求轨迹方程例题方法解析

求轨迹方程例题方法解析
求轨迹方程例题方法解析

求轨迹方程的常用方法

知识梳理:

(一)求轨迹方程的一般方法:

1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。

2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。

3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。

4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。

5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。

6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 (二)求轨迹方程的注意事项:

1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。

)()()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ??

?=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。 3. 求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解,(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解。(即轨迹上的某些点未能用所求的方程表示),出现增解则要舍去,出现丢解,则需补充。检验方法:研究运动中的特殊情形或极端情形。

热身:

1. P 是椭圆5

92

2y x +=1上的动点,过P 作椭圆长轴的垂线,垂足为M ,则PM 中点的轨迹中点的轨迹方程为:

( )

A 、159422=+y x

B 、154922=+y x

C 、12092

2=+y x D 、5

3622y x +=1

【答案】:B

【解答】:令中点坐标为),(y x ,则点P 的坐标为()2,y x 代入椭圆方程得

15

492

2=+y x ,选B 2. 圆心在抛物线)0(22

>=y x y 上,并且与抛物线的准线及x 轴都相切的圆的方程是( )

A 04

1

22

2=-

--+y x y x B 0122

2=+-++y x y x C 0122

2

=+--+y x y x

D 04

1

22

2

=+

--+y x y x 【答案】:D

【解答】:令圆心坐标为(),22a a ,则由题意可得2122+=a a ,解得1=a ,则圆的方程为04

1

222=+

--+y x y x ,选D 3: 一动圆与圆O :12

2=+y x 外切,而与圆C :0862

2

=+-+x y x 内切,那么动圆的圆

心M 的轨迹是:

A :抛物线

B :圆

C :椭圆

D :双曲线一支 【答案】:D

【解答】令动圆半径为R ,则有???-=+=1

||1

||R MC R MO ,则|MO|-|MC|=2,满足双曲线定义。故选

D 。

4: 点P(x 0,y 0)在圆x 2

+y 2

=1上运动,则点M (2x 0,y 0)的轨迹是 ( ) A.焦点在x 轴上的椭圆 B. 焦点在y 轴上的椭圆 C. 焦点在y 轴上的双曲线 D. 焦点在X 轴上的双曲线 【答案】:A

【解答】:令M 的坐标为),,(y x 则?????==????==y y x x y y x x 00

0022代入圆的方程中得1422=+y x

一:用定义法求曲线轨迹

求曲线轨迹方程是解析几何的两个基本问题之一,求符合某种条件的动点轨迹方程,其实质就是利用题设中的几何条件,通过坐标互化将其转化为寻求变量之间的关系,在求与圆锥曲线有关的轨迹问题时,要特别注意圆锥曲线的定义在求轨迹中的作用,只要动点满足已知曲线定义时,通过待定系数法就可以直接得出方

程。

例1:已知ABC ?的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足

,sin 4

5

sin sin C A B =

+求点C 的轨迹。 【解析】由,sin 45sin sin C A B =+可知1045

==+c a b ,即10||||=+BC AC ,满足椭

圆的定义。令椭圆方程为

12

'

22

'

2=+

b y a x ,则34,5'''=?==b

c a ,则轨迹方程为

19

252

2=+y x ()5±≠x ,图形为椭圆(不含左,右顶点)。 【点评】熟悉一些基本曲线的定义是用定义法求曲线方程的关键。

(1) 圆:到定点的距离等于定长

(2) 椭圆:到两定点的距离之和为常数(大于两定点的距离)

(3) 双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离) (4)

到定点与定直线距离相等。

【变式1】: 1:已知圆的圆心为M 1,圆的圆心为

M 2,一动圆与这两个圆外切,求动圆圆心P 的轨迹方程。 解:设动圆的半径为R ,由两圆外切的条件可得:

∴动圆圆心P 的轨迹是以M 1、M 2为焦点的双曲线的右支,c=4,a=2,b 2=12。

故所求轨迹方程为

2:一动圆与圆O :12

2=+y x 外切,而与圆C :0862

2

=+-+x y x 内切,那么动圆的圆

心M 的轨迹是:

A :抛物线

B :圆

C :椭圆

D :双曲线一支

【解答】令动圆半径为R ,则有?

??-=+=1||1

||R MC R MO ,则|MO|-|MC|=2,满足双曲线定义。故选

D 。

二:用直译法求曲线轨迹方程 此类问题重在寻找数量关系。

例2: 一条线段AB 的长等于2a ,两个端点A 和B 分别在x 轴和y 轴上滑动,求AB 中点P 的轨迹方程?

解 设M 点的坐标为),(y x 由平几的中线定理:在直角三角形AOB 中,OM=

,22

1

21a a AB =?= 22222,a y x a y x =+=+∴

M 点的轨迹是以O 为圆心,a 为半径的圆周.

【点评】此题中找到了OM=

AB 2

1

这一等量关系是此题成功的关键所在。一般直译法有下列几种情况:

1)代入题设中的已知等量关系:若动点的规律由题设中的已知等量关系明显给出,则采用直接将数量关系代数化的方法求其轨迹。

2)列出符合题设条件的等式:有时题中无坐标系,需选定适当位置的坐标系,再根据题设条件列出等式,得出其轨迹方程。

3)运用有关公式:有时要运用符合题设的有关公式,使其公式中含有动点坐标,并作相应的恒等变换即得其轨迹方程。

4)借助平几中的有关定理和性质:有时动点规律的数量关系不明显,这时可借助平面几何中的有关定理、性质、勾股定理、垂径定理、中线定理、连心线的性质等等,从而分析出其数量的关系,这种借助几何定理的方法是求动点轨迹的重要方法.

【变式2】: 动点P (x,y )到两定点A (-3,0)和B (3,0)的距离的比等于2(即2|

||

|=PB PA ),求动点P 的轨迹方程?

【解答】∵|PA |=222

2

)3(||,)3(y x PB y x +-=

++

代入

2|||

|=PB PA 得22222

2224)3(4)3(2)3()3(y x y x y x y x +-=++?=+-++ 化简得(x -5)2

+y 2

=16,轨迹是以(5,0)为圆心,4为半径的圆.

三:用参数法求曲线轨迹方程

此类方法主要在于设置合适的参数,求出参数方程,最后消参,化为普通方程。注意参数的

取值范围。

例3.过点P (2,4)作两条互相垂直的直线l 1,l 2,若l 1交x 轴于A 点,l 2交y 轴于B 点,求线段AB 的中点M 的轨迹方程。

【解析】

分析1:从运动的角度观察发现,点M 的运动是由直线l 1引发的,可设出l 1的斜率k 作为参数,建立动点M 坐标(x ,y )满足的参数方程。

解法1:设M (x ,y ),设直线l 1的方程为y -4=k (x -2),(k ≠0) )2(1

4221--

=-⊥x k

y l ,l l 的方程为则直线由 ,,A x l )0k 42(1-∴的坐标为轴交点与 ,k

,B y l )2

40(2+的坐标为轴交点与

∵M 为AB 的中点,

)(1222421242为参数k k k y k k x ????

?????

+=+

=-=-=∴

消去k ,得x +2y -5=0。

另外,当k =0时,AB 中点为M (1,2),满足上述轨迹方程; 当k 不存在时,AB 中点为M (1,2),也满足上述轨迹方程。 综上所述,M 的轨迹方程为x +2y -5=0。

分析2:解法1中在利用k 1k 2=-1时,需注意k 1、k 2是否存在,故而分情形讨论,能否避开讨论呢?只需利用△PAB 为直角三角形的几何特性: ||2

1

||AB MP =

解法2:设M (x ,y ),连结MP ,则A (2x ,0),B (0,2y ), ∵l 1⊥l 2,∴△PAB 为直角三角形 ||2

1

||AB MP ,=由直角三角形的性质 222

2

)2()2(·2

1

)4()2(y x y x +=

-+-∴ 化简,得x +2y -5=0,此即M 的轨迹方程。 分析3::设M (x ,y ),由已知l 1⊥l 2,联想到两直线垂直的充要条件:k 1k 2=-1,即可列出轨迹方程,关键是如何用M 点坐标表示A 、B 两点坐标。事实上,由M 为AB 的中点,易找出它们的坐标之间的联系。

解法3:设M (x ,y ),∵M 为AB 中点,∴A (2x ,0),B (0,2y )。 又l 1,l 2过点P (2,4),且l 1⊥l 2 ∴PA ⊥PB ,从而k PA ·k PB =-1,

02242204--=--=

y

,k x k PB PA 而 05212

24·224=-+-=--∴

y x y

x ,化简,得 注意到l 1⊥x 轴时,l 2⊥y 轴,此时A (2,0),B (0,4)

中点M (1,2),经检验,它也满足方程x +2y -5=0 综上可知,点M 的轨迹方程为x +2y -5=0。

【点评】

1) 解法1用了参数法,消参时应注意取值范围。解法2,3为直译法,运用了k PA ·k PB

=-1,||2

1

||AB MP =

这些等量关系。

。 用参数法求解时,一般参数可选用具有某种物理或几何意义的量,如时间,速度,距离,角度,有向线段的数量,直线的斜率,点的横,纵坐标等。也可以没有具体的意义,选定参变量还要特别注意它的取值范围对动点坐标取值范围的影响

【变式3】过圆O :x 2 +y 2

= 4 外一点A (4,0),作圆的割线,求割线被圆截得的弦BC 的中点M 的轨迹。

解法一:“几何法”

设点M 的坐标为(x,y ),因为点M 是弦BC 的中点,所以OM ⊥BC,

所以|OM | 2+|MA|2 =|OA| 2 , 即(x 2 +y 2)+(x -4)2 +y 2

=16

化简得:(x -2)2+ y 2

=4................................①

由方程 ① 与方程x 2 +y 2

= 4得两圆的交点的横坐标为1,所以点M 的轨迹方程为

(x -2)2+ y 2

=4 (0≤x <1)。所以M 的轨迹是以(2,0)为圆心, 2为半径的圆在圆O 内的部分。

解法二:“参数法”

设点M 的坐标为(x,y ),B (x 1,y 1),C (x 2,y 2)直线AB 的方程为y=k(x -4),

由直线与圆的方程得(1+k 2)x 2 -8k 2x +16k 2

-4=0...........(*),

由点M 为BC 的中点,所以x=2

2

21142k

k x x +=+...............(1) , 又OM ⊥BC ,所以k=

x

y

.................(2)由方程(1)(2) 消去k 得(x -2)2

+ y 2

=4,又由方程(*)的△≥0得k 2

3

1

,所以x <1. 所以点M 的轨迹方程为(x -2)2

+ y 2

=4 (0≤x <1)所以M 的轨迹是以(2,0)为圆心, 2为半径的圆在圆O 内的部分。

四:用代入法等其它方法求轨迹方程

例4. 的的中点求线段为定点上的动点是椭圆点M AB ,a ,

,A b

y a x B )02(122

22=+ 轨迹方程。

分析:题中涉及了三个点A 、B 、M ,其中A 为定点,而B 、M 为动点,且点B 的运动是有规律的,显然M 的运动是由B 的运动而引发的,可见M 、B 为相关点,故采用相关点法求动点M 的轨迹方程。

【解析】设动点M 的坐标为(x ,y ),而设B 点坐标为(x 0,y 0) 则由M 为线段AB 中点,可得

???=-=???????

?=+=+y y a x x y y x a

x 2222

02

2000

0 即点B 坐标可表为(2x -2a ,2y )

上在椭圆点又1)(22

2200=+b y a x ,y x B Θ

,b

y a a x b

y

a x 1)2()22(1

2

2

2222

022

0=+-=+∴从而有 14)(422

22=+-b

y a a x M ,的轨迹方程为

得动点整理 【点评】代入法的关键在于找到动点和其相关点坐标间的等量关系

【变式4】如图所示,已知P (4,0)是圆x 2+y 2

=36内的一点,A 、B 是圆上两动点,且满

足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程

【解析】: 设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR | 又因为R 是弦AB 的中点,依垂径定理 在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)

又|AR |=|PR |=22)4(y x +-

所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2

-4x -10=0

因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动

设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2

,241+=

+y y x , 代入方程x 2

+y 2

-4x -10=0,得

2

4

4)2()24(

22+?

-++x y x -10=0 整理得 x 2+y 2

=56,这就是所求的轨迹方程

【备选题】

已知双曲线2

2

2x y -=的左、右焦点分别为1F ,2F ,过点2F 的动直线与双曲线相交于

A B ,两点.

(I )若动点M 满足1111FM F A F B FO =++u u u u r u u u r u u u r u u u r

(其中O 为坐标原点),求点M 的轨迹方程; (II )在x 轴上是否存在定点C ,使CA u u u r ·CB u u u r

为常数?若存在,求出点C 的坐标;若不存在,

请说明理由.

解:由条件知1(20)F -,

,2(20)F ,,设11()A x y ,,22()B x y ,. 解法一:(I )设()M x y ,,则则1(2)FM x y =+u u u u r ,,111(2)F A x y =+u u u r

,, 1221(2)(20)F B x y FO =+=u u u r u u u r ,,,,由1111FM F A F B FO =++u u u u r u u u r u u u r u u u r 得 121226x x x y y y +=++??

=+?,即12124x x x y y y

+=-??+=?,

于是AB 的中点坐标为422x y -??

??

?,. 当AB 不与x 轴垂直时,1212

24822

y y y y x x x x -==

----,即1212()8y y y x x x -=--. 又因为A B ,两点在双曲线上,所以22112x y -=,22

222x y -=,两式相减得

12121212()()()()x x x x y y y y -+=-+,即1212()(4)()x x x y y y --=-.

将1212()8

y

y y x x x -=

--代入上式,化简得22(6)4x y --=. 当AB 与x 轴垂直时,122x x ==,求得(80)M ,,也满足上述方程. 所以点M 的轨迹方程是2

2

(6)4x y --=.

(II )假设在x 轴上存在定点(0)C m ,,使CB CA .为常数.

当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-≠±. 代入2

2

2x y -=有2

2

2

2

(1)4(42)0k x k x k -+-+=.

则12x x ,是上述方程的两个实根,所以212241k x x k +=-,2122421

k x x k +=-,

(完整版)轨迹方程的五种求法例题

动点轨迹方程的求法 一、直接法 按求动点轨迹方程的一般步骤求,其过程是建系设点,列出几何等式,坐标代换,化简整理,主要用于动点具有的几何条件比较明显时. 例1已知直角坐标平面上点Q (2,0)和圆C :,动点M 到圆C 的切线长与的比等于常数(如图),求动点M 的轨迹方程,说明它表示什么曲线. 【解析】:设M (x ,y ),直线MN 切圆C 于N ,则有 ,即 , .整理得,这就是动点 M 的轨迹方程.若,方程化为,它表示过点和x 轴垂直的一条直线;若λ≠1,方程化为,它表示以为圆心,为半径的圆. 二、代入法 若动点M (x ,y )依赖已知曲线上的动点N 而运动,则可将转化后的动点N 的坐标入已知曲线的方程或满足的几何条件,从而求得动点M 的轨迹方程,此法称为代入法,一般用于两个或两个以上动点的情况. 例2 已知抛物线,定点A (3,1),B 为抛物线上任意一点,点P 在线段AB 上,且有BP :PA =1:2,当点B 在抛物线上变动时,求点P 的轨迹方程,并指出这个轨迹为哪种曲线. 【解析】:设,由题设,P 分线段AB 的比,∴ 解得.又点B 在抛物线上,其坐标适合抛物线方程,∴ 整理得点P 的轨迹方程为其轨迹为抛物线. 三、定义法 若动点运动的规律满足某种曲线的定义,则可根据曲线的定义直接写出动点的轨迹方程.此法一般用于求圆锥曲线的方程,在高考中常填空、选择题的形式出现. 例3 若动圆与圆外切且与直线x =2相切,则动圆圆心的轨迹方程是 12 2 =+y x MQ ()0>λλλ=MQ MN λ=-MQ ON MO 2 2λ=+--+2 222)2(1y x y x 0)41(4)1()1(222222=++--+-λλλλx y x 1=λ45= x )0,4 5 (2 222 222)1(3112-+=+-λλλλy x )-()0,12(2 2-λλ1 3122-+λλ12 +=x y ),(),,(11y x B y x P 2== PB AP λ.2121,212311++=++= y y x x 2 1 23,232311-=-=y y x x 12+=x y .1)2 3 23()2123( 2+-=-x y ),3 1 (32)31(2-=-x y 4)2(2 2 =++y x

数学必修2 直线与方程典型 例题

第三章直线与方程 3.1 直线的倾斜角与斜率 3.1.1 倾斜角与斜率 【知识点归纳】 1.直线的倾斜角: 2.直线的斜率: 3.直线的斜率公式: 【典型例题】 题型一求直线的倾斜角 例 1 已知直线的斜率的绝对值等于,则直线的倾斜角为(). A. 60° B. 30° C. 60°或120° D. 30°或150° 变式训练: 设直线过原点,其倾斜角为,将直线绕原点沿逆时针方向旋转45°, 得到直线,则的倾斜角为()。 A. B. C. D. 当0°≤α<135°时为,当135°≤α<180°时,为 题型二求直线的斜率 例2如图所示菱形ABCD中∠BAD=60°,求菱形ABCD各边和两条对角线所在直线的倾斜角和斜率. 变式训练:已知过两点, 的直线l的倾斜角为45°,求实数的值. 题型三直线的倾斜角与斜率的关系 例3右图中的直线l1、l2、l3的斜率分别为k1、k2、k3,则(). A .k1<k2<k3 B. k3<k1<k2 C. k3<k2<k1 D. k1<k3<k2

拓展一三点共线问题 例4 已知三点A(a,2)、B(3,7)、C(-2,-9a)在一条直线上,求实数a的值. 变式训练: 若三点P(2,3),Q(3,),R(4,)共线,那么下列成立的是(). A. B. C. D. 拓展二与参数有关问题 例 5 已知两点A (-2,- 3) , B (3, 0) ,过点P (-1, 2)的直线与线段AB始终有公共点,求直线的斜率的取值范围. 变式训练: 已知两点,直线过定点且与线段AB相交,求直线的斜率的取值范围.

拓展三利用斜率求最值 例 6 已知实数、满足当2≤≤3时,求的最大值与最小值。 变式训练:利用斜率公式证明不等式:且 3.1.2 两条直线平行与垂直的判定 【知识点归纳】 1.直线平行的判定 2.两条直线垂直的判定(注意垂直与x轴和y轴的两直线): 【典型例题】 题型一两条直线平行关系 例 1 已知直线经过点M(-3,0)、N(-15,-6),经过点R(-2,)、S(0,),试判断与是否平行? 变式训练:经过点和的直线平行于斜率等于1的直线,则的值是(). A.4 B.1 C.1或3 D.1或4

直线与方程(经典例题)

直线与方程 知识点复习: 一、直线与方程 (1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值围是0°≤α<180° (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k 表示。即tan k α=。斜率反映直线与轴的倾斜程度。 当[ ) 90,0∈α时,0≥k ; 当( ) 180,90∈α时,0

数学必修2---直线与方程典型例题(精)

第三章 直线与方程 3.1 直线的倾斜角与斜率 3.1.1 倾斜角与斜率 【知识点归纳】 1.直线的倾斜角: 2.直线的斜率: 3.直线的斜率公式: 【典型例题】 题型 一 求直线的倾斜角 例 1 已知直线l 的斜率的绝对值等于3,则直线的倾斜角为( ). A. 60° B . 30° C. 60°或120° D. 30°或150° 变式训练: 设直线l 过原点,其倾斜角为α,将直线l 绕原点沿逆时针方向旋转45°,得到直线1l ,则 1l 的倾斜角为( )。 A. 45α+? B . 135α-? C. 135α?- D. 当0°≤α<135°时为45α+?,当135°≤α<180°时,为135α-? 题型 二 求直线的斜率 例 2如图所示菱形ABCD 中∠BAD =60°,求菱形A BCD 各边和两条对角线所在直线的倾斜角和斜率. 变式训练: 已知过两点22(2,3)A m m +-, 2(3,2)B m m m --的直线l 的倾斜角为45°,求实数m 的值. 题型 三 直线的倾斜角与斜率的关系 例3右图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( ). A .k 1<k 2<k3? B. k3

变式训练: 若三点P (2,3),Q (3,a ),R (4,b )共线,那么下列成立的是( ). A .4,5a b == B.1b a -= C.23a b -= D.23a b -= 拓展 二 与参数有关问题 例 5 已知两点A (-2,- 3) , B (3, 0) ,过点P (-1, 2)的直线l 与线段AB 始终有公共点,求直线l 的斜率k 的取值范围. 变式训练: 已知(2,3),(3,2)A B ---两点,直线l 过定点(1,1)P 且与线段AB相交,求直线l 的斜率k 的取值范围. 拓展 三 利用斜率求最值 例 6 已知实数x 、y 满足28,x y +=当2≤x ≤3时,求y x 的最大值与最小值。 变式训练: 利用斜率公式证明不等式:(0a m a a b b m b +><<+且0)m > 3.1.2 两条直线平行与垂直的判定 【知识点归纳】

求动点的轨迹方程方法例题习题答案

求动点的轨迹方程(例题,习题与答案) 在中学数学教学和高考数学考试中,求动点轨迹的方程和曲线的方程是一个难 点和重点内容(求轨迹方程和求曲线方程的区别主要在于:求轨迹方程时,题目中 没有直接告知轨迹的形状类型;而求曲线的方程时,题目中明确告知动点轨迹的形 状类型)。求动点轨迹方程的常用方法有:直接法、定义法、相关点法、参数法与 交轨法等;求曲线的方程常用“待定系数法”。 求动点轨迹的常用方法 动点P 的轨迹方程是指点P 的坐标(x, y )满足的关系式。 1. 直接法 (1)依题意,列出动点满足的几何等量关系; (2)将几何等量关系转化为点的坐标满足的代数方程。 例题 已知直角坐标平面上点Q (2,0)和圆C :122=+y x ,动点M 到圆C 的切线长等与MQ ,求动点M 的轨迹方程,说明它表示什么曲线. 解:设动点M(x,y),直线MN 切圆C 于N 。 依题意:MN MQ =,即22MN MQ = 而222NO MO MN -=,所以 (x-2)2+y 2=x 2+y 2-1 化简得:x=45 。动点M 的轨迹是一条直线。 2. 定义法 分析图形的几何性质得出动点所满足的几何条件,由动点满足的几何条件可以判断出动点 的轨迹满足圆(或椭圆、双曲线、抛物线)的定义。依题意求出曲线的相关参数,进一步写出 轨迹方程。 例题:动圆M 过定点P (-4,0),且与圆C :082 2=-+x y x 相切,求动圆圆心M 的轨迹 方程。 解:设M(x,y),动圆M的半径为r 。 若圆M 与圆C 相外切,则有 ∣M C ∣=r +4 若圆M 与圆C 相内切,则有 ∣M C ∣=r-4 而∣M P ∣=r, 所以 ∣M C ∣-∣M P ∣=±4 动点M 到两定点P(-4,0),C(4,0)的距离差的绝对值为4,所以动点M 的轨迹为双曲线。其中a=2, c=4。 动点的轨迹方程为: 3. 相关点法 若动点P(x ,y)随已知曲线上的点Q(x 0,y 0)的变动而变动,且x 0、y 0可用x 、y 表示,则 将Q 点坐标表达式代入已知曲线方程,即得点P 的轨迹方程。这种方法称为相关点法。

直线与直线方程经典例题

必修2 第二章 解析几何初步 第一节:直线与直线方程(王建明) 一、直线的倾斜角和斜率 (1)倾斜角定义:平面直角坐标系中,对于一条与x 轴相交的直线l , 把__x 轴(正方向)_按__逆时针__方向绕着交点旋转到和直线l 重合所成的角, 叫作直线l 的倾斜角。(0°≤α<180°) (2)斜率k=tan α=1 212x x y y -- (0°≤α<180°),当α=90时,k 不存在。(两种求法,注意21x x =的情况)(3)函数y=tanx 在)90,0[0增加的,在)180,90(00也是增加的。 例1:过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为 。 例2:过两点A (m 2+2,m 2-3),B (3-m-m 2,2m )的直线l 的倾斜角为45°求m 的值。 例3:已知直线l 经过点P (1,1),且与线段MN 相交,又M (2,-3),N (-3,-2),求直线l 的斜率k 的取值范围。 例4:已知a >0,若平面内三点A (1,—a ),B (2,a 2),C(3,a 3)共线,则a 值为 。 练习: 1经过点P (2,m )和Q (2m ,5)的直线的斜率等于12 ,则m 的值是( B ) A .4 B .3 C .1或3 D .1或4 变:的取值范围的斜率的直线求经过点 )1,cos (),sin ,2( k l B A θθ-- 2. 已知直线l 过P(-1,2),且与以A(-2,-3)、B(3,0)为端点的线段相交,求直线l 的斜率的取值范围. 点评:要用运动的观点,研究斜率与倾斜角之间的关系!答案: ? ?? ??-∞,-12∪[5,+∞) 3.已知坐标平面内三点A (-1,1),B (1,1),C (2,3+1),若D 为△ABC 的边AB 上一动点,求直线CD 斜率k 的变化范围. 答案:? ???-∞,-12∪[5,+∞) 二、两直线的平行与垂直 1.平行的判定: 2. 垂直的判定: 例(1)l 1 经过点M (-1,0), N (-5,-2),l 2经过点R (-4,3),S (0,5),l 1与l 2是否平行? (2)l 1 经过点A (m ,1), B (-3,4), )l 2 经过点C (1,m ), D (-1, m+1),确定m 的值,使l 1//l 2。 练习: 例(1) l 1的倾斜角为45,l 2经过点P (-2,-1),Q (3,-6). 例(2)已知点M (2,2)和N (5,-2),点P 在x 轴上,且∠MPN 为直角,求点P 的坐标。 练习: 1.求a 为何值时,直线l 1:(a +2)x +(1-a )y -1=0与直线l 2:(a -1)x +(2a +3)y +2=0互相垂直? 答案:a=-1 2.求过点P (1,-1),且与直线l 2:2x +3y +1=0垂直的直线方程. 答案:3x -2y -5=0. 三、直线的方程 1、点斜式: y-y 0=k (x -x 0) (斜率存在,可为0) 1、 斜截式: y=kx +b (b 是与y 轴的交点) (斜率存在,可为0)

轨迹方程的求法及典型例题(含答案)

" 轨迹方程的求法 一、知识复习 轨迹方程的求法常见的有(1)直接法;(2)定义法;(3)待定系数法(4)参数法(5)交轨法;(6)相关点法 注意:求轨迹方程时注意去杂点,找漏点. 一、知识复习 例1:点P(-3,0)是圆x2+y2-6x-55=0内的定点,动圆M与已知圆相切,且过点P,求圆心M的轨迹方程。 { ]

例2、如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠ APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. $ 解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |. 又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2) ) 又|AR |=|PR |= 2 2)4(y x +- 所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0 因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2 ,2 41+= +y y x , 代入方程x 2+y 2-4x -10=0,得 2 4 4)2()24( 22+? -++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程. |

例3、如图, 直线L 1和L 2相交于点M, L 1 L 2, 点N L 1. 以A, B 为端点的曲线段C 上的 任一点到L 2的距离与到点N 的距离相等. 若 AMN 为锐角三角形, |AM|= 17 , |AN| = 3, 且|BN|=6. 建立适当的坐标系,求曲线段C 的方程. 、 解法一:如图建立坐标系,以l 1为x 轴,MN 的垂直平分线为y 轴,点O 为坐标原点。 依题意知:曲线段C 是以点N 为焦点,以l 2为准线的抛物线的一段,其中A ,B 分别为C 的端点。 @ 设曲线段C 的方程为)0,(),0(22 >≤≤>=y x x x p px y B A , 其中x A,x B 分别为A ,B 的横坐标,P=|MN|。 ) 2(92)2() 1(172)2(3||,17||)0,2 (),0,2(22=+-=++==- A A A A px p x px p x AN AM p N p M 得 由所以 由①,②两式联立解得 p x A 4= 。再将其代入①式并由p>0解得??????====2214A A x p x p 或 因为△AMN 是锐角三角形,所以A x p >2,故舍去???==2 2A x p ∴p=4,x A =1

《直线与方程》教案+例题精析

考点1:倾斜角与斜率 (一)直线的倾斜角 例1例1. 若θ为三角形中最大内角,则直线0tan :=++m y x l θ的倾斜角的范围是( ) A.??? ?????? ??32,22,0πππ B.??? ?????? ??32223ππππ,, C.??? ?????? ??πππ,,330 D.?? ? ?????? ??πππ,,3220 2 若直线:l y kx =2360x y +-=的交点位于第一象限,则直线l 的倾斜角的取值范围是( ) A .,63ππ?????? B .,62ππ?? ??? C .,32ππ?? ??? D .,62ππ?????? (二)直线的斜率及应用 3、利用斜率证明三点共线的方法:已知112233(,),(,),(,),A x y B x y C x y 若123AB AC x x x k k ===或,则有A 、B 、C 三点共线。 例2、设,,a b c 是互不相等的三个实数,如果333(,)(,)(,)A a a B b b C c c 、、在同一直线上,求证:0a b c ++= 1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( ) A .1=+b a B .1=-b a C .0=+b a D .0=-b a 2.过点P (-2,m )和Q (m ,4)的直线的斜率等于1,则m 的值为() A.1 B.4 C.1或3 D.1或4 3.已知直线l 则直线的倾斜角为( ) A. 60° B. 30° C. 60°或120° D. 30°或150° 4.若三点P (2,3),Q (3,a ),R (4,b )共线,那么下列成立的是( ). A .4,5a b == B .1b a -= C .23a b -= D .23a b -= 5.右图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( ). A .k 1<k 2<k 3 B. k 3<k 1<k 2 C. k 3<k 2<k 1 D. k 1<k 3<k 2 6.已知两点A (x ,-2),B (3,0),并且直线AB 的斜率为2,则x = . 7.若A (1,2),B (-2,3),C (4,y )在同一条直线上,则y 的值是 . 8.已知(2,3),(3,2)A B ---两点,直线l 过定点(1,1)P 且与线段AB 相交,求直线l 的斜率k 的取值范围. 9、直线l :ax +(a +1)y +2=0的倾斜角大于45°,则a 的取值范围是________. 考点2:求直线的方程 例3. 已知点P (2,-1).(1)求过P 点且与原点距离为2的直线l 的方程; (2)求过P 点且与原点距离最大的直线l 的方程,最大距离是多少? (3)是否存在过P 点且与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由. 1、求过点P (2,-1),在x 轴和y 轴上的截距分别为a 、b,且满足a=3b 的直线方程。 2、设A 、B 是x 轴上的两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是( )A. x +y -5=0 B. 2x -y -1=0 C. 2y -x -4=0 D. 2x +y -7=0 3、直线过点(-3,4),且在两坐标轴上的截距之和为12,则该直线方程为________. 4、过点P (-2,3)且在两坐标轴上的截距相等的直线l 的方程为_____________. 5、已知点A (2,-3)是直线a 1x +b 1y +1=0与直线a 2x +b 2y +1=0的交点,则经过两个不同点P 1(a 1,b 1)和P 2(a 2,b 2)的直线方程是( )A .2x -3y +1=0 B .3x -2y +1=0 C .2x -3y -1=0 D .3x -2y -1=0 6、.过点P (0,1)且和A (3,3),B (5,-1)的距离相等的直线方程是( ) A .y =1 B .2x +y -1=0 C .y =1或2x +y -1=0 D .2x +y -1=0或2x +y +1=0 7.如图,过点P (2,1)作直线l ,分别为交x 、y 轴正半轴于A 、B 两点。(1)当⊿AOB

求轨迹方程的常用方法(例题及变式)

求轨迹方程的常用方法: 题型一 直接法 此法是求轨迹方程最基本的方法,根据所满足的几何条件,将几何条件)}(|{M P M 直接翻译成y x ,的形式0),(=y x f ,然后进行等价变换,化简0),(=y x f ,要注意轨迹方程的纯粹性和完备性,即曲线上没有坐标不满足方程的点,也就是说曲线上所有的点适合这个条件而毫无例外(纯粹性);反之,适合条件的所有点都在曲线上而毫无遗漏(完备性)。 例1 过点)3,2(A 任作互相垂直的两直线AM 和AN ,分别交y x ,轴于点N M ,,求线段MN 中点P 的轨迹方程。 解:设P 点坐标为),(y x P ,由中点坐标公式及N M ,在轴上得)2,0(y M ,)0,2(x N ),(R y x ∈ ∴12 0322230-=--?--y x )1(≠x ,化简得01364=-+y x )1(≠x 当1=x 时,)3,0(M ,)0,2(N ,此时MN 的中点)2 3,1(P 它也满足方程01364=-+y x ,所以中点P 的轨迹方程为01364=-+y x 。 变式1 已知动点(,)M x y 到直线:4l x =的距离是它到点(1,0)N 的距离的2倍。 (1) 求动点M 的轨迹C 的方程; (2) 过点(0,3)P 的直线m 与轨迹C 交于,A B 两点。若A 是PB 的中点,求直线m 的斜 率。 题型二 定义法 圆锥曲线定义所包含的几何意义十分重要,应特别重视利用圆锥曲线的定义解题,包括用定义法求轨迹方程。 例2 动圆M 过定点)0,4(-P ,且与圆08:2 2=-+x y x C 相切,求动圆圆心M 的轨迹方程。 解:根据题意4||||||=-MP MC ,说明点M 到定点P C 、的距离之差的绝对值为定值,故点M 的轨迹是双曲线。 ∴2=a ,4=c 故动圆圆心M 的轨迹方程为112 42 2=-y x 变式2 在ABC △中,24BC AC AB =,,上的两条中线长度之和为39, 求ABC △的重心的轨迹方程.

数学必修2---直线与方程典型例题

第三章直线与方程 【典型例题】 题型一求直线的倾斜角与斜率 设直线I斜率为k且1

3.1.2两条直线平行与垂直的判定 【 【典型例题】 题型一两条直线平行关系 例1 已知直线l i 经过点M (-3, 0)、N (-15,-6), 12 经过点R (-2, - )、S (0, 2 5),试判断^与12是否平行? 2 变式训练:经过点P( 2,m)和Q(m,4)的直线平行于斜率等于1的直线,贝U m的值是(). A . 4 B. 1 C. 1 或3 D. 1 或4 题型二两条直线垂直关系 例2已知ABC的顶点B(2,1), C( 6,3),其垂心为H( 3,2),求顶点A的坐标. 变式训练:(1) h的倾斜角为45 ° 12经过点P (-2,-1 )、Q (3,-6),问h与12是否垂直? (2)直线11,12的斜率是方程x2 3x 1 0的两根,则h与12的位置关系是—. 题型三根据直线的位置关系求参数 例3已知直线h经过点A(3,a)、B (a-2,-3),直线S经过点C (2,3)、D (-1,a-2) (1)如果I1//I2,则求a的值;(2)如果11丄12,则求a的值 题型四直线平行和垂直的判定综合运用 例4四边形ABCD的顶点为A(2,2 2 2)、B( 2,2)、C(0,2 2.. 2)、D(4,2),试判断四边形ABCD的形状.

直线与方程知识点及典型例题.docx

第三章直线与方程知识点及典型例题 1. 直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0 度。因此,倾斜角的取值范围是0°≤α<180° 2. 直线的斜率 ① 定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。 直线的斜率常用k 表示。即 k=tan 。斜率反映直线与轴的倾斜程度。 当直线 l 与 x 轴平行或重合时 ,α=0°,k = tan0 =0;° 当直线 l 与 x 轴垂直时 ,α= 90k°不,存在 . 当0,90时, k0 ;当90 ,180时, k0;当90 时,k不存在。 例 .如右图,直线l 1的倾斜角 =30°,直线 l1⊥ l 2,求直线 l1和 l2的斜率 . y 解: k1=tan30° =3∵ l1⊥ l2∴ k1· k2 =— 1l 1 3 ∴ k2 =—32x 1 例:直线 x 3 y50 的倾斜角是()o l2 °°°° ②过两点 P1 (x1, y1)、P1(x1,y1) 的直线的斜率公式: k y2y 1 ( x1x 2 ) x2x1 注意下面四点: (1)当x1x2时,公式右边无意义,直线的斜率不存在,倾斜角为90°; (2)k与 P1、 P2的顺序无关; (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 例 .设直线l1经过点A(m,1)、B(—3,4),直线l2经过点C(1,m)、D(—1,m+1), 当 (1) l / / l 2(2) l⊥l时分别求出 m 的值 111 ※三点共线的条件:如果所给三点中任意两点的斜率都有斜率且都相等,那么这三点共线。 3. 直线方程 ① 点斜式:y y1k( x x1 )直线斜率k,且过点x1, y1 注意:当直线的斜率为0°时, k=0,直线的方程是y=y1。 当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都

最新直线与方程知识点及典型例题

第三章 直线与方程知识点及典型例题 1. 直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时 ,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180° 2. 直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。 直线的斜率常用k 表示。即k=tan α。斜率反映直线与轴的倾斜程度。 当直线l 与x 轴平行或重合时, α=0°, k = tan0°=0; 当直线l 与x 轴垂直时, α= 90°, k 不存在. 当[ ) 90,0∈α时,0≥k ; 当( ) 180 ,90∈α时,0

直线与圆的方程典型例题(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改 赠人玫瑰,手留余香。 高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 2224)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C

∴半径204)11(2 2 = ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 例2 求半径为4,与圆04242 2 =---+y x y x 相切,且和直线0=y 相切的圆的方程. 分析:根据问题的特征,宜用圆的标准方程求解. 解:则题意,设所求圆的方程为圆2 22)()(r b y a x C =-+-: . 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆04242 2 =---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA . (1)当)4,(1a C 时,2 2 2 7)14()2(=-+-a ,或2 2 2 1)14()2(=-+-a (无解),故可得 1022±=a . ∴ 所 求 圆 方 程 为 2 224)4()1022(=-+--y x ,或 2224)4()1022(=-++-y x . (2)当)4,(2-a C 时,2 2 2 7)14()2(=--+-a ,或2 2 2 1)14()2(=--+-a (无解),故 622±=a . ∴ 所 求 圆 的 方 程 为 2 224)4()622(=++--y x ,或 2224)4()622(=+++-y x . 说明:对本题,易发生以下误解: 由题意,所求圆与直线0=y 相切且半径为4,则圆心坐标为)4,(a C ,且方程形如 2224)4()(=-+-y a x .又圆042422=---+y x y x ,即2223)1()2(=-+-y x ,其 圆心为)1,2(A ,半径为3.若两圆相切,则34+=CA .故2 2 2 7)14()2(=-+-a ,解

圆锥曲线轨迹方程经典例题

轨迹方程经典例题 一、轨迹为圆: 1、 长为2a 的线段的两个端点在x 轴和y 轴上移动,求线段AB 的中点M 的轨迹方程: 已知M 与两个定点(0,0),A (3,0)的距离之比为 2 1 ,求点M 的轨迹方程; 2、 线段AB 的端点B 的坐标是(4,3),端点A 在圆1)1(22=++y x 上运动,求AB 的中点M 的轨迹。 (2013新课标2卷文20)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为32。 (1)求圆心的P 的轨迹方程; (2)若P 点到直线x y =的距离为 2 2 ,求圆P 的方程。 3如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. 4在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l .设圆C 的半径为1,圆心在l 上. (1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围. 5(2013陕西卷理20)已知动圆过定点)0,4(A ,且在y 轴上截得弦MN 的长为8. (1) 求动圆圆心的轨迹C 的方程; (2) 已知点)0,1(-B ,设不垂直于x 轴的直线l 与轨迹C 交于不同的两点Q P ,,若x 轴是PBQ ∠的角平分线,证明 直线l 过定点。 二、椭圆类型: 3、 定义法:点M(x ,y )与定点F(2,0)的距离和它到定直线8=x 的距离之比为2 1 ,求点M 的轨迹方程.

人教A版高中数学必修2第三章 直线与方程3.1 直线的倾斜角与斜率习题(3)

直线的倾斜角和斜率 3.1倾斜角和斜率 1、直线的倾斜角的概念:当直线l 与x 轴相交时, 取x 轴作为基准, x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.特别地,当直线l 与x 轴平行或重合时, 规定α= 0°. 2、 倾斜角α的取值范围: 0°≤α<180°. 当直线l 与x 轴垂直时, α= 90°. 3、直线的斜率: 一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,也就是 k = tan α ⑴当直线l 与x 轴平行或重合时, α=0°, k = tan0°=0; ⑵当直线l 与x 轴垂直时, α= 90°, k 不存在. 由此可知, 一条直线l 的倾斜角α一定存在,但是斜率k 不一定存在. 4、 直线的斜率公式: 给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率: 斜率公式: k=y2-y1/x2-x1 3.1.2两条直线的平行与垂直 1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即 注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k 1=k 2, 那么一定有L 1∥L 2 2、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即 基础卷 一.选择题: 1.下列命题中,正确的命题是 (A )直线的倾斜角为α,则此直线的斜率为tan α (B )直线的斜率为tan α,则此直线的倾斜角为α (C )任何一条直线都有倾斜角,但不是每一条直线都存在斜率 (D )直线的斜率为0,则此直线的倾斜角为0或π 2.直线l 1的倾斜角为30°,直线l 2⊥l 1,则直线l 2的斜率为 (A )3 (B )-3 (C )33 (D )-3 3 3.直线y =x cos α+1 (α∈R )的倾斜角的取值范围是 (A )[0, 2π] (B )[0, π) (C )[-4π, 6π] (D )[0, 4π]∪[4 3π,π) 4.若直线l 经过原点和点(-3, -3),则直线l 的倾斜角为 (A )4π (B )54π (C )4π或54 π (D )-4π 5.已知直线l 的倾斜角为α,若cos α=-5 4,则直线l 的斜率为

高一数学直线方程知识点归纳及典型例题

直线的一般式方程及综合 【学习目标】 1.掌握直线的一般式方程; 2.能将直线的点斜式、两点式等方程化为直线的一般式方程,并理解这些直线的不同形式的方程在表示直线时的异同之处; 3.能利用直线的一般式方程解决有关问题. 【要点梳理】 要点一:直线方程的一般式 关于x和y的一次方程都表示一条直线.我们把方程写为Ax+By+C=0,这个方程(其中A、B不全为零)叫做直线方程的一般式. 要点诠释: 1.A、B不全为零才能表示一条直线,若A、B全为零则不能表示一条直线. 当B≠0时,方程可变形为 A C y x B B =--,它表示过点0, C B ?? - ? ?? ,斜率为 A B -的直线. 当B=0,A≠0时,方程可变形为Ax+C=0,即 C x A =-,它表示一条与x轴垂直的直线. 由上可知,关于x、y的二元一次方程,它都表示一条直线. 2.在平面直角坐标系中,一个关于x、y的二元一次方程对应着唯一的一条直线,反过来,一条直线可以对应着无数个关于x、y的一次方程(如斜率为2,在y轴上的截距为1的直线,其方程可以是2x―y+1=0, 也可以是 11 22 x y -+=,还可以是4x―2y+2=0等.) 要点二:直线方程的不同形式间的关系 直线方程的五种形式的比较如下表: 要点诠释: 在直线方程的各种形式中,点斜式与斜截式是两种常用的直线方程形式,要注意在这两种形式中都要求直线存在斜率,两点式是点斜式的特例,其限制条件更多(x1≠x2,y1≠y2),应用时若采用(y2―y1)(x―x1)―(x2―x1)(y―y1)=0的形式,即可消除局限性.截距式是两点式的特例,在使用截距式时,首先要判断是否满足“直线在两坐标轴上的截距存在且不为零”这一条件.直线方程的一般式包含了平面上的所有直线形式.一般式常化为斜截式与截距式.若一般式化为点斜式,两点式,由于取点不同,得到的方程也不同. 要点三:直线方程的综合应用 1.已知所求曲线是直线时,用待定系数法求. 2.根据题目所给条件,选择适当的直线方程的形式,求出直线方程. 对于两直线的平行与垂直,直线方程的形式不同,考虑的方向也不同.

人教版高中数学必修 知识点考点及典型例题解析全

必修二 第一章 空间几何体 知识点: 1、空间几何体的结构 ⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。 ⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。 ⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。 2、长方体的对角线长2222c b a l ++=;正方体的对角线长a l 3= 3、球的体积公式:33 4  R V π= ,球的表面积公式:24 R S π= 4、柱体h s V ?=,锥体h s V ?=31,锥体截面积比:22 2 1 21h h S S = 5、空间几何体的表面积与体积 ⑴圆柱侧面积; l r S ??=π2侧面 ⑵圆锥侧面积: l r S ??=π侧面 典型例题: ★例1:下列命题正确的是( ) A.棱柱的底面一定是平行四边形 B.棱锥的底面一定是三角形 C.棱柱被平面分成的两部分可以都是棱柱 D.棱锥被平面分成的两部分不可能都是棱锥 ★★例2:若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( ) A 21 倍 B 42倍 C 2倍 D 2倍 ★例3:已知一个几何体是由上、下两部分构成的一个组合体,其三视图如下图所示,则这个组合体的上、下两部分分别是( ) A.上部是一个圆锥,下部是一个圆柱 B.上部是一个圆锥,下部是一个四棱柱 C.上部是一个三棱锥,下部是一个四棱柱 D.上部是一个三棱锥,下部是一个圆柱

★★例4:一个体积为38cm 的正方体的顶点都在球面上,则球的表面积是 A .28cm π B 2 12cm π. C 216cm π. D .220cm π 二、填空题 ★例1:若圆锥的表面积为a 平方米,且它的侧面展开图是一个半圆,则这个圆锥的底面的直径为_______________. ★例2:球的半径扩大为原来的2倍,它的体积扩大为原来的 _________ 倍. 第二章 点、直线、平面之间的位置关系 知识点: 1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。 2、公理2:过不在一条直线上的三点,有且只有一个平面。 3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点 的公共直线。 4、公理4:平行于同一条直线的两条直线平行. 5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。 6、线线位置关系:平行、相交、异面。 7、线面位置关系:直线在平面内、直线和平面平行、直线和平面相交。 8、面面位置关系:平行、相交。 9、线面平行: ⑴判定:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简 称线线平行,则线面平行)。 ⑵性质:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与 该直线平行(简称线面平行,则线线平行)。 10、面面平行: ⑴判定:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简 称线面平行,则面面平行)。 ⑵性质:如果两个平行平面同时和第三个平面相交,那么它们的交线平行(简称 面面平行,则线线平行)。 11、线面垂直: ⑴定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和 这个平面垂直。 ⑵判定:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直 (简称线线垂直,则线面垂直)。 ⑶性质:垂直于同一个平面的两条直线平行。 12、面面垂直: ⑴定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。 ⑵判定:一个平面经过另一个平面的一条垂线,则这两个平面垂直(简称线面垂直,

相关文档
最新文档