第一章-有理数全章综合测试

合集下载

第一章 有理数单元检测卷(解析版)

第一章 有理数单元检测卷(解析版)

第1章《有理数》一、选择题(共36分)1.2023的相反数是( )A .12023B .2023-C .2023D .12023-【答案】B【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:2023的相反数是2023-,故选:B .【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.2.中国是最早采用正负数表示相反意义的量、并进行负数运算的国家.若收入500元记作500+元,则支出237元记作( )A .237+元B .237-元C .0元D .474-元【答案】B【分析】根据相反意义的量的意义解答即可.【详解】∵收入500元记作500+元,∴支出237元记作237-元,故选B .【点睛】本题考查了相反意义的量,正确理解定义是解题的关键.3.2022年河南省凭借6.13万亿元的经济总量占据全国各省份第五位,占全国的5.0%,将数据“6.13万亿”用科学记数法表示为( )A .86.1310´B .106.1310´C .126.1310´D .146.1310´【答案】C【分析】科学记数法的表示形式为10n a ´的形式,其110a £<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:将数据“6.13万亿”用科学记数法表示为126.1310´.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ´的形式,其中110a £<,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.下列说法正确的是( )A .0既是正数又是负数B .0是最小的正数C .0既不是正数也不是负数D .0是最大的负数【答案】C【分析】根据有理数的分类判断即可.【详解】∵0既不是正数也不是负数,故选C.【点睛】本题考查了零的属性,熟练掌握0既不是正数也不是负数是解题的关键.5.点A 为数轴上表示3的点,将点A 向左移动9个单位长度到B ,点B 表示的数是( )A .2B .−6C .2或−6D .以上都不对【答案】B【分析】根据数轴上的平移规律即可解答【详解】解:∵点A 是数轴上表示3的点,将点A 向左移9个单位长度到B ,∴点B 表示的数是:396-=-,故选B .【点睛】本题主要考查了数轴及有理数减法法则,掌握数轴上的点左移减,右移加是解题关键.6.哈尔滨市2023年元旦的最高气温为2℃,最低气温为8-℃,那么这天的最高气温比最低气温高( )A .10-℃B .6-℃C .6℃D .10℃【答案】D【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可.【详解】解:根据题意,得:()282810--=+=,\这天的最高气温比最低气温高10℃,故选:D .【点睛】本题考查了有理数的减法的应用,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.7.把()()()()8452--++---写成省略加号的形式是( )A .8452-+-+B .8452---+C .8452--++D .8452--+【答案】B 【分析】观察所给的式子,要写成省略加号的形式,即是将式子中的括号去掉即可.【详解】解:根据有理数的加减混合运算的符号省略法则化简,得,()()()()28452845---+---=--++.故选:B .【点睛】本题考查有理数的加减混合运算,熟练掌握去括号的法则:括号前是正号,去括号时,括号里面的各项都不改变符号;括号前是负号,去括号时,括号里面的各项都要改变符号是解题的关键.8.下列各对数中,不相等的一对数是( )A .()33-与33-B .33-与33C .()43-与43-D .()23-与23【答案】C【分析】根据有理数的乘方和绝对值的概念,逐一计算即可.【详解】解:()3327-=-,3327-=-,2727-=-,故A 不符合题意;3327-=,3327=,2727=,故B 不符合题意;()4381-=,4381-=-,8181¹-,故C 符合题意;()239-=,239=,99=,故D 不符合题意,故选:C .【点睛】本题考查了有理数的乘方和绝对值的概念,熟练掌握计算法则是解题的关键.9.用四舍五入法按要求对0.30628分别取近似值,其中错误的是( )A .0.3(精确到0.1)B .0.31(精确到0.01)C .0.307(精确到0.001)D .0.3063(精确到0.0001)【答案】C【分析】根据近似数的精确度对各选项进行判断即可.【详解】解:0.30628精确到0.1是0.3,A 选项正确,不符合题意;0.30628精确到0.01是0.31,B 选项正确,不符合题意;0.30628精确到0.001是0.306,C 选项错误,符合题意;0.30628精确到0.0001是0.3063,D 选项正确,不符合题意.【点睛】本题考查了近似数的精确度,熟练掌握四舍五入法及精确度的概念是解题的关键.10.若计算式子1(27)()3-W V 的结果为最大,则应分别在 ,△中填入下列选项中的( )A .+,-B .´,-C .¸,-D .-,¸【答案】D【分析】将四个选项中的运算符号分别代入式子中进行运算,通过比较结果即可得出结论.【详解】解:当选取A 选项的符号时,111(27)()99333+--=+=;当选取B 选项的符号时,111(27)()1414333´--=+=;当选取C 选项的符号时,12113(27)()37321¸--=+=;当选取D 选项的符号时,1(27)()5(3)153-¸-=-´-=,∵1113151493321>>>,当选取D 选项的符号时,计算式子1(27)(3-W V 的结果最大,故选:D .【点睛】本题主要考查了有理数的混合运算,熟练掌握有理数的混合运算法则是解题的关键.11.如图,点A 、B 均在数轴上,且点,A B 所对应的实数分别为a 、b ,若0a b +>,则下列结论一定正确的是( )A .0ab >B .0a b ->C .0a b >D .0b >【答案】B【分析】根据0a b +>,可知,a b 可能同号,也可能异号,而a b >恒成立,即可求解.【详解】∵0a b +>,∴a b >-,即在数轴上,b -在a 的左侧,∴0b b a <<-<或0b b a -<<<,∴,a b 可能同号,也可能异号,而a b >恒成立,∴0a b ->一定正确,【点睛】本题考查了数轴上点的位置及其大小关系,熟练掌握数轴上右边的数总比左边的数大是解题的关键.12.若a 、b 互为相反数,c 、d 互为倒数,m 的倒数是它本身,则232cd m a b m+++的值为A .5B .5或2C .5或1-D .不确定【答案】C 【分析】根据相反数,倒数的性质,可得0,1a b cd +== ,1m =± ,再代入,即可求解.【详解】解:∵a 、b 互为相反数,c 、d 互为倒数,∴0,1a b cd +== ,∵m 的倒数是它本身,∴1m =± ,∴21m = ,当1m = 时,2331221051cd m a b m ´+++=´++=,当1m =- 时,2331221011cd m a b m ´+++=´++=--,∴232cd m a b m+++的值为5或1-.故选:C【点睛】本题主要考查了相反数,倒数的性质,熟练掌握一对互为相反数的和等于0,互为倒数的两个数的乘积为1是解题的关键.二、填空题(共18分)13.6-等于_____.【答案】6【分析】根据绝对值的定义进行求解即可.【详解】解:66-=,故答案为:6.【点睛】本题主要考查了求一个数的绝对值,熟知正数和0的绝对值是它本身,负数的绝对值是它的相反数是解题的关键.14.某种试剂的说明书上标明保存温度是(102)±℃,请你写出一个适合该试剂保存的温度:___________℃.【答案】10(答案不唯一)【分析】根据正数和负数的定义即可解答.【详解】解:由题意,可知适合该试剂的保存温度为8~12℃,在此温度范围内均满足条件.故答案为10(答案不唯一).【点睛】本题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.15.把2.674精确到百分位约等于______.【答案】2.67【分析】把千分位上的数字进行四舍五入即可.【详解】解:2.674 2.67».故答案为:2.67.【点睛】本题主要考查了近似数,解题的关键是熟练掌握定义,经过四舍五入得到的数叫近似数.16.计算:()14877-¸´=_____________.【答案】4849-【分析】根据有理数的乘除运算法则,从左往右依次计算即可.【详解】解:()111484874877749-¸´=-´´=-,故答案为:4849-.【点睛】本题考查了有理数的乘除运算.解题的关键在于明确运算顺序.易错点是先计算乘法然后计算除法.17.已知实数m ,n 在数轴上的对应点的位置如图所示,则m _______n .(填“<”、“>”或“=”)【答案】<【分析】根据在数轴上右边的数据大于左边的数据即可得出答案.【详解】解: m Q 在n 的左边,m n \<,故答案为:<.【点睛】此题考查了实数与数轴,正确掌握数轴上数据大小关系是解题关键.18.若()2180x y ++-=,则x y -的值为______.【答案】9-【分析】利用非负数的性质得出x y ,的值,代入计算得出答案.【详解】解:()2180x y ++-=Q ,1080x y \+=-=,,解得:18x y =-=,,189x y \-=--=-,故答案为:9-.【点睛】本题考查了非负数的性质,掌握非负数的意义和性质是正确解答的关键.三、解答题(共66分)19.(6分)计算:(1)23(22)(21)+---;(2)(3)(2)16(8)-´-+¸-.【答案】(1)22(2)4【分析】(1)利用加法的运算律进行求解即可;(2)先计算乘除,再计算加减即可求解.【详解】(1)解:23(22)(21)+---232221=-+22=;(2)解:(3)(2)16(8)-´-+¸-()62=+-4=.【点睛】本题考查了有理数的混合运算,解题的关键是掌握相应的运算法则.20.(6分)将下列各数在数轴上表示出来,并用“<”连接.2153,|3|,2,0,,(222----+【答案】详见解析,25312()0|3|222-<-<-+<<<-【分析】由绝对值,相反数,有理数的乘方的概念,找到各数在数轴上对应点的位置即可.【详解】解:25312(0|3|222-<-<-+<<<-.【点睛】本题考查数轴的概念,相反数,绝对值,有理数的乘方的概念,关键是准确确定各数在数轴上对应点的位置.21.(6分)计算:()()21125|2|953--´--+-¸.【答案】26-【分析】原式先算乘方及绝对值,再算乘除,最后算加减即可得到结果.【详解】解:()()21125|2|953--´--+-¸41227=---26=-.【点睛】此题考查了有理数的混合运算,其运算顺序为:先乘方,再乘除,最后加减,有括号先算括号里边的,同级运算从左到右依次进行,熟练掌握运算法则是解题关键.22.(6分)数学老师布置了一道思考题:115626æöæö-¸-ç÷ç÷èøèø,小明仔细思考了一番,用了一种不同方法解决了这个问题,小明解法如下:原式的倒数为()151156226626æöæöæö-¸-=-´-=ç÷ç÷ç÷èøèøèø,所以11516262æöæö-¸-=ç÷ç÷èøèø.(1)请你判断小明的解答是否正确(2)请你运用小明的解法解答下面的问题计算:111112346æöæö-¸-+ç÷ç÷èøèø【答案】(1)小明的解答正确(2)13-【分析】(1)正确,利用倒数的定义判断即可;(2)求出原式的倒数,即可确定出原式的值.【详解】(1)解:小明的解答正确,理由为:一个数的倒数的倒数等于原数;(2)解:111134612æöæö-+¸-ç÷ç÷èøèø()11112346æö=-+´-ç÷èø()()()111121212346=´--´-+´-432=-+-3=-,∴11111123463æöæö-¸-+=-ç÷ç÷èøèø.【点睛】本题主要考查了有理数乘法和除法计算,熟练掌握相关计算法则是解题的关键.23.(6分)如果a ,b ,c 是非零有理数,求式子222||||||||a b c abc a b c abc -+++的所有可能的值.【答案】3±或5±【分析】根据绝对值的性质和有理数的除法法则分情况讨论即可.【详解】解:根据题意,当000a b c >>>,,时,22222215||||||||a b c abc a b c abc -+++=++-=;当000a b c >><,,时,22222213||||||||a b c abc a b c abc -+++=+-+=;当000a b c ><>,,时,22222213||||||||a b c abc a b c abc -+++=-++=;当000a b c <>>,,时,22222213||||||||a b c abc a b c abc -+++=-+++=;当000a b c <<>,,时,22222213||||||||a b c abc a b c abc -+++=--+-=-;当000a b c ><<,,时,22222213||||||||a b c abc a b c abc -+++=---=-;当000a b c <><,,时,22222213||||||||a b c abc a b c abc -+++=-+--=-;当000a b c <<<,,时,22222215||||||||a b c abc a b c abc -+++=---+=-;综上所述,式子222||||||||a b c abc a b c abc -+++的所有可能的值为3±或5±.【点睛】本题考查了有理数的乘法和绝对值的性质,熟练掌握绝对值的性质以及有理数的除法法则是解题的关键.24.(8分)某工厂一周内,计划每天生产自行车100辆,实际每天生产量如下表(以计划量为标准,增加的车辆记为正数,减少的车辆记为负数):星期周一周二周三周四周五周六周日增减(辆)1-+32-+4+75-10-(1)生产量最多的一天比最少的一天多生产多少辆?(2)本周一共生产了多少辆自行车?【答案】(1)17辆;(2)696辆.【分析】(1)由表可知,生产最多的一天为()1007+辆,最少的一天为()10010-,两者相减即可;(2)先用100乘以7,再将多生产或少生产的数量相加,两者相加即可.【详解】(1)()()10071001071017+--=+=(辆)∴生产量最多的一天比最少的一天多生产17辆;(2)()100713247510´+-+-++--7004=-696=(辆)∴本周一共生产了696辆自行车.【点睛】本题考查了正数和负数、有理数的四则运算在实际问题中的应用,根据表中数据正确列式,是解题的关键.25.(8分)如图,在数轴上有A、B、C三个点,请回答下列问题.(1)A、B两点间距离是,B、C两点间距离是,A、C两点间距离是.(2)若将点A向右移动5个单位到点D,B、C、D这三点所表示的数哪个最大?最大数比最小数大多少?【答案】(1)3 ;4;7(2)C点表示的数最大,最大数比最小数大4【分析】(1)根据数轴上两点之间的距离公式进行解答即可;(2)求出点D表示的数,然后再进行比较即可.【详解】(1)解:点A表示的数为4-,点B表示的数为1-,点C表示是数为3,则()AB=---=-+=,14143()31314BC=--=+=,()AC=--=+=,34347故答案为:3;4;7.-+=,点B表示的数为1-,点C表示(2)解:将点A向右移动5个单位到点D,则点D表示是数为451是数为3,>>-,∵311∴表示最大数的是点C,表示最小数的是点B()--=+=,31314∴最大数比最小数大4.【点睛】本题主要考查了用数轴上点表示有理数,数轴上两点之间的距离,解题的关键是数形结合找出点A、B、C在数轴上所表示的有理数.26.(10分)数学实验室:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离=-.AB a b利用数形结合思想回答下列问题:(1)数轴上表示2和6两点之间的距离是 ,数轴上表示1和4-的两点之间的距离是 .(2)数轴上表示x 和3-的两点之间的距离表示为 .数轴上表示x 和6的两点之间的距离表示为 .(3)若x 表示一个有理数,则14x x -++的最小值= .(4)若x 表示一个有理数,且134x x ++-=,则满足条件的所有整数x 的是 .(5)若x 表示一个有理数,当x 为 ,式子234x x x ++-+-有最小值为 .【答案】(1)4,5(2)3x +,6x -(3)5(4)1-或0或1或2或3(5)3,6【分析】(1)根据数轴上A 、B 两点之间的距离AB a b =-列式计算即可;(2)根据数轴上A 、B 两点之间的距离AB a b =-列式计算即可;(3)根据数轴上两点之间的距离的意义可知x 在4-与1之间时,14x x -++有最小值5;(4)根据数轴上两点之间的距离的意义可知当x 在1-与3之间时(包含1-和3),134x x ++-=,然后可得满足条件的所有整数x 的值;(5)根据数轴上两点之间的距离的意义可知当3x =时,234x x x ++-+-有最小值,最小值为2-到4的距离,然后可得答案.【详解】(1)解:数轴上表示2和6两点之间的距离是264-=,数轴上表示1和4-的两点之间的距离是()145--=,故答案为:4,5;(2)解:数轴上表示x 和3-的两点之间的距离表示为()33x x --=+,数轴上表示x 和6的两点之间的距离表示为6x -;故答案为:3x +,6x -;(3)解:根据数轴上两点之间的距离的意义可知:14x x -++可表示为点x 到1与4-两点距离之和,∴当x 在4-与1之间时,14x x -++有最小值5,故答案为:5;(4)解:根据数轴上两点之间的距离的意义可知:134x x ++-=表示为点x 到1-与3两点距离之和为4,∴当x 在1-与3之间时(包含1-和3),134x x ++-=,∴满足条件的所有整数x 的是1-或0或1或2或3;故答案为:1-或0或1或2或3;(5)解:根据数轴上两点之间的距离的意义可知:234x x x ++-+-可看作是数轴上表示x 的点到2-、3、4三点的距离之和,∴当3x =时,234x x x ++-+-有最小值,最小值为2-到4的距离,即246--=,故答案为:3,6.【点睛】本题考查了数轴上两点之间的距离公式,绝对值的几何意义,正确理解数轴上两点之间的距离以及绝对值的几何意义是解题的关键.27.(10分)【概念学习】规定:求若干个相同的有理数(均不等0)的除法运算叫做除方,如333¸¸,()()()()2222-¸-¸-¸-等.类比有理数的乘方,我们把333¸¸记作3③,读作“3的圈3次方”,()()()()2222-¸-¸-¸-记作()2-④,读作“2-的圈4次方”.一般地,把()0n aa a a a ¸¸¸××׸¹1442443个记作,读作“a 的圈n 次方”.【初步探究】(1)直接写出计算结果:4=③______,412æö-=ç÷èø______.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(此处不用作答)(2)试一试:仿照上面的算式,将下列运算结果直接写成乘方幂的形式()3-=④______;5=⑥______;12æö=ç÷èø⑤______.(3)想一想:将一个非零有理数a 的圈n 次方写成乘方幂的形式等于______.(4)比较:()9-⑤______()3-⑦(填“>”“<”或“=”)【灵活应用】(5)算一算:211334æöæö-¸-´-ç÷ç÷èøèø⑤④.【答案】(1)14,4;(2)213æö-ç÷èø,415æöç÷èø,32;(3)21n a -æöç÷èø;(4)>;(5)163【分析】(1)根据题目给出的定义,进行计算即可;(2)将有理数除法转化为乘法,再写成幂的形式即可;(3)从(2)中总结归纳相关规律即可;(4)将两数变形,求出具体值,再比较大小即可;(5)先将除方转化为乘方,再运用有理数混合运算的方法进行计算即可.【详解】解:(1)144444=¸¸=③,411111422222æöæöæöæöæö-=-¸-¸-¸-=ç÷ç÷ç÷ç÷ç÷èøèøèøèøèø,故答案为:14,4;(2)()()()()()21333333æö--¸-¸-¸-=-è=ç÷ø④;4155555555æö=¸¸¸¸¸=ç÷èø⑥31111112222222æö=¸¸¸¸=ç÷èø⑤;故答案为:213æö-ç÷èø,415æöç÷èø,32;(3)a 的圈n 次方为:21...n n a a a a a a -æö¸¸¸¸=ç÷èø1442443个;(4)()31172999æö-=-=-ç÷èø⑤,()51124333æö-=-=-ç÷èø⑦,∵729243>,∴11729243->-,∴()9-⑤>()3-⑦,故答案为:>;(5)211334æöæö-¸-´-ç÷ç÷èøèø⑤④()232334=-¸-´()92716=-¸-´163=.【点睛】本题考查了有理数的除法运算,乘方运算,以及有理数混合运算,正确理解相关运算法则是解题的关键.。

初一数学第一章有理数综合测试卷(含答案)

初一数学第一章有理数综合测试卷(含答案)

初一数学第一章有理数综合测试卷(时间100分钟,120分)一、填空题:(1-5题每空1分,6-18题每题2分,共38分)1、数轴上原点右边4厘米处的点表示的有理数是32,那么,数轴上原点左边10厘米处的点表示的有理数是________ 。

2、若三个有理数的乘积为负数,在这三个有理数中,有_____个负数。

3、一个数的相反数是它本身,这个数是_________;一个数的倒数是它本身,这个数是_________。

4、如果数轴上的点A 对应有理数为-2,那么与A 点相距3个单位长度的点所对应的有理数为____ __ _____。

5、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么习惯上将地下第一层记作 ;数-2的实际意义为 ,数+9的实际意义为 。

6、绝对值小于2008的所有整数的和 。

7、已知∣x ∣=8,∣y ∣=2,则(x + y )²= 。

8、已知∣a ∣=3,∣b ∣=2,且ab <0,则a ﹣b= 。

9、若2x −3与x=______。

10、如果|2x -y -2)²=0 成立时,则x ²+y ² = 。

11、(﹣1) +(﹣1) = (n 为正整数)。

12、计算:(1−2)×(2−3)×(3−4)×……×(100−101)= 。

13、如果|a|=3, |b|=5,且a>b ,那么a= ,b= 。

14、已知a 与b 互为相反数,b 与c 互为相反数,如果c=-6,那么a 的值是 。

15、如果n 是正整数,那么(−1) +(−1) = 。

16、若x 与2y 互为相反数,-y 与-3z 互为倒数,m 是任何正偶次幂都等于本身的数,求代数式2x+4y-3 y z+m ²的值 。

17、如果|a+b|+|a-2|=0,求|3a-2b|= 。

18、若a>0,b<0,且|a|>|b|,则a+b 0。

第一章-有理数单元练习题(含答案)

第一章-有理数单元练习题(含答案)

第5题图第一章有理数检测题(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分) 1. 下列说法正确的个数是( )①一个有理数不是整数就是分数; ②一个有理数不是正数就是负数; ③一个整数不是正的,就是负的; ④一个分数不是正的,就是负的. A.1 B. 2 C. 3 D. 42. 在211-,2.1,2-,0 ,()2--中,负数的个数有( ) A.2个 B.3个 C.4个 D.5个 3.一个数加上12-等于5-,则这个数是( )A .17 B.7 C.17- D.7- 4. 下列算式中,积为负分数的是( )A.)5(0-⨯B.)10()5.0(4-⨯⨯C.)2()5.1(-⨯D.)32()51()2(-⨯-⨯- 5. 有理数a 、b 在数轴上对应的位置如图所示,则( ) A .<0 B .>0C .-0 D .->06. 在-5,-101,-3. 5,-0.01,-2,-212各数中,最大的数是( )A.-212B.-101C .-0.01 D.-5 7.某世界级大气田,储量达6 000亿立方米,6 000亿立方米用科学记数法表示为( ) A .6×102亿立方米;B .6×103亿立方米;C .6×104亿立方米;D .0.6×104亿立方米 8. 用四舍五入法按要求对0.05019分别取近似值,其中错误的是( ) A .0.1(精确到0.1) B .0.05(精确到百分位) C .0.05(精确到千分位) D .0.0502(精确到0.0001)9. 小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二 次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是( ) A.90分 B.75分 C.91分 D.81分10. 已知=73.96,若2=0.739 6,则的值等于( )A. 0.86B. 86C.±0.86D.±86 二、填空题(每小题3分,共24分) 11.31的倒数是____;321的相反数是____. 12. 在数轴上,点所表示的数为2,那么到点的距离等于3个单位长度的点所表示的数是. 13. 若0<a <1,则a ,2a ,1a的大小关系是 . 14. +5.7的相反数与-7.1的绝对值的和是___________.15. 已知每辆汽车要装4个轮胎,则51只轮胎至多能装配______辆汽车. 16.-9、6、-3这三个数的和比它们绝对值的和小_________.17. 一家电脑公司仓库原有电脑100台,一个星期调入、调出的电脑记录是:调入38台,调出42台,调入27台,调出33台,调出40台,则这个仓库现有电脑_________台. 18. 规定a ﹡,则(-4)﹡6的值为 .三、解答题(共46分) 19.(6分)计算下列各题: (1)72(2)4)(3)2)(4)2)220. (6分)如果规定a ﹡b =,求2﹡(-3)的值.21. (6分)比较下列各对数的大小. (1)54-与43-; (2)54+-与54+-; (3)25与52; (4)232⨯与2)32(⨯.22. (6分)10袋小麦以每袋150千克为准,超过的千克数记为正数,不足的千克数记为负数,分别记为:,与标准质量相比较,这10袋小麦总计超过或不足多少千克?10袋小麦总质量是多少千克?每袋小麦的平均质量是多少千克?23. (6分)若<0,求32---+-x y y x 的值.24.(8分)小虫从某点O 出发在一直线上来回爬行,假定向右爬行的路程记为正,向左爬行的路程记为负,爬过的路程依次为:(单位:cm ).问:(1)小虫是否回到原点O?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中,如果每爬行1 cm奖励一粒芝麻,则小虫共可得到多少粒芝麻?25. (8分)同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:(1)求|5-(-2)|=______.(2)找出所有符合条件的整数,使得=7,这样的整数是_____.参考答案1.B 解析:整数和分数统称为有理数,所以①正确;有理数包括正数、负数和零,所以②③不正确;分数包括正分数和负分数,所以④正确.故选B.2.A 解析:负数有211-,2-,所以有2个.故选A. 3.B 解析:一个数加上12-等于5-,所以-5减去-12等于这个数,所以这个数为7.故选B.4.D 解析:A 中算式乘积为0;B 中算式乘积为-20;C 中算式乘积为-3;D 中算式乘积为.故选D.5.A 解析:是负数,是正数,离原点的距离比离原点的距离大,所以,故选A.6.C 解析:可将这些数标在数轴上,最右边的数最大.也可以根据:负数比较大小,绝对值大的反而小.故选C.7.B 解析:乘号前面的数必须是大于或等于1且小于10的. 8.C 解析:C 应该是0.050. 9.C 解析:小明第四次测验的成绩是故选C.10.C 解析:因为0.739 6=73.96×,73.96×=,所以故选C. 11. 解析:根据倒数和相反数的定义可知的倒数为的相反数是.12.解析:点所表示的数为2,到点的距离等于3个单位长度的点所表示的数有两个,分别位于点的两侧,分别是解析:当0<<1时,14.1.4 解析:的相反数为,的绝对值为7.1,所以+5.7的相反数与-7.1的绝对值的和是15.12 解析:51÷4=12……3.所以51只轮胎至多能装配12辆汽车. 16.24 解析:,,所以.17.50 解析:将调入记为“+”,调出记为“-”,则根据题意有所以这个仓库现有电脑50台.18.-9 解析:根据﹡,得(-4)﹡6.19.解:(1)(2)(3)(4)20.解:2﹡(-3)=21.解:(1)所以(2)=1,=9,所以<.(3)(4)22.分析:将十个数相加,若和为正,则为超过的千克数,若和为负,则为不足的千克数;若将这个数加1 500,则为这10袋小麦的总千克数;再将10袋小麦的总千克数除以10,就为每袋小麦的平均质量.解:∵∴与标准质量相比较,这10袋小麦总计少了2 kg.10袋小麦的总质量是1 500-2=1 498(kg).每袋小麦的平均质量是23.解:当所以原式=-1.24.分析:(1)若将爬过的路程(向右爬行记为正,向左爬行记为负)相加和为0,则小虫回到原点.(2)可画图直观看出.(3)将所给数的绝对值相加即为所奖励的芝麻数.解:(1)∵,∴小虫最后回到原点O.(2)12㎝. (3)5+3-+10++8-+6-+12++10-=54,∴小虫可得到54粒芝麻.25.分析:(1)直接去括号,再按照去绝对值的方法去绝对值就可以了. (2)要求的整数值可以进行分段计算,令或时,分为3段进行计算,最后确定的值. 解:(1)7. (2)令或,则或.当时,,∴, . 当时,,∴ ,,∴ .当2时,,∴ ,,∴,∴ 综上所述,符合条件的整数有:-5,-4,-3,-2,-1,0,1,2.。

第一章《有理数》全章 练习题 (含答案)

第一章《有理数》全章 练习题 (含答案)

第一章《有理数》全章 练习题 (含答案)一、选择题1. 2024的倒数是( )A .2024B .2024−C .12024−D .120242. 中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,将这个数用科学记数法表示为( )A .84410⨯B .84.410⨯C .94.410⨯D .104.410⨯3.如图,数轴上点A 和点B 分别表示数a 和b ,则下列式子正确的是( )A .0a >B .0ab >C .0a b −>D .0a b +<4.下列几种说法中,不正确的有( )个.①绝对值最小的数是0;②最大的负有理数是﹣1;③数轴上离原点越远的点表示的数就越小;④平方等于本身的数只有0和1;⑤倒数是本身的数是1和﹣1.A .4B .3C .2D .15. 若|m ﹣2|+(n +3)2=0,则m ﹣n 的值为( )A .﹣5B .﹣1C .1D .56. 如图是嘉淇同学的练习题,他最后得分是( )A .20分B .15分C .10分D .5分6. 如图,数轴上,A B 两点分别对应有理数,a b ,则下列结论:①0ab <;②0a b +>;③1a b −>;④||||0a b −<,⑤220a b −<.其中正确的有( )A .1个B .2个C .3个D .4个8.如图是一个数值转换机, 若输入x 的值是1−, 则输出的结果y 为( )A .7B .8C .10D .129. 观察1211−=,2213−=,3217−=,42115−=,52131−=,⋯,归纳各计算结果中的个位数字的规律,猜测202221−的个位数字是( )A .1B .3C .7D .510. 计算 1111111111131422363524⎡⎤⎛⎫⎛⎫−+÷÷−⨯+−÷ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的值为( ) A .2514 B .2514− C .114 D .114− 二、填空题(本大题共6小题)11. -56____ -67(填>,<,=) 12. 如果全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得分80分应记作_____13. 数轴上,点A 表示的数是-3,距点A 为4个单位长度的点所表示的数是______.14. 若a 与b 互为相反数,m 与n 互为倒数,则()()220212022b a b mn a ⎛⎫+−+= ⎪⎝⎭ . 15.已知|a |=3,|b |=5,且ab <0,则a +b 的值16. 已知m 、n 两数在数轴上位置如图所示,将m 、n 、﹣m 、﹣n 用“<”连接:____________17.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为 . 18 .若x 是不等于1的实数,我们把11x−称为x 的差倒数, 如2的差倒数是1112=−−,-1的差倒数为()11112=−−, 现已知113x =−,2x 是1x 的差倒数,3x 是2x 的差倒数,4x 是3x 的差倒数,…,依此类推,则2022x = .三、解答题19. 把下列各数填在相应的括号里:﹣8,0.275,227 ,0,﹣1.04,﹣(﹣3),﹣13,|﹣2| 正数集合{ …}负整数集合{ …}分数集合{ …}负数集合{ …}.20 画一条数轴,在数轴上表示下列有理数,并用“<”号把各数连接起来:2.5−,0,-2,-(-4),-3.5,321. (1)(-534)+(+237)+(-114)-(-47) (2)()155********⎛⎫−+−⨯− ⎪⎝⎭ (3)-14+14×[2×(-6)-(-4)2] (4)(-2)3×(-34)+30÷(-5)-│-3│22. 已知a ,b 互为相反数,c ,d 互为倒数,|m |=2,求代数式2m ﹣(a +b ﹣1)+3cd 的值. .23. 已知x 是最小正整数,y ,z 是有理数,且有| y ﹣2|+|z+3|=0,计算:(1)求x ,y ,z 的值.(2)求3x ﹢y ﹣z 的值.24. 某一出租车一天下午以鼓楼为出发点,在东西方向上营运,向东为正,向西为负, 行车依先后次序记录如下:(单位:km )+9,﹣3,﹣5,+4,﹣8,+6,﹣3,﹣6,﹣4,+7(1)将最后一名乘客送到目地,出租车离鼓楼出发点多远?在鼓楼什么方向?(2)若每千米的价格为2.4元,司机一下午的营业额是多少元?25.已知数轴上三点M ,O ,N 对应的数分别为﹣1,0,3,点P 为数轴上任意点,其对应的数为x .(1)MN 的长为 ; (2)如果点P 到点M 、点N 的距离相等,那么x 的值是: ; (3)如果点P 以每分钟2个单位长度的速度从点O 向左运动,同时点M 和点N 分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动. 设t 分钟时点P 到点M 、点N 的距离相等,求t 的值.参 考 解 答:一、选择题1.D . 2 .C 3.D 4.C 5.D 6.B 7.D 8.A . 9 .B . 10..C二、填空题11. > 12 .-3分 13.1或-7 14.0 15.-2或2 16 .m <﹣n <n <﹣m 17.9900 18 .4三、解答题19. 解:正数集合{ 0.275,227,()3−−,2− …};负整数集合{8−…};分数集合{ 0.275, 227, 1.04−,13− …};负数集合{8−, 1.04−,13− …}.20 解:()2.5 2.5,44,−=−−=在数轴上表示各数如下:∴ 3.5−<2−<0< 2.5−<3<()4−−21. 解:(1)(-534)+(+237)+(-114)-(-47)3134=5124477⎡⎤⎛⎫⎛⎫⎛⎫−+−++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ 734=−+=−(2)()155********⎛⎫−+−⨯− ⎪⎝⎭ ()()()()15573636363629612=⨯−−⨯−+⨯−−⨯− 182030217=−+−+=−(3)-14+14×[2×(-6)-(-4)2] ()1112164=−+⨯−− ()178=−+−=−(4)(-2)3×(-34)+30÷(-5)-│-3│ ()38634⎛⎫=−⨯−+−− ⎪⎝⎭6633=−−=−22. 解:a ,b 互为相反数,c ,d 互为倒数,|m |=2,∴0a b +=,1cd =,2m =±,∴原式=()2201314138⨯−−+⨯=++=或 原式=()()2201314130⨯−−−+⨯=−++=.23. 解:(1)∵x 是最小正整数∴x=1∵|y ﹣2|≥0,|z+3|≥0,且|y ﹣2|+|z+3|=0∴|y ﹣2|=0,|z+3|=0∴y ﹣2=0,z+3=0∴y=2,z=-3.(2)∵x=1,y=2,z=-3∴3x ﹢y ﹣z=3×1+2-(-3)=3+2+3=8.24. 解:(1)9-3-5+4-8+6-3-6-4+7=-3(千米)答:最后出租车离鼓楼出发点3千米,在鼓楼的西方;(2)()9+-3+-5+4+-8++6+-73+6+-4+ 2.4132+−⨯=(元), 答:若每千米的价格为2.4元,司机一个下午的营业额是132元.25.解:(1)MN 的长为3﹣(﹣1)=4.(2)x =(3﹣1)÷2=1;(3)①点P 是点M 和点N 的中点.根据题意得:(3﹣2)t =3﹣1,解得:t =2.②点M 和点N 相遇.根据题意得:(3﹣2)t =3+1,解得:t =4.故t 的值为2或4.故答案为4;1.。

新人教版七年级数学试题第一章《有理数》全章检测120分钟150分

新人教版七年级数学试题第一章《有理数》全章检测120分钟150分

第一章《有理数》全章检测测试题(时间120分钟 满分150分)一、选择题(每题3分,共45分)1、大于–3.5,小于2.5的整数共有( )个。

A.6B.5C.4D.32、如果一个数的相反数比它本身大,那么这个数为 ( )A 、正数B 、负数C 、整数D 、不等于零的有理数3、在有理数中,绝对值等于它本身的数有 ( )A. 1个B. 2个C. 3个D. 无穷多个4. 若ab≠0,则a/b 的取值不可能是 ( )A 0B 1C 2D -25. 在-2,0,1,3这四个数中,比0小的数是( )A 、-2B 、0C 、1D 、36、已知点A 和点B 在同一数轴上, 点A 表示数2-, 又已知点B 和点A 相距5个单位长度, 则点B 表示的数是 ( )A.3B.-7C.3或-7D.3或77、 若两个有理数的和是正数,那么一定有结论( )A . 两个加数都是正数;B .两个加数有一个是正数;C . 一个加数正数,另一个为零D .两个加数不能同为负数8. 下列说法正确的个数是 ( ) ①一个有理数不是整数就是分数 ②一个有理数不是正数就是负数 ③一个整数不是正的,就是负的 ④一个分数不是正的,就是负的。

A 1B 2C 3D 4 2.9、甲、乙、丙三地的海拔高度分别为20米,-15米和-10米,那么最高的地方比最低的地方高( )A.10米B.15米C.35米D.5米10、下列说法中正确的是 ( )A.a -一定是负数B.a 一定是负数C.a -一定不是负数D.2a -一定是负数11、每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为15000000千米,将150000000千米用科学记数法表示为( )A .0.15×910千米B .1.5×810千米C .15×710千米D .1.5×710千米12. 下列说法正确的是 ( )。

①0是绝对值最小的有理数 ②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数 ④两个数比较,绝对值大的反而小 。

人教版七年级上册数学第一章有理数《单元综合检测题》带答案

人教版七年级上册数学第一章有理数《单元综合检测题》带答案

第一章有理数测试卷一、选择题(本大题共10小题,每小题3分,共30分)1.每年5月是西安樱桃上市的季节,如果+3吨表示运入仓库的樱桃吨数,那么运出5吨樱桃表示为()A. -2吨B. +2吨C. -5吨D. +5吨2.下列四个数中,与-5的和为0的数是()A. -5B. 5C. 0D. -3.大于-0.5而小于4的整数共有()A. 6个B. 5个C. 4个D. 3个4.-|-2017|的相反数是()A. 2017B.C. -2017D. -5.在下列数:+3、+(-2.1)、-、-π、0、-、中,正数有()A. 1个B. 2个C. 3个D. 4个6.下列算式正确的是()A. (-14)-5=-9B. 0 -(-3)=3C. (-3)-(-3)=-6D. ∣5-3∣=-(5-3)7.2016年春节黄金周海南旅游大幅增长,据统计,2月7至13日,全省共接待游客约3710000人次,将3710000用科学记数法表示为()A. 3.71×107B. 0.371×107C. 3.71×106D. 37.1×1068.下列各对数中,互为相反数的一组是()A. -32与-23B. (-3)2与-32C. -23与(-2)3D. (-3×2)3与-3×239.13世纪数学家斐波那契的《计算书》中有这样一个问题:”在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为( )A. 42B. 49C. 76D. 7710.如图,数轴上的A、B、C三点所表示的数分别为a、b、c,AB=BC,如果|a|>|c|>|b|,那么该数轴的原点O 的位置应该在()A. 点A的左边B. 点A与点B之间C. 点B与点C之间D. 点C的右边二、填空题(本大题共6小题,每小题3分,共18分)11.计算的结果为__.12.已知,数轴上表示点A、B、C、D的四个数分别是-1,2,3,-4,离原点距离最远的点是_______.13.用四舍五入法得到的近似数5.10×104精确到________位.14.已知有理数-7,8,-12,通过有理数的加减混合运算,若使运算结果最大,则可列式为__________.15.已知n为正整数,计算:=__________.16.已知31=3,32=9,33=27, 34=81,35=243,36=729,….推测32017的个位数字是__.三、解答题(本大题共6小题,共52分)17.计算:(1)2×(-5)+22-3÷;(2)48×().18.用数轴上的点表示下列各有理数:-1.5,-22,-(-),+5,-|-3|,并把它们按从大到小的顺序用”>”号连接起来.19.北京航天研究院所属工厂制造飞船上的一种螺母,要求螺母内径可以有±0.02 mm的误差,抽查5个螺母,超过规定内径的毫米数记作正数,检查结果(单位:mm)如下:+0.01,-0.018,+0.026,-0.025,+0.015. (1)指出哪些产品符合要求.(2)指出符合要求的产品中哪个质量较好一些.20.根据如图所示的数轴,解答下面问题.(1)写出点A表示的数的绝对值;(2)对A,B点进行如下操作:先把点A,B表示的数乘﹣,再把所得数对应的点向右平移1个单位长度,得到对应点A′,B′,在数轴上表示出点A′,B′.21.我国约有9 600 000平方千米的土地,平均1平方千米的土地一年从太阳得到的能量相当于燃烧150 000吨煤所产生的能量.(1)一年内我国土地从太阳得到的能量相当于燃烧多少吨煤所产生的能量?(2)若1吨煤大约可以发出8000度电,那么(1)中的煤大约发出多少度电?(结果用科学记数法表示)22.某公司6天内货品进出仓库的吨数如下,其中正数表示进库的吨数:+31,-32,-16,+35,-38,-20.(1)经过这6天,仓库里的货品是_________(填”增多了”或”减少了”).(2)经过这6天,仓库管理员结算发现仓库里还有货品460吨,那么6天前仓库里有货品多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少元装卸费?附加题(共20分,不计入总分)23.已知a是有理数,下列各式:(-a)2=a2;-a2=(-a)2;(-a)3=a3;|-a3|=a3.其中一定成立的有()A. 1个B. 2个C. 3个D. 4个24.符号”f”表示一种运算,它对一些数的运算如下:f(1)=1+,f(2)=1+,f(3)=1+,f(4)=1+…(1)利用以上运算规律,写出f(2017)=__________;(2)计算:f(1)•f(2)•f(3)•…•f(100)的值.答案与解析一、选择题(本大题共10小题,每小题3分,共30分)1.每年5月是西安樱桃上市的季节,如果+3吨表示运入仓库的樱桃吨数,那么运出5吨樱桃表示为()A. -2吨B. +2吨C. -5吨D. +5吨【答案】C【解析】【分析】根据正负号表示相反意义的量解答.【详解】解:依据题意,”+”表示”运入”,则运出为”-”,运出5吨为-5,故选择C.【点睛】本题考查了正负号的实际意义.2.下列四个数中,与-5的和为0的数是()A. -5B. 5C. 0D. -【答案】B【解析】【分析】互为相反数的两数和为0.【详解】解:由题意可知两数互为相反数,则与-5的和为0的数是5,故选择B.【点睛】本题考查了相反数的性质.3.大于-0.5而小于4的整数共有()A. 6个B. 5个C. 4个D. 3个【答案】C【解析】【分析】由实数的大小关系逐一写出即可.【详解】解:有实数的大小关系可知,大于-0.5而小于4的整数为0,1,2,3,共4个,故选择C.【点睛】本题考查了实数的大小及整数的概念.4.-|-2017|的相反数是()A. 2017B.C. -2017D. -【答案】A【解析】【分析】-|-2017|去绝对值后得-2017,再求该数的相反数即可.【详解】解:-|-2017|去绝对值后得-2017,-2017的相反数为2017,故选择A.【点睛】本题考查了相反数.5.在下列数:+3、+(-2.1)、-、-π、0、-、中,正数有()A. 1个B. 2个C. 3个D. 4个【答案】A【解析】试题分析:因为+(-2.1)=-2.1,-=-9,所以在数:+3、+(-2.1)、-、-π、0、-、中,正数只有+3一个,故选:A.考点:正负数.6.下列算式正确的是()A. (-14)-5=-9B. 0 -(-3)=3C. (-3)-(-3)=-6D. ∣5-3∣=-(5-3)【答案】B【解析】根据有理数的减法,减去一个数等于加上这个数的相反数,可知:(-14)-(+5)=(-14)+(-5)=-19;0-(-3)=0+(+3)=3;(-3)-(-3)=(-3)+3=0;︱5-3︱=5-3=2.故选:B.7.2016年春节黄金周海南旅游大幅增长,据统计,2月7至13日,全省共接待游客约3710000人次,将3710000用科学记数法表示为()A. 3.71×107B. 0.371×107C. 3.71×106D. 37.1×106【答案】C【解析】试题分析:科学记数法的表示形式为a×的形式,其中1≤|a|<10,n为整数.3710000=3.71×.故选:C.考点:科学记数法——表示较大的数.8.下列各对数中,互为相反数的一组是()A. -32与-23B. (-3)2与-32C. -23与(-2)3D. (-3×2)3与-3×23【答案】B【解析】【分析】只有符号不同的两个数互为相反数,对各选项进行整理对比即可.【详解】解:A选项,-32=-9,-23=-8,故不是相反数;B选项,(-3)2=9,-32=9,故是相反数;C选项,-23=-8,(-2)3=-8,故不是相反数;D选项,(-3×2)3=-216,-3×23=-216,故不是相反数;故选择B.【点睛】本题考查了相反数的定义.9.13世纪数学家斐波那契的《计算书》中有这样一个问题:”在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为( ) A. 42 B. 49 C. 76 D. 77【答案】C【解析】试题分析:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.依此即可求解.依题意有,刀鞘数为76.考点:有理数的乘方10. 如图,数轴上的A、B、C三点所表示的数分别为a、b、c,AB=BC,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在()A. 点A的左边B. 点A与点B之间C. 点B与点C之间D. 点C的右边【答案】C【解析】试题分析:当原点在A时,则最大;当原点在点C的右边,则,当原点在点A和点B之间,则最大,则只有当原点在点B和点C之间才符合条件.考点:(1)、数轴;(2)、绝对值二、填空题(本大题共6小题,每小题3分,共18分)11.计算的结果为__.【答案】2【解析】=+(5-3)=2;故答案是2。

人教版数学七年级上册第一章有理数《单元综合检测》(附答案)

人教版数学七年级上册第一章有理数《单元综合检测》(附答案)

人教版七年级上册第一章测试卷考试总分:120 分考试时间:120 分钟一、选择题(共10 小题,每小题 3 分,共30 分)1.下列各对量中,不具有相反意义的是( )A. 胜2局与负3局B. 盈利6万元与亏损8万元C. 向西走3米与向南走3米D. 转盘逆时针转3圈与顺时针转5圈2.红山水库又名“红山湖”,位于老哈河中游,设计库容量亿立方米,现在水库实际库容量亿立方米,是暑期度假旅游的好去处.亿用科学记数法表示为( )A. B. C. D.3.在下列选项中,既是分数,又是负数的是( )A. 9B.C. -0.125D. -724.北京故宫的占地面积约为平方米,即为()平方米.A. 72000B. 720000C. 7200000D. 720000005. 下列语句中,正确的是( )A. 平方等于它本身的数只有1.B. 倒数等于它本身的数只有1.C. 相反数等于它本身的数只有0.D. 绝对值等于它的本身的数只有0.6.如图的数轴上有、、三点,其中为原点,点所表示的数为,根据图中数轴上这三点之间的实际距离进行估计,下列何者最接近点所表示的数( )A. B. C. D.7.等于( )A. B. C. D.8.下列说法正确的是( )A. 最小的有理数是B. 任何有理数都可以用数轴上的点表示C. 绝对值等于它的相反数的数都是负数D. 整数是正整数和负整数的统称9.等于( )A. 2B. -2C. +2D. +110.下列说法正确的个数是( )①既不是正数也不是负数.②是绝对值最小的数.③一个有理数不是整数就是分数.④的绝对值是.A. 1B. 2C. 3D. 4二、填空题(共10 小题,每小题 3 分,共30 分)11.若,,则的值为________.12.某日最高温度是,最低温度是,则这一天的日温差是________.13.计算:________,________,________.14.比与的差大的有理数是________.15.绝对值小于的所有整数的和为________.16.计算:________,________.17.________的倒数等于本身;的倒数为________.18.如果在数轴上表示的点是,那么数轴上到的距离是的点表示的数是________.19.已知四个数:-2,-3,4,-1,任取其中两个数相乘,所得的积的最小值是.20.的倒数是________;的绝对值是________;的平方根是________.三、解答题(共7 小题,共60 分)21.计算下列各题:(1)(2)(3)(4)22.有时灵活运用分配律可以简化有理数运算,使计算又快又准,例如逆用分配律,可使运算大大简便,试逆用分配律计算下列各题:;(2).23.已知a是最大的负整数,b是﹣2的相反数,c与d互为倒数,计算:a+b﹣cd的值.24.一台电子计算机每秒可做次运算,它工作可做多少次运算(结果用科学记数法表示)?25.用四舍五入法按括号内的要求对下列各数取近似值.(1);(精确到万位)(2).(精确到千分位)26.有张写着不同数字的卡片:,,,,,,如果从中任意抽取张.使这张卡片上的数字的积最小,应该如何抽?积又是多少?使这张卡片上的数字的积最大,应该如何抽?积又是多少?27.数学老师布置了一道思考题:“计算”,小红和小明两位同学经过仔细思考,用不同的方法解答了这个问题.小红的解法:原式的倒数为.所以.小明的解法:原式.请你分别用小红和小明的方法计算:.参考答案一、选择题(共10 小题,每小题 3 分,共30 分)1.下列各对量中,不具有相反意义的是( )A. 胜2局与负3局B. 盈利6万元与亏损8万元C. 向西走3米与向南走3米D. 转盘逆时针转3圈与顺时针转5圈【答案】C【解析】【分析】根据相反意义的定义,即可得出结果.【详解】∵向西走与向南走不具有相反意义,向西走与向南走具有相反意义,∴向西走3米与向南走3米不具有相反意义.故选C.【点睛】本题考查了正负数相反意义的定义,牢牢掌握相反意义的定义是解答本题的关键.2.红山水库又名“红山湖”,位于老哈河中游,设计库容量亿立方米,现在水库实际库容量亿立方米,是暑期度假旅游的好去处.亿用科学记数法表示为( )A. B. C. D.【答案】C【解析】【分析】用科学记数法记数时,主要是准确把握标准形式a×10n即可.【详解】解:16.2亿=1620000000=1.62×109.故选C.【点睛】科学记数法的形式是a×10n,其中1≤|a|<10,n是整数,若这个数是大于10的数,则n比这个数的整数位数少1.3.在下列选项中,既是分数,又是负数的是( )A. 9B.C. -0.125D. -72【答案】C【解析】试题分析:A.9 是整数,故不符题意;B.是分数,正数,故不符题意;C.-0.125是分数,负数,符合题意;D.-72是整数;故选C.考点:有理数的分类.4.北京故宫的占地面积约为平方米,即为()平方米.A. 72000B. 720000C. 7200000D. 72000000【答案】B【解析】【分析】根据科学记数法的表示方法,指数是几,小数点向右移动几位,可得答案.【详解】解:=720000.故选B.【点睛】本题考查了根据科学记数法写出原数.5. 下列语句中,正确的是( )A. 平方等于它本身的数只有1.B. 倒数等于它本身的数只有1.C. 相反数等于它本身的数只有0.D. 绝对值等于它的本身的数只有0.【答案】C【解析】A.平方等于它本身的数有1和0,故错误;B.倒数等于它本身的数有1和-1,故错误;C.相反数等于它本身的数只有0.正确;D.绝对值等于它的本身的数有0和正数,故错误;故选C6.如图的数轴上有、、三点,其中为原点,点所表示的数为,根据图中数轴上这三点之间的实际距离进行估计,下列何者最接近点所表示的数( )A. B. C. D.【答案】C【分析】根据数轴上的数据求出OA的长度,从而估算出OB的长度,即可估算出点B表示的数,从而得解. 【详解】解:由数轴的可知:OA=106;∴B点表示的实数为:20OA=2×107;故选C.【点睛】本题考查了数轴与有理数的乘法运算,估算出点B表示的数是解题的关键.7.等于( )A. B. C. D.【答案】A【解析】【分析】表示求-2的相反数.【详解】解:-(+2)=-2.故选A.【点睛】本题考查了求有理数的相反数.8.下列说法正确的是( )A. 最小的有理数是B. 任何有理数都可以用数轴上的点表示C. 绝对值等于它的相反数的数都是负数D. 整数是正整数和负整数的统称【答案】B【解析】分析:利用有理数的概念、数轴上点与有理数的关系、相反数的求法、整数等知识对各选项进行判断;解:A选项有理数包括了正数、0、负数,所以没有最小的有理数,故是错误的;B选项数轴上的点与有理数是一一对应的关系,故是正确的;C选项绝对值等于它的相反数的数有0和负数,故是错误的;D选项整数包括了正整数、0和负整数,故是错误的;故选B。

人教版七年级上册数学第一章有理数综合测试题含答案

人教版七年级上册数学第一章有理数综合测试题含答案

第一章有理数测试卷考试总分: 120 分考试时间: 120 分钟一、选择题(共10 小题,每小题 3 分,共30 分)1. 如果水位升高3m时水位变化记作+3m,那么水位下降3m时水位变化记作( )A. -3mB. 3 mC. 6 mD. -6 m2.用科学记数法表示为的数是()A. 1999B. 199.9C. 0.001999D. 199903.下列说法中正确的是()A. 最小的整数是0B. 有理数分为正数和负数C. 如果两个数的绝对值相等,那么这两个数相等D. 互为相反数的两个数的绝对值相等4.由四舍五入得到的近似数万,下列说法正确的是()A. 精确到千分位B. 精确到百分位C. 精确到万分位D. 精确到百位5.下列说法错误的是()A. 两个数互为倒数,则这两个数的积是B. 有理数的倒数是C. 两个数互为负倒数,则这两个数的积是D. 乘以任何数都等于6.下列计算正确的是()①‚②,③④⑤⑥.A. 2个B. 6个C. 4个D. 5个7.近似数所表示的准确数的范围是()A. 1.25≤A<1.35B. 1.20<A<1.30C. 1.295≤A<1.305D. 1.300≤A<1.3058.下列算式中,运算结果为负数的是()A. B.C. D.9. 3的相反数是()A. ﹣3B. 3C.D.10.下列说法中正确的有()个.①是负分数;②、不是整数;③是非负数:④不是有理数.A. 1B. 2C. 3D. 4二、填空题(共10 小题,每小题 3 分,共30 分)11.一天早晨的气温是,中午的气温比早晨上升了,则中午的气温是________;某人向北走千米,再向南走千米,结果向________走千米.12. 在数轴上,点M表示的数为-2,将它先向右平移4.5个单位,再向左平移5个单位到达N点,则点N 表示的数是________.13.在下列括号中填入适当的数________.14.纽约与北京的时差为﹣13h,李伯伯在北京乘坐中午十二点的航班飞行约20h到达纽约,那么李伯伯到达纽约时间是_____点.15.据相关报道,截止到今年四月,我国已完成万个农村教学点的建设任务.万可用科学记数法为________.16.的相反数是________,的倒数是________,的绝对值是________.17.绝对值小于的所有非负整数的积为________.18.在数-1,2,-3,5,-6中,任取两个数相乘,其中最大的积是_____.19. 用科学记数法表示10300000记作___________.20.已知,互为相反数,,互为倒数,的绝对值等于,则________.三、解答题(共6 小题,每小题10 分,共60 分)21.计算下列各题(1)(2)(3)(4)22.在数轴上表示下列各数:,,,,,,并用”“号把这些数连接起来.23.滴水成河,若滴水积在一起合立方米,现有一条河流总体积为万亿立方米,试求该河流有多少滴水?(用科学记数法表示)24.如图是一个”有理数转换器”(箭头是指有理数进入转换器后的路径,方框是对进入的数进行转换的转换器)当小明输入;;这三个数时,这三次输入的结果分别是多少?你认为当输入什么数时,其输出的结果是?你认为这的”有理数转换器”不可能输出什么数?25.一股民上星期五买进某公司股票股,每股元,下表为本周内每日该股票的涨跌情况(单位:元)星期一二三四五每股涨跌星期三收盘时,每股是________元;本周内每股最高价为________元,每股最低价为________元;已知该股民买进股票时付了‰的手续费,卖出时还需付成交额‰的手续费和‰的交易锐,如果该股民在星期五收盘前将全部股票卖出,他的收益情况如何?26.已知多项式,,其中,马小虎同学在计算”“时,误将”“看成了”“,求得的结果为.求多项式;求出的正确结果;当时,求的值.答案与解析一、选择题(共10 小题,每小题 3 分,共30 分)1. 如果水位升高3m时水位变化记作+3m,那么水位下降3m时水位变化记作( )A. -3mB. 3 mC. 6 mD. -6 m【答案】A【解析】试题分析:因为上升记为+,所以下降记为﹣,所以水位下降3m时水位变化记作﹣3m.故选A.考点:正数和负数.2.用科学记数法表示为的数是()A. 1999B. 199.9C. 0.001999D. 19990【答案】A【解析】【分析】根据n是几,小数点向右移动几位,可得原数.【详解】1.999×103=1999,故选:A.【点睛】本题考查的是科学计数法,熟练掌握科学计数法的定义是解题的关键.3.下列说法中正确的是()A. 最小的整数是0B. 有理数分为正数和负数C. 如果两个数的绝对值相等,那么这两个数相等D. 互为相反数的两个数的绝对值相等【答案】D【解析】试题解析:A、因为整数包括正整数和负整数,0大于负数,所以最小的整数是0错误;B、因为0既不是正数也不是负数,但是有理数,所以有理数分为正数和负数错误;C、因为:如+1和-1的绝对值相等,但+1不等于-1,所以如果两个数的绝对值相等,那么这两个数相等错误;D、由相反数的意义和数轴,互为相反数的两个数的绝对值相等,如|+1|=|-1|=1,所以正确;故选D.考点:1.正数和负数;2.相反数;3.绝对值.4.由四舍五入得到的近似数万,下列说法正确的是()A. 精确到千分位B. 精确到百分位C. 精确到万分位D. 精确到百位【答案】D【解析】【分析】近似数精确到哪一位,应当看末位数字实际在哪一位【详解】数3.05万末尾数字5表示5百,所以,精确到百位.故选D.【点睛】本题考查的是近似数,熟练掌握四舍五入是解题的关键.5.下列说法错误的是()A. 两个数互为倒数,则这两个数的积是B. 有理数的倒数是C. 两个数互为负倒数,则这两个数的积是D. 乘以任何数都等于【答案】B【解析】【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【详解】A. 互为倒数的两个数的积是1,故A正确;B. m是0时,m没有倒数,故B错误;C. 两个数互为负倒数,则这两个数的积是−1,故C正确,D. 0乘任何数都得0,故D正确;故选:B.【点睛】本题考查的是倒数,熟练掌握倒数的定义是解题的关键.6.下列计算正确的是()①‚②,③④⑤⑥.A. 2个B. 6个C. 4个D. 5个【答案】A【解析】【分析】原式各项计算得到结果,即可作出判断.【详解】①,正确;②ƒ③,错误;④,正确;⑤,错误;⑥.则计算正确的有2个,故选A.【点睛】本题考查的是有理数的计算,熟练掌握计算法则是解题的关键.7.近似数所表示的准确数的范围是()A. 1.25≤A<1.35B. 1.20<A<1.30C. 1.295≤A<1.305D. 1.300≤A<1.305【答案】C【解析】【分析】近似值是通过四舍五入得到的:精确到哪一位,只需对下一位数字进行四舍五入.【详解】根据取近似数的方法,得1.30可以由大于或等于1.295的数,0后面的一位数字,满5进1得到;或由小于1.305的数,舍去1后的数字得到,因而1.295A<1.305.故选C.【点睛】本题考查的是近似数,熟练掌握四舍五入的方法是解题的关键.8.下列算式中,运算结果为负数的是()A. B.C. D.【答案】A【解析】【分析】把各个选项中的数化到最简,即可解答本题.【详解】∵−|−1|=−1,故选项A符合题意,∵−(−2)3=−(−8)=8,故选项B不符合题意,∵−(−)=,故选项C不符合题意,∵(−3)2=9,故选项D不符合题意,故选A.【点睛】本题考查的是正负数,相反数和绝对值,熟练掌握它们的定义是解题的关键.9. 3的相反数是()A. ﹣3B. 3C.D.【答案】A【解析】试题分析:根据相反数的含义,可得:3的相反数是:﹣3.故选A.考点:相反数.视频10.下列说法中正确的有()个.①是负分数;②、不是整数;③是非负数:④不是有理数.A. 1B. 2C. 3D. 4【答案】B【解析】【分析】根据有理数的意义与分类逐一分析探讨得出答案即可.【详解】①是负分数,正确;②2、4是整数,所以②错误;③0是非负数,正确;④−1.3是有理数,所以④错误.正确的是①③共2个.故选:B.【点睛】本题考查的是有理数,熟练掌握它的定义是解题的关键.二、填空题(共10 小题,每小题 3 分,共30 分)11.一天早晨的气温是,中午的气温比早晨上升了,则中午的气温是________;某人向北走千米,再向南走千米,结果向________走千米.【答案】(1). 4o C (2). 南【解析】【分析】根据题意列出算式,根据有理数的加法法则计算即可.【详解】−7+(+11)=4,则中午的气温是4 o C ,记向北为正,则向南为负,+4+(−7)=−3,结果向南走3千米,故答案为:4 o C ;南.【点睛】本题考查的是有理数,熟练掌握有理数的计算法则是解题的关键.12. 在数轴上,点M表示的数为-2,将它先向右平移4.5个单位,再向左平移5个单位到达N点,则点N 表示的数是________.【答案】-2.5.【解析】试题解析:数轴上表示-2的点先向右移动4.5个单位的点为:-2+4.5=2.5;再向左移动5个单位的点为:2.5-5=-2.5.考点:数轴.13.在下列括号中填入适当的数________.【答案】【解析】【分析】根据有理数的加减运算法则首先去括号,进而移项计算得出即可.【详解】∵(+32)−(+18)−(+64)=−50,∴−50+32=−18,(+32)−(+18)−−32−(+64)=−18故答案为:−32.【点睛】本题考查的是有理数的加减法,熟练掌握计算法则是解题的关键.14.纽约与北京的时差为﹣13h,李伯伯在北京乘坐中午十二点的航班飞行约20h到达纽约,那么李伯伯到达纽约时间是_____点.【答案】19【解析】根据纽约与北京的时差为﹣13h,可列式求解为:12+20﹣13=32﹣13=19,所以李伯伯到达纽约时间是19点,即晚上7点.故答案为:19.点睛:此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.15.据相关报道,截止到今年四月,我国已完成万个农村教学点的建设任务.万可用科学记数法为________.【答案】【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将5.78万用科学记数法表示为:5.78×104.故答案为:5.78×104.【点睛】本题考查的是科学计数法,熟练掌握科学计数法的定义是解题的关键.16.的相反数是________,的倒数是________,的绝对值是________.【答案】(1). (2). (3).【解析】【分析】根据相反数,绝对值,倒数的概念及性质解题.【详解】的相反数为:,的倒数是,的绝对值是:.【点睛】本题考查的知识点是绝对值、相反数、倒数的定义,解题关键是注意区分概念,不要混淆.17.绝对值小于的所有非负整数的积为________.【答案】【解析】【分析】先求出绝对值小于2.5的所有的非负整数,再求积.【详解】绝对值小于2.5的所有非负整数为-2,-1,0,1,2,之积为0.故答案为:0【点睛】本题考查的知识点是非负整数的概念,解题关键是注意非负整数也包含0.18.在数-1,2,-3,5,-6中,任取两个数相乘,其中最大的积是_____.【答案】18.【解析】试题分析:最大的积是:(﹣3)×(﹣6)=18,故答案为:18.考点:1.有理数的乘法;2.有理数大小比较.19. 用科学记数法表示10300000记作___________.【答案】1.03×107【解析】试题分析:科学计数法是指:a×,且1≤<10,n为原数的整数位数减一.考点:科学计数法20.已知,互为相反数,,互为倒数,的绝对值等于,则________.【答案】或【解析】【分析】由互为相反数,互为倒数,x的绝对值等于2,可得,整体代入即可求值.【详解】互为相反数,,互为倒数,,x的绝对值为2,,;.故答案为:1或5.【点睛】本题考查的知识点是相反数,绝对值,倒数,平方的概念及性质,解题关键是两个相反数的和为0.三、解答题(共6 小题,每小题10 分,共60 分)21.计算下列各题(1)(2)(3)(4)【答案】(1)40;(2);(3)23;(4)-8【解析】【分析】(1)去掉括号,再根据有理数的加、减运算求值即可;(2)取消绝对值符号及小括号,再根据有理数的加、减运算求值即可;(3)根据有理数混合运算的运算顺序,先算出乘、除的值,再相加即可得出结论;(4)先算出乘方的值,再有理数混合运算的运算顺序求值即可得出结论.【详解】解:(1),,;(2),,;,,;(4),,,.【点睛】本题考查的知识点是有理数的混合运算, 绝对值, 有理数的乘方,解题关键是依照运算法则依次进行运算.22.在数轴上表示下列各数:,,,,,,并用”“号把这些数连接起来.【答案】,数轴见解析【解析】【分析】根据数轴上的点表示的数右边的总比左边的大,可得答案.【详解】解:如图,用”“号把这些数连接起来.【点睛】本题考查的知识点是有理数大小比较,解题关键是利用数轴上的点表示的数右边的总比左边的大.23.滴水成河,若滴水积在一起合立方米,现有一条河流总体积为万亿立方米,试求该河流有多少滴水?(用科学记数法表示)【答案】该河流有滴水.【解析】【分析】首先利用科学计数法分别表示出2000和10万亿,然后利用乘法进行计算即可得出答案.【详解】∵10万亿=,2000=,∴滴,即该河流有滴水.【点睛】本题主要考查的是科学计数法的表示方法以及计算法则,属于基础题型.理解科学计数法的方法是解决这个问题的关键.科学计数法是指:,且,n为原数的整数位数减一.24.如图是一个”有理数转换器”(箭头是指有理数进入转换器后的路径,方框是对进入的数进行转换的转换器)当小明输入;;这三个数时,这三次输入的结果分别是多少?你认为当输入什么数时,其输出的结果是?你认为这的”有理数转换器”不可能输出什么数?【答案】(1)当输入时,输出;当输入时,输出;当输入时,输出(2)应输入或(为自然数);(3)输出的数应为非负数【解析】【分析】(1)先判断出3、、0.4与2的大小,再根据所给程序图找出合适的程序进行计算即可;(2)由此程序可知,当输出0时,因为0的相反数及绝对值均为0,所以应输入0;(3)根据绝对值的性质和倒数的定义可找出规律.【详解】解:∵,∴输入时的程序为:,∴的相反数是,的倒数是,∴当输入时,输出;∵.∴输入时的程序为:,∴的相反数是,,∴当输入时,输出;∵,∴输入时的程序为:,的相反数为,的绝对值是∴当输入时,输出.∵输出数为,的相反数及绝对值均为,当输入的倍数时也输出.∴应输入或(为自然数);由图表知,不管输入正数、或者负数,输出的结果都是非负数.所以输出的数应为非负数.【点睛】本题考查的知识点是有理数的混合运算,解题关键是审清题意,根据已知条件进行解答. 25.一股民上星期五买进某公司股票股,每股元,下表为本周内每日该股票的涨跌情况(单位:元)星期一二三四五每股涨跌星期三收盘时,每股是________元;本周内每股最高价为________元,每股最低价为________元;已知该股民买进股票时付了‰的手续费,卖出时还需付成交额‰的手续费和‰的交易锐,如果该股民在星期五收盘前将全部股票卖出,他的收益情况如何?【答案】(1)34.5;(2)35.5;28;(3)889.5元.【解析】【分析】(1)本题先根据题意列出式子解出结果即可.(2)根据要求列出式子解出结果即可.(3)先算出刚买股票后去掉手续费剩余的钱是多少,然后再算出周五卖出股票后所剩的钱,最后再减去当时的钱,剩下的钱就是所收益的.【详解】解:(1)根据题意得:27+4+4.5-1,=35.5-1,=34.5(2)根据题意得:27+4+4.5,=35.527+4+4.5-1-2.5-4,=35.5-1-2.5-4,=28(3)27×1000×(1+1.5‰)=27000×(1+1.5‰)=27040.5(元)28×1000-28×1000×1.5‰-28×1000×1‰=28000-28000×1.5‰-28000×1‰=28000-42-28=27930(元)27930-27040.5.5=889.5(元)故答案为:(1)34.5;(2)35.5;28;(3)889.5元.【点睛】本题考查的知识点是有理数的混合运算,解题关键是在解题时要注意运算数序及符号.26.已知多项式,,其中,马小虎同学在计算”“时,误将”“看成了”“,求得的结果为.求多项式;求出的正确结果;当时,求的值.【答案】(1)(2)【解析】【分析】(1)因为,所以,将代入即可求出;(2)将(1)中求出的与代入,去括号合并同类项即可求;(3)根据(2)的结论,把代入求值即可.【详解】解:∵,,∴;∵,,∴;当时,.【点睛】本题考查的知识点是整式的加减,解题的关键是读懂题意,并正确进行整式的运算.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章有理数全章综合测试一、选择题:
1.下列说法正确的是()
A.所有的整数都是正数B.不是正数的数一定是负数C.0不是最小的有理数D.正有理数包括整数和分数2.1
2
的相反数的绝对值是()
A.-1
2B.2 C.一2 D.1
2
3.有理数a、b在数轴上的位置如图所示,那么下列式子中成立的是()A.a>b B.a <b C.ab>0 D.a
b
>0
4.在数轴上,原点及原点右边的点表示的数是()
A.正数B.负数C.非正数D.非负数
5.如果一个有理数的绝对值是正数,那么这个数必定是()A.是正数B.不是0 C.是负数D.以上都不对
6.下列各组数中,不是互为相反意义的量的是()
A.收入200元与支出20元B.上升l0米和下降7米
C.超过0.05mm与不足0.03m D.增大2岁与减少2升
7.下列说法正确的是()
A.-a一定是负数;B.a定是正数;
C.a一定不是负数;D.-a一定是负数
8.如果一个数的平方等于它的倒数.那么这个数一定是()A.0 B.1 C.-1 D.±1
9.如果两个有理数的和除以它们的积,所得的商为零,那么,这两个有理数()A.互为相反数但不等于零B.互为倒数C.有一个等于零D.都等于零10.若0<m<1,m、m2、1
m
的大小关系是()
A.m<m2<1
m B.m2<m<1
m
C.1
m
<m<m2D.1
m
<m2<m
11.4604608取近似值,保留三个有效数字,结果是()A.4.60 ×106B.4600000 C.4.61 ×106D.4.605 ×106 12.下列各项判断正确的是()
A.a+b一定大于a-b B.若-ab<0,则a、b异号
C.若a3=b3,则a=b D.若a2=b2,则a=b
13.下列运算正确的是()
A.-22÷(一2)2=l B.
3
1
2
3
⎛⎫
- ⎪
⎝⎭
=-81
27
C.-5÷1
3×3
5
=-25 D.31
4
×(-3.25)-63
4
×3.25=-32.5.
14.若a=-2×32,b=(-2×3)2,c=-(2×4)2,则下列大小关系中正确的是()A.a>b>0 B.b>c>a C.b>a>c D.c>a>b 15.若x=2,y=3,则x y+的值为()
A.5 B.-5 C.5或1 D.以上都不对
二、填空题
1.某地气温不稳定,开始是6℃,一会儿升高4℃,再过一会儿又下降1l℃,这时气温是___。

2.一个数的相反数的倒数是-11
3
,这个数是____________.
3.数轴上到原点的距离是3个单位长度的点表示的数是__________.
4.-2的4次幂是_________,144是___________的平方数.
5.若a-=5,则a=__________.
6.若ab>0,bc<0,则ac______0.
7.绝对值小于5的所有的整数的和________.
8.用科学记数法表示13040000应记作_______________;若保留三个有效数字,则近似值为_____________。

9.若1
x-+(y+2)2=0,则x-y=________;
三、解答题
1.列式计算:
(1)-4、-5、+7三个数的和比这三个数绝对值的和小多少?
(2)从-l中减去-5
12,-7
8
,-3
4
的和,所得的差是多少?
2.计算题:
(1)(-12)÷4×(-6)÷2; (2)(-
58)×(-4)2-0.25×(-5)×(-4)3;
(3)11131112
3124244⎛⎫⎛⎫⎛⎫⎛⎫--+----- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
(4)(-3)2÷2
14×(-23)2+4-22×(-13)
(5)()()242126353
+⨯-÷--+24+(-3)2×(-5)
(6)1+3+5+…+99-(2+4+6+…+98).
3.若a=2,b=-3,c是最大的负整数,求a+b-c的值。

4.李老师在学校西面的南北路上从某点A出发来回检查学生的植树情况,设定向南的路程记为正数.向北的路程记为负数,那么李老师所行路程依次为(单位:百米):+12,-l0,+10,-8,-6,-5,-3.
(1)求李老师最后是否回到出发点A?(2)李老师离开出发点A最远时有多少千米? (3)李老师共走了多少千米?
5.在一条东西走向的马路旁,有青少年宫、党校、商场、医院四家公共场所.已知青少年宫在学校东300m处,商场在学校西200m处,医院在学校东500m处,若将马路近似地看作一条直线,以学校为原点,向东为正方向,用1个单位长度表示100m.(1)在数轴上表示四家公共场所的位置.
(2)列式计算青少年宫与商场之间的距离.
6.已知2a +(b+1)4=0,求(a+b)(a2-ab+b2)的值.
7.甲数的绝对值是乙数绝对值的2倍,在数轴上甲、乙两数在原点的同侧,并且对应两点的距离等于10,求这两个数.
8.电视台的体育频道经常播放篮球比赛,张明同学在收看比赛时,当解说员介绍每个队员的身高后,张明同学能用简便方法很快的把这个球队的队员平均身高计算出来.你行吗?请做出下题:某球队10名队员的身高如下(单位:cm):173,171,175,177,180,178,179,174,184,190.求这10名队员的平均身高.
9.检修组乘汽车,沿公路检修线路,约定向东为正.向西为负,某天自A出发,到收工时,行走记录为(单位:千米):
+8、-9、+4、+7、-2、-10、+18、-3、+7、+5 回答下列问题:
(1)收工时在A地的哪边?距A地多少千米?
(2)若每千米耗油0.3升,问从A地出发到收工时,共耗油多少升?。

相关文档
最新文档