张力控制系统方案

合集下载

张力控制系统分析

张力控制系统分析

1 引言20世纪60年代,特别是80年代以来,随着电力电子技术、现代控制理论、计算机技术和微电子技术的发展,逐步形成了集多种高新技术于一身的现代电气传动技术。

高精度、高可靠性的变频调速系统,凸显了交流异步电动机结构简单、价格便宜、工作可靠和维护方便等优点,为冶金处理线的张力控制技术的发展提供了强有力的保证。

2 带钢张力的作用采用张力控制防止带钢堆拉现象发生,同时,张力在生产过程中也发挥着十分重要的作用,主要表现在以下几个方面[1]:2.1 防止带钢跑偏在实际生产过程中,由于各种因素的影响,带钢在运行过程中容易发生跑偏,而且会随着运行而越来越严重。

为了防止跑偏,可以采用纠偏辊或八字辊,但这两种方法都有一定的时滞,有一定的局限性。

而适当调节张力值,维持张力稳定,带钢可以在一定的张力作用下平稳的运行,张力反映迅速,无时滞,所以是防止带钢跑偏的有效方法。

2.2 有利于控制带钢的板形板形是衡量带钢质量的重要指标,板形良好指的就是带钢的平制度好,如边部起浪,中部浪皱等,这主要是由于变形不均匀,使带钢中的残余应力超出了稳定所允许的拉应力。

当采用微张力控制时,使带钢沿宽度方向上的拉力不超过所允许的拉应力,由此来保持带钢板形的平直。

2.3 有利于控制加热面积的控制炉区的入口段是预热炉,里面没有炉棍,是一段悬空的带钢。

两边喷嘴加热带钢。

利用张力可以调节带钢的悬垂度,保证在预热炉内的带钢充分加热。

此外,张力在煅烧过程中可以适当调节张力辊电机的负荷。

可见张力控制对于正常生产是非常重要的的保证。

而通过张力产生的原理分析,我们可以找出控制或影响张力的有关原因。

3 带钢张力控制方案以冶金处理线的控制为例,介绍具体控制方案。

图1表示了一条简单处理线的主要传动设备,由开卷机、卷取机、活套和若干张力辊组成。

开卷机,卷取机,活套分别建立各段张力,张力辊根据工艺需要分断上下游张力。

处理段br2参与tm1(张力计)的直接张力控制,其他张力辊作为各速度区域(活套将全线分成入口、中部、尾部三段)的速度基准[2]。

张力控制系统

张力控制系统

目录1. 毕业实习的目的、意义、要求...................................2. 总体介绍.....................................................3.张力控制系统..................................................3.1组成.....................................................3.2原理.....................................................3.3分类.....................................................3.4调试.....................................................4.编码器........................................................4.1工作原理.................................................5.对社会可持续发展等的影响......................................6.总结..........................................................7.参考文献......................................................1. 毕业实习的目的、意义、要求目的:1、熟悉张力控制系统的组成及工作原理。

2、了解张力检测装置、熟悉编码器的种类。

3、初步掌握S7-300PLC和G120变频器的应用。

4、了解张力控制系统的调试步骤和方法。

意义:在工业生产的诸多行业,经常会遇到卷绕控制问题。

张力绞车自动控制系统综述

张力绞车自动控制系统综述

间接 式 张力控 制 系统 ,在 无 反馈 控制 系
磁粉 离合器 的特 点主要有 :
较 高 的 安 全 性 、 可 靠 性
统基础上,对部分 可确 定的扰 动进行相应补偿 ,
1.2.1可 实现线性调速
通过 分析 比较 ,液压 马达 驱动 方式 更 适 提高系统张力 的稳定性 。实 际工作 中,扰动具
高控制成本 。
向阀只起换向作用,在回收工况下 ,比例 换向
随着 液压 技术 不断 提高 ,液压传 动 驱动 2.2 开 环 张 力 控 制 系统
下的张力控制系统发展迅速。在大惯性负载张
阀工作于右位 ,出口比例溢流 阀提供较 小背压 , 工作时 马达输 出转矩 由进 口比例溢流 阀压力值
由于 绞车 转 动速度 较 慢且 保持 稳定 、卷
复合控 制 系统 同时 包含 按偏 差控 制 的闭
可基本保持不变 。
变张力控制,均要求张力控制稳定性 高,抗干 环方式和按扰动或输入控制 的开环 方式。主要
1.2.3可 实 现 无 级 调 速
扰性能强,安全性高 ,实现上述要求 的关键在 设计理念为:针对主要可确定 的扰 动,采用补
与 传感 器及 控制 线路 配合 ,便 可 实现 无 于张力控制器的设计 ,根据 自动控制 原理 ,可 偿装置进行扰动控制 ;对于剩余偏 差,在扰动
闭环 张力 控制 按张 力 的偏差 进 行调节 ,
两者结合,以使系 统输 出张力保 持于期望值 内。 3张力控 制方案
中得到广泛应用 ,但 同样 也具有部分缺点,例 形成张力反馈控制 ,任何属于 闭环范 围内的张
电液 比例 技术 是 目前大 负载 张 力控制 的
如 :散热性能较差 、在滑差情 况下效率低 下、 力扰动,系统均可通过控制器作用得 到补偿 。 主要方式,其基本工作原理 如图 3所示, 由图

张力控制方案

张力控制方案

张力控制方案随着工程技术的不断发展,我们对于张力控制的需求也越来越高。

无论是在建筑施工、机械制造,还是电力传输中,张力控制都是至关重要的一环。

本文将介绍一种高效可靠的张力控制方案,以帮助解决相关领域的问题。

一、背景介绍张力控制是指在一定范围内,通过对应力或应变的调节,使得构件或系统保持特定的张力水平。

正确的张力控制可以提高结构、设备或系统的性能和寿命,降低故障和事故的发生率。

因此,设计和实施合适的张力控制方案显得尤为重要。

二、基本原理张力控制的基本原理是通过监测张力水平并根据设定值进行调节。

常见的张力控制方法包括手动调节、基于传感器的反馈控制和自动化控制系统。

1. 手动调节:这种方法适用于一些简单的情况,通过人工调整绳索、链条或缆线的张力来实现控制。

然而,这种方法在长期运行或需要高精度控制的情况下并不适用。

2. 基于传感器的反馈控制:这种方法通过安装张力传感器来监测张力变化,然后将实际张力值与设定值进行比较,并通过调节执行机构来控制张力的变化。

这种方法可以提供高精度的张力控制,并且适用于各种复杂应用。

3. 自动化控制系统:在一些需要大规模张力控制的情况下,引入自动化控制系统是更为有效的方法。

这种系统通常由传感器、执行机构和控制器组成,能够实现实时监测、精确调节和稳定控制,提高工作效率和减少人为错误。

三、具体方案基于对现有张力控制方法的研究和分析,本文提出了一种结合传感器和自动化控制系统的高效张力控制方案。

1. 传感器选择:根据具体应用需求选择合适的张力传感器,如应变传感器、压力传感器或位移传感器等。

传感器的选取应考虑其精度、响应速度和可靠性等因素。

2. 控制器设计:设计一个智能控制器,该控制器能够接收传感器的信号,并根据设定值进行调节。

控制器应具备高精度的数据处理能力和快速的响应速度,以实现准确的张力控制。

3. 执行机构优化:根据具体应用场景选择合适的执行机构,如电机、液压缸或气动装置等,并通过优化其控制算法和传动装置来提高响应速度和控制精度。

带材卷绕张力控制系统设计

带材卷绕张力控制系统设计

带材卷绕张力控制系统设计摘要张力控制系统是以卷材为材料的生产机械上最重要的控制系统,不论产品是纸张、塑料薄膜、纺织品、橡胶片或薄钢板卷材,都是在一定的张力控制下被输送到设备,且在一定的张力下被卷取。

在以数字PID为核心的张力控制系统中,在矩阵键盘以及液晶显示器的帮助下,输入需要的数据后。

张力传感器检测电路得到模拟电压信号,该信号经过放大、滤波、电压跟随后送入10位A/D转换器进行模数转换,得到数字信号,该数字信号送入AVR单片机进行PID等算法运算后,再经过12位D/A转换后得到模拟信号,该信号用于控制电机。

同时,还设计了一个以模拟PID为核心的张力控制系统。

通过给定张力与反馈张力之差,经过模拟PID调节器后输出给变频器。

变频器根据控制精度的要求,工作在闭环速度控制。

这种模式采用过程PID,直接进行张力控制,原理简单、调试方便。

还用Multisim 9仿真了模拟PID。

关键词:张力传感器检测,PID,AVR单片机注:本设计题目来源于教师的企业科研项目,项目编号为:AbstractTension control system is the most important control system, which is based on membrane materials. Whether the product is paper, plastic film, textiles, rubber sheets or thin steel sheet, they all are transferred to the device, and is under a certain tension take-up.With the help of matrix keyboard and LCD display we can input required data. So the tension sensor detection circuit can receive an analog voltage signal. The signal after amplification, filtering, voltage follower, which come into 10-bit A/D converter for analog-digital conversion. It may get digital signal. The digital signal come into MCU, which may operate by PID algorithm or more. The result through the 12-bit D/A conversion turn into analog signal. The analog signal is used to control the motor.At the same time, I also designed a tension system at the core of the PID control. Through setting tension and feedback tension,which come into analog-PID regulator.The analog-PID regulator output to the inverter. The Inverter under control accuracy requirements is working in closed loop speed control. This model uses the process PID. The direct tension control is simple and convenient debugging. It simulate the tension control system with the help of Multisim 9.Key words:Tension sensor detection, PID operation, AVR MCU目录1绪论 (1)1.1 张力控制系统概述 (1)1.2 张力控制系统的国内外发展现状及应用 (1)1.3课题的目的和意义 (2)1.4本课题的主要工作 (3)2张力控制系统总体方案设计 (4)2.1张力分析 (4)2.2张力控制系统原理 (5)2.3张力控制系统控制方式选择 (6)2.4张力控制系统控制器方案选择 (6)2.5张力控制系统需求分析 (7)3张力控制系统硬件设计 (9)3.1硬件设计需求分析 (9)3.2数字PID为核心的硬件设计 (11)3.2.1电源电路硬件设计 (11)3.2.2张力传感器检测硬件设计 (12)3.2.3信号处理硬件电路设计 (13)3.2.4A/D转换硬件电路设计 (15)3.2.5单片机系统硬件电路设计 (16)3.2.6D/A转换电路硬件设计 (19)3.2.7键盘输入硬件电路设计 (21)3.2.8显示电路硬件设计 (22)3.3模拟PID为核心的硬件设计 (23)3.3.1模拟PID调节器硬件设计 (23)3.3.2模拟PID系统仿真 (30)3.3.3变频器 (31)4张力控制系统软件设计 (33)4.1主程序及初始化子程序 (33)4.1.1主程序 (33)4.1.2初始化子程序 (33)4.2 PID算法程序 (34)4.3采样程序 (36)4.4数模输出程序 (38)4.5矩阵键盘子程序 (40)4.6显示子程序 (40)结论 (42)参考文献 (43)致谢 (44)附录A (44)附录B (46)1绪论1.1 张力控制系统概述张力控制系统往往是张力传感器和张力控制器的一种系统集成,目前主要应用于冶金、造纸、薄膜、染整、织布、塑胶等线材或带材设备上,是一种实现恒张力或者变张力控制的自动控制系统,其作用主要是实现辊间的同步,收卷和放卷的控制[9]。

张力控制系统方案

张力控制系统方案

根据执行机构旳不一样张力控制方式可以分为电机张力控制系统、电液张力控制系统、磁粉张力控制系统以及其他旳如杠杆摇摆式张力控制系统等。

本方案是电机张力控制系统旳设计。

电机张力控制系统是目前应用最为广泛旳一种,其控制原理框图如下:
本方案完全采用安川电机企业旳所有部件,其中电机为安川400W旳伺服电机(内含旋转编码器),驱动器为安川400W旳伺服驱动器。

运动控制器为安川MP2300。

系统中使用了张力传感器,其作用为:检测出感应滚筒旳位置,以模拟量电压形式输入给MP系列运动控制器,控制器再以带有速度赔偿旳控制方式实现恒张力进给。

本科毕业设计PLC张力控制系统的设计5

本科毕业设计PLC张力控制系统的设计5

绪论随着科学技术的不断进展,工业生产的自动化程度不断地提高,微处置器、运算机和数字通信技术的应用愈来愈普遍。

工业自动化的主要支柱之一——PLC 在工业生产上具有普遍的应用,如造纸业、纺织业、橡皮业、薄膜加工业等等。

而PLC张力控制在上述工业中具有关键的作用。

在一般的造纸厂、印刷厂、纺织漂染厂、食物厂等,当处置一些如纸张、薄片、丝、布等长尺寸材料或产品时,都会用上卷壳及滚筒组成的加工生产线,因此,放料作业的张力控制,便成为通用的基础技术。

张力控制的作用就是在料膜动态处置进程中,维持恒定的张力,抑制外来干扰引发的张力抖动。

以料膜为例,在放卷,收卷和供料进程中,料膜上要维持必然的张力(或称之为拉伸力),过大的张力会致使料膜变形乃至短裂,而过小的张力又会使料膜松弛,致使褶皱,或处置尺寸不准等弊病。

如此就要求在料膜的处置进程,要维持恒定的张力。

张力控制的作用就是在料膜动态处置进程中,维持恒定的张力,抑制外来干扰引发的张力抖动。

本设计利用了伺服电机,三菱变频器、普通电机、西门子可编程控制器(PLC)、角度传感器。

项目中对两部份张力控制所选用的电机不同,是因为考虑到了生产本钱的因素。

在卷膜传送部份,需要的控制要求高,因此选用在性能好但价钱高的伺服电机,而在卷纸回收部份,需要的控制要求比较低,因此选用了廉价但能知足生产要求的普通电机。

设计中的张力控制系统,在利用传感器上选择了角度传感器。

通过对传送卷膜、卷纸的可动辊与水平面的夹角的测量,来判断张力大小是不是发生转变。

把检测出转角的模拟量送入控制器——PLC中进行控制。

第一章:张力控制系统的初步熟悉张力控制系统概述1.1.1 张力控制在一般的造纸厂、印刷厂、纺织漂染厂、食物厂等当处置一些如塑料膜卷、纸张、薄片、丝、布长尺寸材料或产品时,都会用上卷壳及滚筒组成的加工生产线,因此,放料作业的张力控制,便成为通用的基础技术。

以料膜为例,在放卷,收卷和供料进程中,料膜上要维持必然的张力(或称之为拉伸力),过大的张力会致使料膜变形乃至短裂,而过小的张力又会使料膜松弛,致使褶皱,或处置尺寸不准等弊病。

标准张力控制控制方式

标准张力控制控制方式

标准张力控制控制方式
标准张力控制控制方式有以下几种:
1.直接张力控制:直接张力控制方式是通过直接测量和调节张力
来控制张力。

在控制过程中,控制系统通过传感器实时检测张力值,并根据设定的张力目标值和检测到的实际张力值之间的差值,计算出调节量,然后通过执行机构对张力进行调节。

这种控制方式精度高,响应速度快,适用于高速、高精度的张力控制场合。

2.间接张力控制:间接张力控制方式是通过控制与张力相关的其
他参数来间接调节张力。

例如,通过控制线速度、卷径等参数来调节张力。

这种控制方式结构简单,易于实现,但精度和响应速度相对较低,适用于对张力精度要求不高的场合。

3.补偿控制:补偿控制方式是通过补偿外部扰动或系统参数变化
来提高张力控制的稳定性。

例如,当外部扰动或系统参数变化导致张力波动时,控制系统可以通过补偿控制算法对扰动进行补偿,从而减小张力波动。

这种控制方式适用于存在外部扰动或系统参数变化的场合。

4.自适应控制:自适应控制方式是一种基于系统参数变化的控制
方式。

在控制过程中,控制系统能够自动适应系统参数的变
化,从而减小因参数变化引起的误差。

这种控制方式适用于系统参数变化的场合。

5.模糊控制:模糊控制方式是一种基于模糊逻辑的控制方式。


控制过程中,控制系统通过模糊逻辑规则对输入的变量进行处理,从而得到调节量。

这种控制方式能够处理不确定性和非线性问题,适用于复杂的张力控制系统。

以上是标准张力控制控制方式的几种常见类型,具体选择哪种方式需要根据实际应用场景和需求进行选择。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

根据执行机构的不同张力控制方式可以分为电机张力控制系统、电液张力控制系统、磁粉张力控制系统以及其他的如杠杆摇摆式张力控制系统等。

本方案是电机张力控制系统的设计。

电机张力控制系统是目前应用最为广泛的一种,其控制原理框图如下:
本方案完全采用安川电机公司的所有部件,其中电机为安川400W的伺服电机(内含旋转编码器),驱动器为安川400W的伺服驱动器。

运动控制器为安川MP2300。

系统中使用了张力传感器,其作用为:检测出感应滚筒的位置,以模拟量电压形式输入给MP2000系列运动控制器,控制器再以带有速度补偿的控制方式实现恒张力进给。

相关文档
最新文档