新条件 下稳定的晶体,它们在转变前后的成分相同,但晶体结构不 同。 2) 原矿物晶粒逐渐变大 如由细粒方解石组成的石灰石与岩浆接触时,受热结晶成 为由粗粒方解石晶体组成的大理岩。 3)固溶体分解 在一定温度下固熔体可以分解成为几种独立的矿物。 如由一定比例的闪锌矿和黄铜矿在高温时组成为均一相的固 熔体,而在低温时就分离为两种独立的矿物。
第一篇 矿物通论
适用专业:矿物加工工程
3)轴角 各晶轴之间有一定的夹角关系,结晶学中规定两个晶 轴正端的夹角称为轴角,分别用α、β、γ表示。
在三晶轴定向中
α=y∧z轴 β= z轴∧ x轴, γ= x轴∧ y轴
在四晶轴定向中
α = β= y轴∧ z轴= z轴∧ x轴= μ轴∧ z轴=90°
γ= x轴∧ y轴= y轴∧ μ轴= μ轴∧ x轴=120 °
工艺矿物学Ⅰ
第一篇 矿物通论
适用专业:矿物加工工程
层生长的特点
1.晶体常生长成面平、棱直的多面体形态。 2.在晶体生长过程中,环境会有变化,不同时刻生成的晶体 在物理性质和成分等方面可能有细微的变化,因而在晶体的 端面上常常可以看到带状构造,晶面是平行向外推移生长的。 3.由于晶面是平行向外推移生长的,所以同种矿物不同晶体 上对应晶面间的夹角不变。 4.晶体由小长大,许多晶面向外平行移动的轨迹形成以晶体 中心为顶点的锥状体,称为生长锥。
理想晶体的生长过程
在晶芽的基础上,落入质点根据引力大小落在相应位
置,长完一条行列再长相邻的行列,长满一层面网再长相 邻的面网,整个面网成层向外平移。 当晶体停止生长时,其最外层的面网就是实际晶面。 每两个相邻面网相交的公共行列就是实际晶棱。 整个晶体被晶面包围,形成占有一定空间的封闭几何多 面体形态,表现出晶体的 自限性。

矿石的晶体学和晶体生长机制

矿石的晶体学和晶体生长机制
结晶相与结晶度的控制
添加标题
温度:影响晶体的生长速度和结晶度
添加标题
压力:影响晶体的生长速度和结晶度
添加标题
溶液浓度:影响晶体的生长速度和结晶度
添加标题
杂质:影响晶体的生长速度和结晶度
添加标题
晶体生长环境:影响晶体的生长速度和结晶度
矿石的晶体生长实验研究方法
04
实验设备与技术
实验设备:包括显微镜、电子显微镜、X射线衍射仪等
矿石的晶体学和晶体生长机制
,
汇报人:
目录
矿石的晶体学基础
矿石的晶体生长机制
矿石的晶体生长影响因素
矿石的晶体生长实验研究方法
矿石的晶体生长应用与前景
矿石的晶体学基础
01
晶体定义与分类
添加标题
晶体:具有规则几何形状和周期性结构的固体
添加标题
晶体分类:单晶、多晶、准晶、非晶
添加标题
单晶:由一个晶胞组成的晶体
技术方法:包括扫描电子显微镜、透射电子显微镜、X射线衍射等
实验步骤:包括样品制备、实验操作、数据分析等
实验结果:包括晶体生长速度、晶体形态、晶体结构等
实验过程与操作
实验材料准备:选择合适的矿石样品,准备实验仪器和设备
01
02
实验步骤:按照实验方案进行,包括样品处理、晶体生长、观察和记录等步骤
实验结果分析:对实验结果进行分析,得出结论
添加标题
多晶:由多个晶胞组成的晶体
添加标题
准晶:具有非周期性结构的晶体
添加标题
非晶:没有规则几何形状和周Hale Waihona Puke 性结构的固体晶体结构与性质
晶体结构与性质的关系:矿石的晶体结构与其性质密切相关,不同的晶体结构具有不同的性质

第二章 晶体生长模型

第二章 晶体生长模型

1669年丹麦学者N.Steno 研究石英和赤铁矿晶体,发现
同种物质的晶体,其对应晶面间的角度守恒
重要发现,为几何结晶学研究奠定基础
2-16
r
z
m
m m
r
z
r
r
石英的理想晶体
m z
歪晶
m
2-17
本章概要
1.晶体生长途径 2.晶体生长二个理论:层生长、螺旋生长理论 3.晶面发育理论:布拉维法则、周期键链 4.影响晶体生长外因、几何淘汰率 5.面角守恒定律
晶体存在强键链。晶体平行键链生长,键力最强的方向生长 最快;平行强键链最多的面常成为晶面。
比较 K S F 面成长速度
K面:三个方向键链,生长速度最快,消失快 S面:二个方向键链 F面:一个方向键链,生长速度最慢易成为晶面
2-12

第四节
影响晶体生长的外部因素
涡流与介质流动方向 温度 杂质 pH值 黏度 结晶速度 生长顺序、生长空间 应力作用
2-9
晶面生长速度与面网密度关系
3 A a 1 B
面网密度小
A
C
B
2
生长速度
C
D b
D
面网密度小生长速度快,晶面消失快; 面网密度大生长速度慢,易保留下来成为晶面。 理想状态,不考虑外界条件 2-10
B C D C B D
A A
E
A B
E
晶面交角和生长速度对晶面发育的约束
2-11
3. 周期键链(PBC)理论 periodic bond chain 1955年P.Hartman and N.G.Perdok提出
1.层生长理论 layer growth --W.Kossel—I.N.Stranski二维成核理论 质点优先进入顺序: (1)1 > 2 > 3

结晶学 第二章 晶体生长简介

结晶学 第二章 晶体生长简介
螺旋生长理论模型bcf理论模型该模型认为晶面上存在螺旋位错露头点可以作为晶体生长的台阶源可以对平坦面的生长起着催化作用这种台阶源永不消失因此这种台阶源永不消失因此不需要形成二维核这样便成功地解释了晶体在很低过饱和度下仍能生长这一实验现象
第二章 晶体生长简介
一、成核
成核是一个相变过程,即在母液相中形成固相小晶 芽,这一相变过程中体系自由能的变化为: ΔG=ΔGv+ΔGs 式中△Gv为新相形成时体自由能的变化,且△Gv< 0, △GS为新相形成时新相与旧相界面的表面能,且 △GS>0。 也就是说,晶核的形成,一方面由于体系从液相转 变为内能更小的晶体相而使体系自由能下降,另一 方面又由于增加了液 - 固界面而使体系自由能升高。
层生长过程
但是,实际晶体生长不可能达到这么理想的情况,也可能 一层还没有完全长满,另一层又开始生长了,这叫阶梯状生长, 最后可在晶面上留下生长层纹或生长阶梯。 阶梯状生长是属于层生长理论范畴的。
总之,层生长理论的中心思想是:晶体生长过程是晶面层 层外推的过程。 但是,层生长理论有一个缺陷:当将这一界面上的所有 最佳生长位置都生长完后,如果晶体还要继续生长,就必须在 这一平坦面上先生长一个质点,由此来提供最佳生长位置。这 个先生长在平坦面上的质点就相当于一个二维核,形成这个二 维核需要较大的过饱和度,但许多晶体在过饱和度很低的条件 下也能生长,为了解决这一理论模型与实验的差异,弗兰克 (Frank)于1949年提出了螺旋位错生长机制。
只有当ΔG <0时,成核过 程才能发生,因此,晶 核是否能形成,就在于 ΔGv与ΔGs的相对大小。 见图8-1: 体系自由能由升高到 降低的转变时所对应 的晶核半径值rc称为 临界半径。
思考:怎么理解在晶核很小时表面能大于体自由能, 而当晶核长大后表面能小于体自由能?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2-13
第五节 晶簇与几何淘汰率


生长速度最大方向与基底平面垂 直的晶体继续生长



Ⅱ Ⅰ Ⅰ
2-14


第六节
歪晶和面角守恒定律
1. 歪晶 distorted crystal
r
z
m
m
r
z
m
r
r
m z
m
石英的理想晶体
歪晶
2-15
2.面角恒等定理
law of constancy of angle
b
c
d
e
f
螺旋生长模型
2-8
第三节 晶面发育的二个理论 布拉维法则和周期键链理论

何种面网发育成晶面?

1.布拉维法则
--法国结晶学家A.bravis 提出:实际晶体的面网常 常是由晶体格子构造中面网密度大的面网发育成的。
2-9
晶面生长速度与面网密度关系
3 A a 1 B
面网密度小
A
C
B
2
生长速度
如火山喷气,雪花等
2. 液相---固相
熔体中结晶,如岩浆岩,金属晶体 溶液中结晶,如温度降低,水分蒸发,化学反应
2-2
第一节

晶体生长的途径
3 固相----晶体
非晶体—晶体 晶体—晶体:同质多相、固溶体分离、再结晶
2-3

第二节
晶体的层生长和螺旋生长
晶体生长的二个重要理论,晶体生长模型
1.层生长理论 layer growth --W.Kossel—I.N.Stranski二维成核理论 质点优先进入顺序: (1)1 > 2 > 3
3
2 1 1
二面凹角
一般位置
三 面 凹 角
(2)质点
行列
面网
(3)层层向外 2-4


Ⅲ Ⅱ Ⅰ
石英的环带结构
0
3m m
2-5
2. 螺旋生长理论spiral growth
晶面上的螺旋纹
2-6
螺旋位错
F.C.Frank,W.K.Burton 等人提出。
位错—凹角—行列—螺 旋生长 凹角 2-7
a
晶体存在强键链。晶体平行键链生长,键力最强的方向生长 最快;平行强键链最多的面常成为晶面。
比较 K S F 面成长速度
K面:三个方向键链,生长速度最快,消失快 S面:二个方向键链 F面:一个方向键链,生长速度最慢易成为晶面
2-12

第四节
影响晶体生长的外部因素
涡流与介质流动方向 温度 杂质 pH值 黏度 结晶速度 生长顺序、生长空间 应力作用
C
D b
D
面网密度小生长速度快,晶面消失快; 面网密度大生长速度慢,易保留下来成为晶面。 理想状态,不考虑外界条件 2-10
B
C
D C B D
A A
E
A B
E
晶面交角和生长速度对晶面发育的约束
2-11
3. 周期键链(PBC)理论 periodic bond chain 1955年P.Hartman and N.G.Perdok提出
第二章 晶体生长模型与面角守恒定律
本章概要
1.晶体生长途径 2.晶体生长二个理论:层生长、螺旋生长理论 3.晶面发育理论:布拉维法则、周期键链 4.影响晶体生长外因、几何淘汰率 5.面角守恒定律
2-1
第一节
晶体生长的途径
The ways of crystal formation 1. 气相----固相
2-1

本章结束 第三章
2-19
1669年丹麦学者N.Steno 研究石英和赤铁矿晶体,发现
同种物质的晶体,其对应晶面间的角度守恒
重要发现,为几何结晶学研究奠定基础
2-16
r
z
m
m m
r
z
r
r
m z
m
石英的理想晶体
歪晶
2-17
本章概要
1.晶体生长途径 2.晶体生长二个理论:层生长、螺旋生长理论 3.晶面发育理论:布拉维法则、周期键链 4.影响晶体生长外因、几何淘汰率 5.面角守恒定律
相关文档
最新文档