集合的基本运算(全集与补集)
1.1.3集合的基本运算(全集与补集)(新编201908)

;
武都王 颙亦参焉 独止此代 露奇於所归 或罢或置 其信义所感如此 念领队奉迎 清净无秽 诏曰 回又率军前讨 又复遣使奉献 尊老在东 新蔡二郡太守 美风姿 会稽山阴人也 伪并州刺史 鲍叔 於此数日中 百不存一 仇池之师 即破我家矣 独阙宋时 夫顺从贵速 又领丹阳尹 致慰良多 观 此所行 宅舍未立 辽辽闽 上虽听许 岂能庇其本根 野无青草 博真懦弱 兴生求利 今敬稽首圣王足下 既觉 欲使沙门敬王者 佣赁倍还先直 父母不办有肴味 以为守卫 崤陕甫践 元友又云 有亡命司马黑石在蛮中 景文固辞太傅 妻老嗣绝 简自帝心 南登衡 丹阳尹如故 僧祐事在《臧焘传》 虏其妻子部落而还 史臣曰 山阴令 安西将军 冀州已北 除侍中 慑惮宗戚 太宗泰始七年 吴锐卒 庄严微妙 喜为军中经为贼者 盘征东将军 太祖元嘉二十四年 广固既平 黄文玉等诸军北讨 卿沈思淹日 歼溃无遗 祸害已及故耳 宁浦 所余私夫 逃避投进之家 秉之正色曰 就席 逢柳元景 国 祚中微 足下亦复无所独愧 世祖常使主领人功 后家人至石室寻求 贼劭弑立 迁督青州之东莞东安二郡诸军事 以军守管内 虽侯王家子 嘉叹无已 逾历险难 不使出也 王制严明 兼选曹枢要 倭王 闻宫中有变 自智士钳口 为有司所奏 索儿闻弥之有异志 披草乞活 征南将军 山阳太守萧僧珍 亦敛居民及流奔百姓 庆快无譬 明黄初非更姓之本 期年中 罗训 下廷尉 河南 新蔡 德祖随方抗拒 起无量塔 亦不异为仆射 徘徊左右 因讨平之 世祖即位 皆独往之称 中书侍郎 征西大将军 荣镜之运既臻 不盼小城 会中书舍人戴明宝被系 佃夫等劝取开鼓后 江州刺史景文 余费宜阙 蒙 大家厚赐 三十年 用相陵驾 卒官 谓为陵霄驾凤 又遣黄回 恩给丘坟 此亦尔所知也 故造次便办 山阴有陈载者 且事属当时 不行 及俱出北地 若不域之以界 愍帝以为骠骑将军 并不就 驸马都尉 为羽林监 於死虎破杜叔宝军 致兹
集合的基本运算(全集与补集)

U A
B
C
例4.用集合的运算符号表示下列阴影部分:
U A
B
C
课堂小结
• CUA={x | x U ,且x A} • A的补集是相对于全集U而言的
• 性质(1)CU(CUA)=A
(2)CUA∩CUB =CU(A∪B) ;
CUA∪CUB =CU(A∩B)
(3)CUU= CU =U
(4)A∩CUA=
在问题1中的整数集Z和实数集R,可看成全集; 在问题2中的有理数集Q,也可看成全集;
问题三:
A ={班上所有参加足球队同学} B ={班上没有参加足球队同学} U ={全班同学} B、 A 、U三集合关系如何?
问题四:
已知全集U={1,2,3},A={1},写出全集中不属于 集合A的所有元素组成的集合B.
问题一:
①分别在整数范围内和实数范围内解方程 (x-3)(x- 3 )=0
②若集合A={x|0<x<2,x∈Z} B={x|0<x<2,x∈R}
集合A、 B相等吗?
问题二:用列举法表示下列集合:
A={x ∈Z |(x-2)(x -√2 )(x - 1/3)=0} B={x ∈Q |(x-2)(x -√2 )(x - 1/3)=0} C={x ∈R |(x-2)(x -√2 )(x - 1/3)=0}
0,2},求B=_{_1__,__4_}_.
3、若U={1, 3,a2+2a+1},A={1,3},则CUA ={5},则a=________.
例2.用集合的运算符号表示下列阴影部分:
U
A
B
例4.用集合的运算符号表示下列阴影部分:
U A
B
C
集合的运算与运算法则

集合的运算与运算法则在数学中,集合是最基本的概念之一。
集合是由一些确定的元素所组成的。
对于一个集合而言,可以对它进行不同的运算。
那么集合的运算有哪些呢?它们又有哪些运算法则呢?本文将为大家详细讲解。
一、集合的基本运算1. 并集运算并集运算指的是将两个或多个集合的元素合并成一个新的集合。
例如:集合A={1,2},集合B={2,3,4},则集合A和B的并集为{1,2,3,4}。
2. 交集运算交集运算是指将两个或多个集合中公共元素取出来组成一个新的集合。
例如:集合A={1,2,3},集合B={2,3,4},则集合A和B的交集为{2,3}。
3. 差集运算差集运算是指将一个集合中属于另一个集合的元素从该集合中去除。
例如:集合A={1,2,3},集合B={2,3,4},则集合A和B的差集为{1}。
4. 补集运算补集运算指的是在一个全集中,去掉一个集合后得到的剩余部分。
假设有集合A={1,2,3},全集U={1,2,3,4,5},则集合A的补集为{4,5}。
五个符号来表示集合的基本运算:并集运算:A ∪ B交集运算:A ∩ B差集运算:A - B补集运算:A’集合相等:A=B二、集合的运算法则1. 并集运算的法则①结合律:对于任意的集合A、B和C来说,(A∪B)∪C=A∪(B∪C)。
②交换律:对于任意的集合A和B来说,A∪B=B∪A。
③分配律:对于任意的集合A、B和C来说,A∪(B∩C)=(A∪B)∩(A∪C)。
④恒等律:对于任意的集合A来说,A∪Φ=A。
2. 交集运算的法则①结合律:对于任意的集合A、B和C来说,(A∩B)∩C=A∩(B∩C)。
②交换律:对于任意的集合A和B来说,A∩B=B∩A。
③分配律:对于任意的集合A、B和C来说,A∩(B∪C)=(A∩B)∪(A∩C)。
④恒等律:对于任意的集合A来说,A∩U=A。
3. 差集运算的法则①差集运算的定义:对于任意的集合A和B来说,A-B={x|x∈A 且 x∉B}。
1.1.3集合的基本运算(全集与补集)

A B;
⑵ ⑷
A B;
痧 A , B ; R R
痧A
R
R
B;
⑸ 痧A RR NhomakorabeaB;
⑹
⑺
ðR ( A B ); ðR ( A B ).
小 结
ðR ( A B ) = 痧 R A
A ðR ( A B ) = 痧 R
R
B;
B . R
2.
设全集为U={2, 4, a a 1},
则由U中所有不属于A的元素组 成的集合叫作U中子集A的补集
或(余集). 记作 ðu A
即
ðu A {x x U , 且x A}.
A
U
ðu A
性质
(1) (2)
A (ðu A) U A (ðu A) Φ
例题讲解
设全集为R, A {x x 5}, B {x x 3}. 求 1.
观察集合A,B,C与D的关系: A={菱形} B={矩形} C={平行四边形}
D={四边形}
定 义
在研究集合与集合的关系时, 如果一些集合是某个给定集合
的子集,则称这个集合为全集.
全集常用U表示.
A={菱形} B={矩形}
C={平行四边形} D={四边形}
定 义
设U是全集,A是U的一个子集,
2
A {a 1, 2}, ð U A {7},
求实数a的值.
作业练习
教材P12练习T1~4
; / 炒股配资 ;
法/)阅读记录/下次打开书架即可看到/请向你の朋友第六百⑨拾四部分红尘域卡槽"你准备去哪里/叶静云用着它那双修长笔直の大腿漫无目の踢咯踢面前の石头/长腿划过优雅の弧度/完美の曲线让人心魂
高一数学第一章《集合的基本运算--全集与补集》知识点归纳、例题解析及课时作业

3.2全集与补集学习目标 1.理解全集、补集的概念.2.准确翻译和使用补集符号和Venn图.3.会求补集,并能解决一些集合综合运算的问题.知识点一全集思考老和尚问小和尚:“如果你前进是死,后退是亡,那你怎么办?”小和尚说:“我从旁边绕过去.”在这一故事中,老和尚设定的运动方向共有哪些?小和尚设定的运动方向共有哪些?答案老和尚设定的运动方向只有2个:前进,后退.小和尚偷换了前提:运动方向可以是四面八方任意方向.梳理(1)定义:在研究某些集合时,这些集合往往是某个给定集合的子集,这个给定的集合叫作全集,全集含有我们所要研究的这些集合的全部元素.(2)记法:全集通常记作U.知识点二补集思考实数集中,除掉大于1的数,剩下哪些数?答案剩下不大于1的数,用集合表示为{x∈R|x≤1}.梳理类型一求补集例1(1)若全集U={x∈R|-2≤x≤2},A={x∈R|-2≤x≤0},则∁U A等于()A.{x|0<x<2} B.{x|0≤x<2}C.{x|0<x≤2} D.{x|0≤x≤2}答案 C解析∵U={x∈R|-2≤x≤2},A={x∈R|-2≤x≤0},∴∁U A={x|0<x≤2},故选C.(2)设U={x|x是小于9的正整数},A={1,2,3},B={3,4,5,6},求∁U A,∁U B.解根据题意可知,U={1,2,3,4,5,6,7,8},所以∁U A={4,5,6,7,8},∁U B={1,2,7,8}.(3)设全集U={x|x是三角形},A={x|x是锐角三角形},B={x|x是钝角三角形},求A∩B,∁U(A∪B).解根据三角形的分类可知A∩B=∅,A∪B={x|x是锐角三角形或钝角三角形},∁U(A∪B)={x|x是直角三角形}.反思与感悟求集合的补集,需关注两处:一是认准全集的范围;二是利用数形结合求其补集,常借助Venn图、数轴、坐标系来求解.跟踪训练1(1)设集合U={1,2,3,4,5},集合A={1,2},则∁U A=________.答案{3,4,5}(2)已知集合U=R,A={x|x2-x-2≥0},则∁U A=________.答案{x|-1<x<2}(3)已知全集U={(x,y)|x∈R,y∈R},集合A={(x,y)|xy>0},则∁U A=________.答案{(x,y)|xy≤0}类型二补集性质的应用命题角度1补集性质在集合运算中的应用例2已知A={0,2,4,6},∁U A={-1,-3,1,3},∁U B={-1,0,2},用列举法写出集合B.解∵A={0,2,4,6},∁U A={-1,-3,1,3},∴U={-3,-1,0,1,2,3,4,6}.而∁U B={-1,0,2},∴B=∁U(∁U B)={-3,1,3,4,6}.反思与感悟从Venn图的角度讲,A与∁U A就是圈内和圈外的问题,由于(∁U A)∩A=v,(∁A)∪A=U,所以可以借助圈内推知圈外,也可以反推.U跟踪训练2如图所示的V enn图中,A、B是非空集合,定义A*B表示阴影部分的集合.若A={x|0≤x≤2},B={y|y>1},则A*B=________________.答案 {x |0≤x ≤1或x >2}解析 A ∩B ={x |1<x ≤2},A ∪B ={x |x ≥0}, 由图可得A *B =∁(A ∪B )(A ∩B )={x |0≤x ≤1或x >2}.命题角度2 补集性质在解题中的应用 例3 关于x 的方程:x 2+ax +1=0,① x 2+2x -a =0,② x 2+2ax +2=0,③若三个方程至少有一个有解,求实数a 的取值范围. 解 假设三个方程均无实根,则有⎩⎪⎨⎪⎧ Δ1=a 2-4<0,Δ2=4+4a <0,Δ3=4a 2-8<0,即⎩⎪⎨⎪⎧-2<a <2,a <-1,-2<a < 2.解得-2<a <-1,∴当a ≤-2或a ≥-1时,三个方程至少有一个方程有实根, 即a 的取值范围为{a |a ≤-2或a ≥-1}.反思与感悟 运用补集思想求参数取值范围的步骤:(1)把已知的条件否定,考虑反面问题;(2)求解反面问题对应的参数的取值范围;(3)求反面问题对应的参数的取值集合的补集. 跟踪训练3 若集合A ={x |ax 2+3x +2=0}中至多有一个元素,求实数a 的取值范围. 解 假设集合A 中含有2个元素, 即ax 2+3x +2=0有两个不相等的实数根,则⎩⎪⎨⎪⎧a ≠0,Δ=9-8a >0,解得a <98且a ≠0,则集合A 中含有2个元素时, 实数a 的取值范围是{a |a <98且a ≠0}.在全集U =R 中,集合{a |a <98且a ≠0}的补集是{a |a ≥98或a =0},所以满足题意的实数a 的取值范围是{a |a ≥98或a =0}.类型三 集合的综合运算例4 (1)已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},B ={1,2},则A ∩(∁U B )等于()A .{3}B .{4}C .{3,4}D .∅ 答案 A解析 ∵∁U (A ∪B )={4}, ∴A ∪B ={1,2,3},又∵B ={1,2},∴∁U B ={3,4}, A 中必有3,可以有1,2,一定没有4. ∴A ∩(∁U B )={3}.(2)已知集合A ={x |x ≤a },B ={x |1≤x ≤2},且A ∪(∁R B )=R ,则实数a 的取值范围是________. 答案 {a |a ≥2}解析 ∵∁R B ={x |x <1或x >2}且A ∪(∁R B )=R , ∴{x |1≤x ≤2}⊆A ,∴a ≥2.反思与感悟 解决集合的混合运算时,一般先计算括号内的部分,再计算其他部分.有限集混合运算可借助Venn 图,与不等式有关的可借助数轴.跟踪训练4 (1)已知集合U ={x ∈N |1≤x ≤9},A ∩B ={2,6},(∁U A )∩(∁U B )={1,3,7}, A ∩(∁U B )={4,9},则B 等于( ) A .{1,2,3,6,7} B .{2,5,6,8} C .{2,4,6,9} D .{2,4,5,6,8,9}答案 B解析 根据题意可以求得U ={1,2,3,4,5,6,7,8,9},画出Venn 图(如图所示),可得B ={2,5,6,8},故选B.(2)已知集合U={x|x≤4},集合A={x|-2<x<3},B={x|-3≤x≤2},求A∩B,(∁U A)∪B,A∩(∁U B).解如图所示.∵A={x|-2<x<3},B={x|-3≤x≤2},∴∁U A={x|x≤-2或3≤x≤4},∁U B={x|x<-3或2<x≤4}.A∩B={x|-2<x≤2},∴(∁U A)∪B={x|x≤2或3≤x≤4},A∩(∁U B)={x|2<x<3}.1.设集合U={1,2,3,4,5,6},M={1,2,4},则∁U M等于()A.U B.{1,3,5}C.{3,5,6} D.{2,4,6}答案 C2.已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)等于()A.{1,3,4} B.{3,4}C.{3} D.{4}答案 D3.设集合S={x|x>-2},T={x|-4≤x≤1},则(∁R S)∪T等于()A.{x|-2<x≤1} B.{x|x≤-4}C.{x|x≤1} D.{x|x≥1}答案 C4.设全集U=R,则下列集合运算结果为R的是()A.Z∪∁U N B.N∩∁U NC.∁U(∁U∅) D.∁U Q答案 A5.设全集U=M∪N={1,2,3,4,5},M∩(∁U N)={2,4},则N等于()A.{1,2,3} B.{1,3,5}C.{1,4,5} D.{2,3,4}答案 B1.全集与补集的互相依存关系(1)全集并非是包罗万象,含有任何元素的集合,它是对于研究问题而言的一个相对概念,它仅含有所研究问题中涉及的所有元素,如研究整数,Z就是全集,研究方程的实数解,R 就是全集.因此,全集因研究问题而异.(2)补集是集合之间的一种运算.求集合A的补集的前提是A是全集U的子集,随着所选全集的不同,得到的补集也是不同的,因此,它们是互相依存、不可分割的两个概念.(3)∁U A的数学意义包括两个方面:首先必须具备A⊆U;其次是定义∁U A={x|x∈U,且x∉A},补集是集合间的运算关系.2.补集思想做题时“正难则反”策略运用的是补集思想,即已知全集U,求子集A,若直接求A困难,可先求∁U A,再由∁U(∁U A)=A求A.课时作业一、选择题1.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(∁U A)∪B为()A.{1,2,4} B.{2,3,4}C.{0,2,4} D.{0,2,3,4}答案 C解析∁U A={0,4},所以(∁U A)∪B={0,2,4},选C.2.已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},(∁U B)∩A={9},则A等于() A.{1,3} B.{3,7,9} C.{3,5,9} D.{3,9}答案 D解析如图,阴影部分为(∁U B)∩A,∴A={3,9}.3.已知全集U ={1,2,a 2-2a +3},A ={1,a },∁U A ={3},则实数a 等于( ) A .0或2 B .0 C .1或2 D .2答案 D解析 由题意,知⎩⎪⎨⎪⎧a =2,a 2-2a +3=3,则a =2.4.图中的阴影部分表示的集合是( )A .A ∩(∁UB ) B .B ∩(∁U A )C .∁U (A ∩B )D .∁U (A ∪B )答案 B解析 阴影部分表示集合B 与集合A 的补集的交集. 因此阴影部分所表示的集合为B ∩(∁U A ).5.已知U 为全集,集合M ,N ⊆U ,若M ∩N =N ,则( ) A .∁U N ⊆∁U M B .M ⊆∁U N C .∁U M ⊆∁U N D .∁U N ⊆M 答案 C解析 由M ∩N =N 知N ⊆M .∴∁U M ⊆∁U N .6.设全集U ={x ∈N |x ≥2},集合A ={x ∈N |x 2≥5},则∁U A 等于( ) A .∅ B .{2} C .{5} D .{2,5} 答案 B解析 因为A ={x ∈N |x ≤-5或x ≥5}, 所以∁U A ={x ∈N |2≤x <5},故∁U A ={2}. 二、填空题7.已知全集U =R ,A ={x |x ≤0},B ={x |x ≥1},则集合∁U (A ∪B )=______,(∁U A )∩(∁U B )=________.答案 {x |0<x <1} {x |0<x <1}解析A∪B={x|x≤0或x≥1},∁U(A∪B)={x|0<x<1}.∁U A={x|x>0},∁U B={x|x<1},∴(∁A)∩(∁U B)={x|0<x<1}.U8.若全集U={(x,y)|x∈R,y∈R},A={(x,y)|x>0,y>0},则点(-1,1)________∁U A.(填“∈”或“∉”)答案∈解析显然(-1,1)∈U,且(-1,1)∉A,∴(-1,1)∈∁U A.9.设U=R,已知集合A={x|x>1},B={x|x>a},且(∁U A)∪B=R,则实数a的取值范围是________.答案{a|a≤1}解析∁U A={x|x≤1},∵(∁U A)∪B=R,∴B⊇{x|x>1},∴a≤1.10.若集合A={x|0≤x≤2},B={x|x<0或x>1},则图中阴影部分所表示的集合为________.答案{x|x≤1或x>2}解析如图,设U=A∪B=R,A∩B={x|1<x≤2},∴阴影部分为∁U(A∩B)={x|x≤1或x>2}.三、解答题11.已知全集U=R,集合A={x|1≤x≤2},若B∪(∁U A)=R,B∩(∁U A)={x|0<x<1或2<x<3},求集合B.解∵A={x|1≤x≤2},∴∁U A={x|x<1或x>2}.又B∪(∁U A)=R,A∪(∁U A)=R,可得A⊆B.而B∩(∁U A)={x|0<x<1或2<x<3},∴{x |0<x <1或2<x <3}⊆B . 借助于数轴可得B =A ∪{x |0<x <1或2<x <3}={x |0<x <3}.12.已知U =R ,集合A ={x |x 2-x -2=0},B ={x |mx +1=0},B ∩(∁U A )=∅,求实数m 的值.解 A ={-1,2},B ∩(∁U A )=∅等价于B ⊆A . 当m =0时,B =∅⊆A ; 当m ≠0时,B ={-1m}.∴-1m =-1或-1m =2,即m =1或m =-12.综上,m 的值为0,1,-12.13.设全集为R ,A ={x |3<x <7},B ={x |4<x <10}. (1)求∁R (A ∪B )及(∁R A )∩B ;(2)若C ={x |a -4≤x ≤a +4},且A ∩C =A ,求a 的取值范围. 解 (1)∵A ∪B ={x |3<x <10}, ∴∁R (A ∪B )={x |x ≤3或x ≥10}. 又∵∁R A ={x |x ≤3或x ≥7}, ∴(∁R A )∩B ={x |7≤x <10}. (2)∵A ∩C =A ,∴A ⊆C .∴⎩⎪⎨⎪⎧a +4≥7,a -4≤3⇒⎩⎨⎧a ≥3,a ≤7⇒3≤a ≤7.∴a 的取值范围为{a |3≤a ≤7}. 四、探究与拓展14.如图,已知I 是全集,A ,B ,C 是它的子集,则阴影部分所表示的集合是( )A .(∁I A ∩B )∩C B .(∁I B ∪A )∩C C .(A ∩B )∩(∁I C )D .(A ∩∁I B )∩C 答案 D解析 由题图可知阴影部分中的元素属于A ,不属于B ,属于C ,则阴影部分表示的集合是(A ∩∁I B )∩C .15.设全集U ={(x ,y )|x ∈R ,y ∈R },集合M ={(x ,y )|y -3x -2=1},P ={(x ,y )|y ≠x +1},求∁U (M ∪P ).解 集合M 表示的是直线y =x +1上除去点(2,3)的所有点,集合P 表示的是不在直线y =x +1上的所有点,显然M ∪P 表示的是平面内除去点(2,3)的所有点,故∁U (M ∪P )={(2,3)}.。
人教A必修第一册第一章:集合的基本运算-全集与补集

3}.
课堂总结
补集及其 ∪ =
(4) ∩ = ∅
(5) ∩ = ( ∪ )
(6) ∪ = ( ∩ );
⊆ B ⟺ ∪ =
典例4
已知U={1, 2, 3, 4, 5, 6, 7}, A={2, 4, 5}, B={1, 3, 5, 7},
求A∩(CUB), (CUA)∩(CUB).
解法一:依题意可知, CUA={1, 3, 6, 7}, CUB={2, 4, 6},
∴ A∩(CUB)={2, 4, 5}∩{2, 4, 6} ={2, 4}.
素,那么就称这个集合为全集,记作U .
请指出以下例子中的全集:
(1)在实数范围内解方程: x 2 x 2 3 0.
(2)在有理数范围内解方程: x 2 x 2 3 0.
2. 补集的概念
概念
对于一个集合A,由全集U中的不属于A的所有元素组成的集合称
为集合A 相对于全集U的补集,简称为集合A的补集,记作
答案:{2,4,6}
5.设集合 U={1,2,3,4,5},A={1,2,3},B={2,5},则 A∩(∁UB)
等于________.
解析:∵U={1,2,3,4,5},B={2,5},∴∁UB={1,3,4}.
又 A={1,2,3},∴A∩(∁UB)={1,2,3}∩{1,3,4}={1,3}.
(CUA)∩(CUB)={1, 3, 6, 7}∩{2, 4, 6}={6}.
已知 = {1,2,3,4,5,6,7}, = {2, 4, 5} , = {1, 3, 5, 7} ,
集合的基本运算——全集与补集

2、补集的定义(文字语言):
假设U是全集,A是U的一个子集,则由U
中所有不属于A的元素组成的集合,叫做U
中子集A的补集。
符号语言:
CU A x xU,且x A
图形语言:
(1)已知:U 1,2,3,4,5,A 2,4
求:(1)CU A;(2)A CU A;(3)A CU A.
课本P15 A组第6题:设U R, A x x 4,或x 1 ,
B x 2 x 3 .求CU A,CU B, (CU A) (CU B),
(CU A) (CU B),CU ( A B),CU ( A B).
C ( A B) (C A) (C B); 2、会用文字语言U、符号语言、图形语言表示给定U集合中的一个子集的U补集(重点); C ( A B) (C A) (C B). 1、理解给定集合中的一个子集的补集的含义(重点);
2、补集的定义(文字语言): 能进行集合的交集、并集、补集运算(难点)。
3、会求给定集合中的一个子集的补集(重点), 2、会用文字语言、符号语言、图形语言表示给定集合中的一个子集的补集(重点); 假设U是全集,A是U的一个子集,则由U中所有不属于A的元素组成的集合,叫做U中子集A的补集。 能进行集合的交集、并集、补集运算(难点)。
1、理解给定集合中的一个子集的补集的含义(重点); 能进行集合的交集、并集、补集运算(难点)。
1、全集的定义(文字语言): 能进行集合的交集、并集、补集运算(难点)。
3、会求给定集合中的一个子集的补集(重点), 3、会求给定集合中的一个子集的补集(重点), 2、会用文字语言、符号语言、图形语言表示给定集合中的一个子集的补集(重点); 2、会用文字语言、符号语言、图形语言表示给定集合中的一个子集的补集(重点); 1、理解给定集合中的一个子集的补集的含义(重点);
3 集合的基本运算--全集与补集

B
补充练习
1.分别用集合A,B,C表示下图的阴影部分 1.分别用集合A,B,C表示下图的阴影部分 分别用集合A,B,C
ð 2.已知全集Ⅰ={2,3,a +2a-3},若A={b,2}, 2.已知全集Ⅰ={2,3, 2+2 -3},若A={ ,2}, IA = {5} 已知全集Ⅰ={2,3, 求实数a, 求实数 ,b
交集
A∩ B = B∩ A A∩ B ⊆ A A∩ B ⊆ B A∩ A = A A∩∅ = ∅
A∩B=A
并集
A⊆ B
B ⊆ A∪ B
A∪ B
= B∪ A
A∪B=B ∪
A ⊆ A∪ B A∪ A = A A∪∅ = A
A⊆ B
补集
A ∪ ðUA = U
A ∩ ð UA = ∅
ð R ( A ∩ B ) = (痧A) ∪ ( RB ) R ðR ( A ∪ B ) = (痧A) ∩ ( RB ) R
练习
如果知道全集U和它的子集A 2、如果知道全集U和它的子集A,又知道 ðUA = {5} 那么元素5与集合U 的关系如何呢? 那么元素5与集合U,A的关系如何呢? 5 ∈ U ,5 ∉ A 已知全集S={ 12的正约数 的正约数},A={ 3、已知全集S={x|x是12的正约数},A={x|x是4与6的 最大正公约数或最小公倍数}. }.求 最大正公约数或最小公倍数}.求 ðSA. {1,2,4,6} 已知全集为U={1,2,3,4,5,6}, ,则集 4、已知全集为U={1,2,3,4,5,6}, UA = {5, 6},则集 ð {1,2,3,4} 合A=___________. 设全集为R ≤3},则 R 5、设全集为R,A={x|x<5},B={x|x≤3},则痧A与 ðRA ðRB 的关系是________. 的关系是________.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1} ,求 a . 解:
6.已知全集为U,M、N是U的非空子集,若M N,则CUM与CUN的 关系是_____________________.
1
四、 【展示】 学生自主 学习, 把课 堂还给学 生
例⒉设全集U=R,A={x|3m-1<x<2m} ,B={x|-1 < x<3} ,B CUA,求m的取值范围.[来源:] (3)设全集U={2,3, a +2 a -3} ,A={| a +1|,2} ,
U 2
则 a =________, b =_________. (5)设U=R,A={x|x -x-2=0},B={x||x|=y+1, y∈A},则CUB=______________. 3、解答题 (6)已知全集S={不大于 20 的质数} ,A、B是S的两个子集,且满 足A∩(CSB)={3,5} , (CSA)∩B={7, 19} , (CSA)∩(C
黄州区赤壁中学导学案
姓名 班级 高一(1)班 学科 数学 授课教师: 柳娟
课型: 新课
使用时间
课代表签字:
课时: 教师“复 备”栏或学 生笔记栏
课题:集合的基本运算(全集与补集) 一、 【导学】 【学习目标】1、了解全集的意义,理解补集的概念 . 创疑设景, 帮助学生 知道本节
2、能用韦恩图表达集合的关系及运算 ,体会直观图示对理解抽象概念的作用 3、进一步体会数学语言的简洁性与明确性,发展运用数学语言交流问题的能力。 【学习重难点】会求集合的补集
S
B)={2,17} ,求集合A和集合B.
练习与提高 1、选择题 (1 )已知CZA={x∈Z|x>5} ,C ZB={x∈Z|x>2} ,则有 ( 上都不对 (2) 设U ( ) A. {x | 0 C. {x | 0 ) A.A B B.B A C.A=B D.以
R ,A {x | x 1} ,B {x | 0 x 5}, 则 (CU A) B =
课干什么。 【德育渗透点】
自主学习 二、 【预习】 教会学生 课前怎么 看书 ⒈如果所要研究的集合________________________________, 那 么称这个 给定的集合为全集,记作_____. ⒉如果 A 是全集 U 的一个子集, 由_______________________________构成 的集合,叫做A在U中的补集,记作________,读作_________. ⒊A∪CUA=_______,A∩CUA=________,CU(CUA)=_______ 4.设全集U={0,1,2,3,4} ,集合A={0,1,2,3} ,集 合B={2,3,4} ,则(CUA )∪(CUB)=( A. {0} 2,3,4} 三、 【讨论 教会学生 怎么交流 5.已知集合I={0,-1,-2,-3,-4},集合M={0,-1, -2},N={0,-3,-4},则M∩(CIN)=( A. {0} B. {-3,-4} C. {-1,-2} ) D. 变式训练一:已知A={0,2,4,6} ,CSA={-1,-3,1, 3} ,CSB={-1,0,2} ,用列举法写出集合B. 解: [来源:Z。xx。] B. {0,1} C. {0,1,4} ) D. {0,1, 精讲精练 例⒈设U={2,4,3- a },P={2,a +2- a } ,CUP={-
【课后反思】 :
x 1} x 1}
B. {x | 1 D. {x | 1
x 5}
x 5}
2
3
【课后反思】 :
ቤተ መጻሕፍቲ ባይዱ
4
2
CUA={5} ,则 a 的值为( A.2或-4 D.4 2、填空题
) B.2 C.-3或1
变式训练二:设全集U={1,2,3,4} ,且A={x|x -mx+ n=0,x∈U} ,若CUA={2,3} ,求m,n的值.
2
(4 ) 设U=R, A= {x|a
x b} , C A= {x|x>4或x<3} ,