存储器扩展实验

合集下载

存储器扩展仿真实验报告

存储器扩展仿真实验报告

一、实验目的1. 理解存储器扩展的基本原理和方法。

2. 掌握位扩展和字扩展的技巧。

3. 利用仿真软件实现存储器扩展,并验证其功能。

二、实验环境1. 仿真软件:Logisim2. 硬件设备:电脑三、实验原理1. 存储器扩展的基本原理存储器扩展是指将多个存储器芯片组合在一起,以实现更大的存储容量或更高的数据位宽。

存储器扩展主要有两种方式:位扩展和字扩展。

(1)位扩展:当存储芯片的数据位小于CPU对数据位的要求时,可以通过位扩展方式解决。

位扩展时,将所有存储芯片的地址线、读写控制线并联后与CPU的地址线和读写控制线连接,各存储芯片的数据总线汇聚成更高位宽的数据总线与CPU的数据总线相连。

(2)字扩展:当存储芯片的存储容量不能满足CPU对存储容量的要求时,可以通过字扩展方式来扩展存储器。

字扩展时,将所有存储芯片的数据总线、读写控制线各自并联后与CPU数据总线、读写控制线相连,各存储芯片的片选信号由CPU高位多余的地址线译码产生。

2. 存储器扩展的方法(1)位扩展:选择合适的存储芯片,将多个存储芯片的数据总线并联,连接到CPU的数据总线上。

(2)字扩展:选择合适的存储芯片,将多个存储芯片的数据总线、读写控制线分别并联,连接到CPU的数据总线和读写控制线上。

同时,使用译码器产生片选信号,连接到各个存储芯片的片选端。

四、实验步骤1. 创建一个新的Logisim项目。

2. 在项目中添加以下模块:(1)存储芯片模块:选择合适的存储芯片,如RAM或ROM。

(2)译码器模块:根据存储芯片的数量和地址线的位数,选择合适的译码器。

(3)数据总线模块:根据位扩展或字扩展的要求,设置数据总线的位数。

(4)地址线模块:根据存储芯片的数量和地址线的位数,设置地址线的位数。

3. 连接各个模块:(1)将存储芯片的数据总线连接到数据总线模块。

(2)将存储芯片的地址线连接到地址线模块。

(3)将译码器的输出连接到各个存储芯片的片选端。

(4)将存储芯片的读写控制线连接到CPU的读写控制线上。

单片机外部数据存储器扩展仿真实验

单片机外部数据存储器扩展仿真实验


图6 编译器设置界面
8 2013年3月 2006-2-10 传感器原理与应用
8
51系列单片机外部数据存储器扩展实验Proteus仿真


(3)加载目标代码文件
(I) 在Proteus ISIS中,左键双击AT89C51元件打开 “Edit Component”对话框,设置单片机的频率为 12MHz; (II) 在该窗口的“Program File”栏中,选择先前编译产 生的“.HEX”文件; (III) 在Proteus ISIS菜单栏中选择【File】→【Save Design】选项,保存设计;



(IV) 在Proteus ISIS菜单栏中,打开“Debug”下拉菜单, 在菜单中选择“Use Remote Debug Monitor”选项,以 支持与Keil的联调。
9 2013年3月 2006-2-10 传感器原理与应用
9
51系列单片机外部数据存储器扩展实验Proteus仿真
3 Proteus调试与仿真



进入调试环境,然后执行下述操作: (I) 在Proteus ISIS界面中,单击按钮启动仿真。 (II) 通过菜单【Debug】→【Memory Contents→U1】,打开6264存 储器窗口; (III) 通过菜单【Debug】→【Debug→Watch Window】,在弹出的 观察窗口右击,选择“以观察项的名称添加观察项”,在弹出的 对话框中添加累加器ACC和数据指针DPTR。 (IV)单击按钮暂停仿真,可观察程序运行的中间结果,如图7所示。
11 2013年3月
2006-2-10
传感器原理与应用
11


MPASM(PIC单片机编译器);

存储器扩展实验

存储器扩展实验

实验一存储器扩展实验
1 实验目的
1)、熟悉存储器扩展方法。

2)、掌握存储器的读/写
2 实验预习要求
1)、复习教材中存储器扩展的有关内容,熟悉存储器扩展时地址总线、控制总线及数据总线的连接方法,
了解静态RAM的工作原理。

2)、预先编写好实验程序。

3 实验内容
1)、连接电路
2)、编写程序,将字母‘A’~‘Z’循环存储在扩展的SRAM 62256存储器芯片D8000H开始的单元中,然
后再将其从62256中读出并在屏幕上显示。

4 实验提示
1)、62256芯片的容量为32K⨯8位,芯片上的地址引脚A0~A14(共15根)连接至系统的地址总线A1~A15,用来对片内32K个存储单元进行寻址。

片选信号CS接至实验台的MY0。

芯片上的8个数据引脚D0~D7直接与系统的数据引脚相连。

控制信号RD、WR分别连接到实验台的MRD#和MWR#。

写操作时,芯片上的控制信号CS=0,WR=0,RD=1;读操作时,CS=0,RD=0,WR=1。

2)、实验程序流程图如图所示。

5 实验报告要求
1)、根据流程图编写实验程序,并说明在实验过程中遇到了哪些问题,是如何处理的。

2)、总结存储器系统的基本扩展方法。

3)、写出实验小结,内容包括实验心得(收获)、不足之处或今后应注意的问题等。

单片机实验-扩展存储器读写实验

单片机实验-扩展存储器读写实验

实验一:扩展存储器读写实验一.实验要求编制简单程序,对实验板上提供的外部存贮器(62256)进行读写操作。

二.实验目的1.学习片外存储器扩展方法。

2.学习数据存储器不同的读写方法。

三.实验电路及连线将P1.0接至L1。

CS256连GND孔。

四.实验说明1.单片机系统中,对片外存贮器的读写操作是最基本的操作。

用户藉此来熟悉MCS51单片机编程的基本规则、基本指令的使用和使用本仿真实验系统调试程序的方法。

用户编程可以参考示例程序和流程框图。

本示例程序中对片外存贮器中一固定地址单元进行读写操作,并比较读写结果是否一致。

不一致则说明读写操作不可靠或该存储器单元不可靠,程序转入出错处理代码段(本示例程序通过熄灭一个发光二极管来表示出错)。

读写数据的选用,本例采用的是55(0101,0101)与AA(1010,1010)。

一般采用这两个数据的读写操作就可查出数据总线的短路、断路等,在实际调试用户电路时非常有效。

用户调试该程序时,可以灵活使用单步、断点和变量观察等方法,来观察程序执行的流程和各中间变量的值。

2.在I状态下执行MEM1程序,对实验机数据进行读写,若L1灯亮说明RAM读写正常。

3.也可进入LCA51的调试工具菜单中的对话窗口,用监控命令方式读写RAM,在I状态执行SX0000↓ 55,SPACE,屏幕上应显示55,再键入AA,SPACE,屏幕上也应显示AA,以上过程执行效果与编程执行效果完全相同。

注:SX是实验机对外部数据空间读写命令。

4.本例中,62256片选接地时,存储器空间为0000~7FFFH。

五.实验程序框图实验示例程序流程框图如下:六.实验源程序:ORG 0000HLJMP STARTORG 0040HSTART:MOV SP,#60HMOV DPTR,#0000H ;置外部RAM读写地址MOV A,#55H ;测试的数据一MOV B,AMOVX @DPTR,A ;写外部RAMMOVX A,@DPTR ;读外部RAMXRL A,B ;比较读回的数据JNZ ERRORMOV A,#0AAH ;测试的数据二MOV B,AMOVX @DPTR,AMOVX A,@DPTRXRL A,BJZ PASS ;测试通过ERROR: SETB P1.0 ;测试失败,点亮LEDSJMP $PASS: CPL P1.0 ;LED状态(亮/灭)转换MOV R1,#00H ;延时DELAY: MOV R2,#00HDJNZ R2,$DJNZ R1,DELAYLJMP START ;循环测试END实验二P1口输入、输出实验一.实验要求1.P1口做输出口,接八只发光二极管,编写程序,使发光二极管循环点亮。

计算机组成原理实验报告_存储系统设计实验

计算机组成原理实验报告_存储系统设计实验

实验四存储系统设计实验一、实验目的本实训项目帮助大家理解计算机中重要部件—存储器,要求同学们掌握存储扩展的基本方法,能设计MIPS 寄存器堆、MIPS RAM 存储器。

能够利用所学习的cache 的基本原理设计直接相联、全相联,组相联映射的硬件cache。

二、实验原理、内容与步骤实验原理、实验内容参考:1、汉字字库存储芯片扩展设计实验1)设计原理该实验本质上是8个16K×32b 的ROM 存储系统。

现在需要把其中一个(1 号)16K×32b 的ROM 芯片用4个4K×32b 的芯片来替代,实际上就是存储器的字扩展问题。

a) 需要4 片4个4K×32b 芯片才可以扩展成16K×32b 的芯片。

b) 目标芯片16K个地址,地址线共14 条,备用芯片12 条地址线,高两位(分线器分开)用作片选,可以接到2-4 译码器的输入端。

c) 低12 位地址直接连4K×32b 的ROM 芯片的地址线。

4个芯片的32 位输出直接连到D1,因为同时只有一个芯片工作,因此不会冲突。

芯片内数据如何分配:a) 16K×32b 的ROM 的内部各自存储16K个地址,每个地址里存放4个字节数据。

地址范围都一样:0x0000~0x3FFF。

b) 4个4K×32b 的ROM,地址范围分别是也都一样:0x000~0xFFF,每个共有4K个地址,现在需要把16K×32b 的ROM 中的数据按照顺序每4个为一组分为三组,分别放到4个4K×32b 的ROM 中去。

HZK16_1 .txt 中的1~4096个数据放到0 号4K 的ROM 中,4097~8192 个数据放到 1 号4K 的ROM 中,8193~12288 个数据放到2 号4K 的ROM 中,12289~16384个数据放到3 号4K 的ROM 中。

c) 注意实际给的16K 数据,倒数第二个4K(8193~12288 个数据)中部分是0,最后4K(12289~16384 数据)全都是0。

实验十二 SRAM外部数据存储器扩展实验 (1)

实验十二 SRAM外部数据存储器扩展实验 (1)

实验十二SRAM外部数据存储器扩展实验一、实验目的1.掌握51单片机扩展外部RAM的方法。

2.掌握SRAM62256读写数据的方法。

二、实验说明MCS-51型单片机内有128B的RAM,只能存放少量数据,对一般小型系统和无需存放大量数据的系统已能满足要求。

对于大型应用系统和需要存放大量数据的系统,则需要进行片外扩展RAM。

MCS-51型单片机在片外扩展RAM的地址空间为0000H~FFFFH共64KB。

读写外RAM 时用MOVX指令,用RD选通RAM OE端,用WR选通RAM WE端。

本实验使用SRAM 62256芯片进行片外RAM扩展。

62256具有32KB(256Kbit)空间,因此它需要15位地址(A0~A14)。

62256的全部地址空间为0000H~7FFFH。

62256芯片引脚如图1.4及管脚功能介绍:D0~D7:数据线A0~A7:地址线图1.4 62256芯片引脚WE:写允许,低电平有效OE:读允许,低电平有效CS:片选端,低电平有效三、实验内容本实验示例程序向外部RAM指定地址写入数据,并读出数据验证。

四、实验电路本实验所需电路请参见系统原理图的第一部分和图14-1。

存储器扩展接口。

图1.4 62256芯片引脚五、实验程序参考框图图1.5程序流程框图六、实验步骤1)系统各跳线器处在初始设置状态(参见附录四),将MCU模块的JT12跳线器的C、D、E、F四只短路帽置位下边(2、3短接),G短路帽置位下边(2、3短接)。

J1打在左边,J3打在2,3处(CS7279处),J2的 WE,RD接在左边。

2)在所建的Project文件中添加“62256.ASM”文件,分析、理解程序,编译、下载、运行程序。

观察数码管显示,读写正确则显示‘Good’!七、实验参考程序:见附件:实验指导参考程序。

存储器扩展实验报告

存储器扩展实验报告

存储器扩展实验报告存储器扩展实验报告引言:存储器是计算机系统中至关重要的组成部分,对于数据的存储和读取起着至关重要的作用。

在计算机科学领域中,存储器扩展是一项重要的技术,可以提高计算机系统的性能和容量。

本实验旨在通过对存储器扩展的探索和实践,深入了解存储器的工作原理和扩展方法。

一、存储器的基本原理存储器是计算机中用于存储和检索数据的硬件设备。

它可以分为主存储器和辅助存储器两种类型。

主存储器是计算机系统中最重要的存储器,它用于存储正在运行的程序和数据。

辅助存储器则用于存储大量的数据和程序,常见的辅助存储器包括硬盘、光盘和闪存等。

二、存储器的扩展方法存储器的扩展方法有很多种,本实验主要探索两种常见的扩展方法:内存条扩展和虚拟内存扩展。

1. 内存条扩展内存条扩展是通过增加计算机内部的内存条数量来扩展存储器容量的方法。

在实验中,我们使用了两根相同规格的内存条,将其插入计算机主板上的内存插槽中,从而增加了系统的内存容量。

通过这种扩展方法,我们可以提高计算机的运行速度和处理能力。

2. 虚拟内存扩展虚拟内存是一种将计算机内存和硬盘空间结合起来使用的技术。

在实验中,我们通过调整计算机系统的虚拟内存设置,将部分数据和程序存储在硬盘上,从而扩展了存储器的容量。

虚拟内存的扩展方法可以有效地提高计算机的性能和运行效率。

三、实验过程与结果在实验中,我们首先进行了内存条扩展的实践。

通过将两根内存条插入计算机主板上的内存插槽中,我们成功地扩展了计算机的内存容量。

在进行实际操作时,我们注意到计算机的运行速度明显提高,程序的加载和执行时间也大大缩短。

接着,我们进行了虚拟内存扩展的实验。

通过调整计算机系统的虚拟内存设置,我们将部分数据和程序存储在硬盘上。

在实际操作中,我们发现虚拟内存的扩展使得计算机可以同时运行更多的程序,且不会出现内存不足的情况。

这大大提高了计算机的运行效率和多任务处理能力。

四、实验总结与心得通过本次实验,我们深入了解了存储器的工作原理和扩展方法。

存储器的扩展实验总结

存储器的扩展实验总结

存储器的扩展实验总结:
一、实验目的
本次实验旨在通过实际操作,深入了解存储器的扩展原理和方法,掌握存储器扩展的基本技能,提高对计算机存储系统的认识和理解。

二、实验原理
存储器扩展主要涉及地址线的扩展和数据线的扩展。

通过增加地址线和数据线的数量,可以增加存储器的容量。

此外,还可以采用位扩展、字扩展和字位同时扩展的方法来扩展存储器。

三、实验步骤
1.准备实验材料:包括存储器芯片、地址线、数据线等。

2.搭建实验电路:将存储器芯片与地址线和数据线连接,形成完整的存储器扩展电路。

3.初始化存储器:对存储器进行初始化操作,设置初始地址和数据。

4.读取和写入数据:通过地址线和数据线,对存储器进行读取和写入操作。

5.验证结果:比较写入的数据与读取的数据,确保数据的正确性。

四、实验结果
通过实验,我们成功实现了存储器的扩展,并验证了数据的正确性。

实验结果表明,通过增加地址线和数据线的数量,可以有效地扩展存储器的容量。

五、实验总结
通过本次实验,我们深入了解了存储器的扩展原理和方法,掌握了存储器扩展的基本技能。

同时,我们也认识到在实际应用中,需要根据具体需求选择合适的扩展方法,以确保存储器的容量和性能满足要求。

此外,我们还应注意数据的正确性和稳定性,确保存储器的可靠性和稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验5 存储器扩展实验
一、实验目的
1.掌握PC存储器扩展的方法。

2.熟悉6264芯片的接口方法。

3.掌握8031内部RAM和外部RAM的数据操作
二、实验设备
PC机、星研Star16L仿真器系统+仿真头PODPH51(DIP)、EL-Ⅱ型通用接口板实验电路,PROTEUS仿真软件。

三、实验内容
1)向外部存储器的7000H到8000H区间循环输入00~0FFH数据段。

设置断点,打开外部数据存储器观察窗口,设置外部存储器的窗口地址为7000H—7FFFH。

全速运行程序,当程序运行到断点处时,观察7000H—7FFFH的内容是否正确。

四、实验原理
实验系统上的两片6264的地址范围分别为:4000H~5FFFH,6000H~7FFFH,既可作为实验程序区,也可作为实验数据区。

6264的所有信号均已连好。

(3000H~3FFFH也可用)
五、实验方法
1、运用PROTUES软件进行虚拟仿真实验。

按照实验要求用PROTUES软件绘制电路,编制程序,并通过调试。

2、运用星研仿真系统进行实际系统仿真实验。

将星研仿真器与微机和目标板相互连接构成完整的硬件仿真系统,按照实验要求在通用实验板上进行硬件系统连接,并用星研仿真器进行系统仿真运行调试。

3、实验说明
在采用星研仿真时,若CPU选型为8051则,应将P2、P3口修改为总线模式(默认为IO口模式)。

若为8031CPU则无此选项,因此不必修改。

4、星研仿真器设置时,注意,在项目工作环境设置选项中的存储器借出方式中,不能借用仿真器的外部数据空间(直接选择默认方式即可),否则无法正确测试实验箱上的存储器。

5、利用星研仿真器,在选择用户板外部RAM方式下,可以在存储器窗口中,通过直接对外部存储器单元的内容进行修改来确定该单元是否可用,可以修改的单元,表明用户可用,如果无法修改(无论键盘输入任何数字与字符,始终显示FF),则表明该存储单元不可用。

六、实验电路
1、PROTEUS 仿真电路
2、EL-Ⅱ型通用接口板连线
线路已经在内部连接好,可用地址范围为4000H~7FFFH
七、程序框图及参考程序
1)扩展RAM实验测试;NAME T7_1_RAM ORG 0000H
START: MOV DPTR,#7000H ;起始地址送DPTR LOOP1: MOV A,#00H ;置数据初值
LOOP: MOVX @DPTR,A
ADD A,#01H ;数据加一
INC DPTR ;地址加一
MOV R0,DPH
CJNE R0,#80H,LOOP ;数据是否写完,没写完则继续SS: SJMP SS
END
八、实验结果。

相关文档
最新文档