数学建模教案-最小二乘法

合集下载

最小二乘法matlab实验报告

最小二乘法matlab实验报告

最小二乘法m a t l a b实验报告-CAL-FENGHAI.-(YICAI)-Company One1南京信息工程大学实验(实习)报告实验课程数学建模实验名称_ 最小二乘法__ 实验日期 _ 指导老师专业统计学年级小组成员实验目的:学会MATLAB软件中曲线拟合方法。

实验内容及要求:问题1:多项式回归某种合金中的主要成分为金属A与金属B,经过实验与分析发现,这两种金属成分之和x 与膨胀系数y之间有一定的关系。

由下面的数据建立描述这种关系的数学表示。

金属成分和x=[37.0 37.5 38.0 38.5 39.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0];膨胀系数 y=[3.40 3.00 3.00 2.27 2.10 1.83 1.53 1.70 1.80 1.90 2.35 2.54 2.90];注:使用命令:a=polyfit(x,y,n) %求出n阶拟合多项式y=f(x)的系数;y1=polyval(a,x1) %求出f(x)在x1点的函数值,其中x1=37.0:0.5:43.0;plot(x,y,'*r',x1,y1,'-b') %比较原数据和拟合曲线效果;问题2:非线性回归设观测到的数据如下:x=20:10:210;y=[0.57 0.72 0.81 0.87 0.91 0.94 0.95 0.97 0.98 0.99 1.00 0.99 0.99 1.00 1.00 0.99 1.00 1.00 0.99 1.00];取回归函数为y=b(1)*(1-exp(-b(2)*x)),试估计参数b(1)、b(2)。

注:使用命令:[b,r,j]=nlinfit(x,y,fun,b0); %非线性回归,其中b0为参数初始值,可取b0=[2,0.1],fun=inline('b(1)*(1-exp(-b(2)*x))','b','x')为内联函数;nlintool(x,y,fun,b0) %绘制非线性回归图。

数学建模——线性回归分析实用精品教案

数学建模——线性回归分析实用精品教案

数学建模——线性回归分析实用精品教案一、教学内容本节课选自高中数学教材《数学建模》第四章“数据的拟合与回归”第二节“线性回归分析”。

详细内容包括:线性回归模型的建立,最小二乘法求解线性回归方程,线性回归方程的显著性检验,以及利用线性回归方程进行预测。

二、教学目标1. 理解线性回归分析的基本概念,掌握线性回归方程的建立方法。

2. 学会运用最小二乘法求解线性回归方程,并能解释线性回归方程的参数意义。

3. 能够对线性回归方程进行显著性检验,利用线性回归方程进行预测。

三、教学难点与重点教学难点:最小二乘法的推导和应用,线性回归方程的显著性检验。

教学重点:线性回归模型的建立,线性回归方程的求解及其应用。

四、教具与学具准备教具:多媒体课件,黑板,粉笔。

学具:计算器,草稿纸,直尺,铅笔。

五、教学过程1. 实践情景引入:展示一组关于身高和体重的数据,引导学生思考身高和体重之间的关系。

2. 例题讲解:(1)建立线性回归模型,引导学生根据散点图判断变量间的线性关系。

(2)利用最小二乘法求解线性回归方程,解释方程参数的意义。

(3)对线性回归方程进行显著性检验,判断方程的有效性。

3. 随堂练习:(1)给出另一组数据,让学生尝试建立线性回归模型并求解。

(2)对所求线性回归方程进行显著性检验,并利用方程进行预测。

六、板书设计1. 线性回归模型2. 最小二乘法3. 线性回归方程的显著性检验4. 线性回归方程的应用七、作业设计1. 作业题目:(1)根据给定的数据,建立线性回归模型,求解线性回归方程。

(2)对所求线性回归方程进行显著性检验,并利用方程预测某学生的体重。

2. 答案:(1)线性回归方程为:y = 0.8x + 50(2)显著性检验:F = 40.23,P < 0.01,说明线性回归方程具有显著性。

八、课后反思及拓展延伸1. 课后反思:本节课学生对线性回归分析的理解和应用能力得到了提升,但仍有个别学生对最小二乘法的推导和应用感到困难,需要在课后加强辅导。

最小二乘法在数学建模中的应用

最小二乘法在数学建模中的应用

最小二乘法在数学建模中的应用最小二乘法是一种常见的统计学方法,用于寻找一条最佳拟合曲线或平面,使得这个拟合曲线或平面与实际数据的误差最小。

最小二乘法在科学研究和工程学中都有广泛的应用。

在数学建模中,最小二乘法也是非常重要的一种方法。

本文将从数学建模的角度讨论最小二乘法的应用,包括基本原理、应用案例和如何使用计算机实现最小二乘法。

一、最小二乘法的基本原理在数学建模中,我们经常需要通过给定的数据来求解某些模型的参数。

例如,我们可能需要从一组数据中找到一条直线或曲线,使得这个模型与实际数据的误差最小。

最小二乘法就是一种常见的方法,它通过拟合一个具有数学解析式的模型来达到这个目标。

最小二乘法的基本思想就是,通过最小化误差平方和来求解模型中的参数。

误差平方和是指实际数据的点与模型直线或曲线之间的距离的平方和。

最小二乘法的做法是,对于每一个数据点,计算它与模型的距离,并将这些距离的平方相加。

然后,通过求取这个误差平方和的极小值,可以求得最佳拟合曲线或平面的参数。

二、最小二乘法的应用案例最小二乘法在数学建模中的应用非常广泛,下面列举一些应用案例。

1.线性回归线性回归是最小二乘法的一个经典应用。

在线性回归中,我们需要拟合一条直线,使得这条直线与实际数据的误差最小。

通常我们使用简单的线性方程y=ax+b来描述这条直线,而最小二乘法就是用来求解a和b的。

例如,我们有一组数据{(1,2),(2,5),(3,6),(4,8)},我们想找到一条直线y=ax+b,使得误差平方和最小。

我们可以将这个问题转化为求解a和b使得误差平方和最小。

具体做法是,计算每个数据点与直线的距离,然后将这些距离的平方相加。

最后,通过求取误差平方和的偏导数使其为0,可以求解出a和b的值。

2.多项式拟合最小二乘法还可以用于多项式拟合。

在多项式拟合中,我们需要拟合一个多项式模型,使得这个模型与实际数据的误差最小。

例如,我们有一组数据{(1,2),(2,5),(3,6),(4,8)},我们想找到一个二次函数y=ax^2+bx+c,使得误差平方和最小。

数学建模的实验报告

数学建模的实验报告

数学建模实验报告姓名:学院:专业班级:学号:数学建模实验报告(一)——用最小二乘法进行数据拟合一.实验目的:1.学会用最小二乘法进行数据拟合。

2.熟悉掌握matlab软件的文件操作和命令环境。

3.掌握数据可视化的基本操作步骤。

4.通过matlab绘制二维图形以及三维图形。

二.实验任务:来自课本64页习题:用最小二乘法求一形如y=a+b x2的多项式,使之与下列数据拟合:三.实验过程:1.实验方法:用最小二乘法解决实际问题包含两个基本环节:先根据所给出数据点的变化趋势与问题的实际背景确定函数类;然后按照最小二乘法原则求最小二乘解来确定系数。

即要求出二次多项式: y=a+b x2的系数。

2.程序:x=[19 25 31 38 44]y=[19.0 32.3 49.0 73.3 97.8]ab=y/[ones(size(x));x.^2];a=ab(1),b=ab(2)xx=19:44;plot(xx,a+b*xx.^2,x,y,'.')3.上机调试得到结果如下:x = 19 25 31 38 44y=19.0000 32.3000 49.0000 73.3000 97.8000a = 0.9726b = 0.0500图形:四.心得体会通过本次的数学模型的建立与处理,我们学习并掌握了用最小二乘法进行数据拟合,及多项式数据拟合的方法,进一步学会了使用matlab软件,加深了我们的数学知识,提高了我们解决实际问题的能力,为以后深入学习数学建模打下了坚实的基础。

数学建模实验报告(二)——用Newton法求方程的解一.实验目的1.掌握Newton法求方程的解的原理和方法。

2.利用Matlab进行编程求近似解。

二.实验任务来自课本109页习题4-2:用Newton法求f(x)=x-cosx=0的近似解三.实验过程1.实验原理:把f(x)在x0点附近展开成泰勒级数f(x) = f(x0)+(x-x0)f'(x0)+(x-x0)^2*f''(x0)/2! +… 取其线性部分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前两项,则有f(x0)+f'(x0)(x-x0)=0 设f'(x0)≠0则其解为x1=x0-f(x0)/f'(x0) 这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f'(x(n))。

数学建模 非线性最小二乘问题

数学建模 非线性最小二乘问题

1、非线性最小二乘问题用最小二乘法计算:sets:quantity/1..15/: x,y;endsetsmin=@sum(quantity: (a+b* @EXP(c*x)-y)^2);@free(a); @free(b);@free(c);data:x=2,5,7,10,14,19,26,31,34,38,45,52,53,60,65;y=54,50,45,37,35,25,20,16,18,13,8,11,8,4,6;enddata运算结果为:Local optimal solution found.Objective value: 44.78049 Extended solve steps: 5Total solve iterartions: 68Variable Value Reduced CostA 2.430177 0.000000B 57.33209 0.000000C -0.4460383E-01 0.000000由此得到a的值为2.430177,b的值为57.33209,c的值为-0.04460383。

线性回归方程为y=2.430177+57.33209* @EXP(-0.04460383*x)用最小一乘法计算:程序如下:sets:quantity/1..15/: x,y;endsetsmin=@sum(quantity: @ABS(a+b*@EXP(c*x)-y));@free(a); @free(b);@free(c);data:x=2,5,7,10,14,19,26,31,34,38,45,52,53,60,65;y=54,50,45,37,35,25,20,16,18,13,8,11,8,4,6;enddata运算结果为:Linearization components added:Constraints: 60Variables: 60Integers: 15Local optimal solution found.Objective value: 20.80640Extended solver steps: 2Total solver iterations: 643Variable Value Reduced CostA 3.398267 0.000000B 57.11461 0.000000C -0.4752126e-01 0.000000由上可得a的值为3.398267,b的值为57.11461,c的值为-0.04752126。

高中高三数学《最小二乘法》教案、教学设计

高中高三数学《最小二乘法》教案、教学设计
2.布置作业时,注意以下几点:
a.作业难度适中,既要涵盖基础知识的巩固,也要涉及一定程度的拓展和提高。
b.鼓励学生在完成作业过程中,积极思考、主动探究,培养解决问题的能力。
c.注重培养学生的数学表达和写作能力,要求学生在解题报告中清晰阐述思路和方法。
3.作业布置要求:
a.学生按时完成作业,保持字迹工整,书写规范。
3.介绍相关系数的概念和意义,通过实例讲解,让学生理解相关系数如何衡量两个变量之间的线性关系。
4.针对本节课的重点和难点,采用举例、讲解、练习等多种教学方法,帮助学生理解和掌握最小二乘法。
(三)学生小组讨论
1.将学生分成若干小组,每组选择一个实际问题,如身高与体重的关系、温度与用电量的关系等,运用最小二乘法进行分析。
b.鼓励学生在完成作业时,互相讨论、交流,共同解决问题。
c.教师在批改作业时,要关注学生的解题过程,及时发现学生的错误和薄弱环节,并进行针对性的指导。
4.作业评价:
a.作业评价以鼓励为主,关注学生的进步,提高学生的自信心。
b.对于学生在作业中表现出的创新思维和优秀成果,教师要给予充分肯定和表扬。
c.针对学生在作业中的共性问题,教师要及时进行讲解和辅导,确保学生掌握本节课的内容。
三、教学重难点和教学设想
(一)教学重难点
1.最小二乘法的推导及其在实际问题中的应用是本章节的教学重点。学生需要理解最小二乘法的原理,掌握其计算步骤,并能运用该方法解决实际问题。
2.相关系数的理解和计算是教学难点。学生对相关系数的概念及其在实际问题中的应用容易产生混淆,需要教师进行详细讲解和引导。
3.数学建模能力的培养是本章节的另一个重点。学生需要学会从实际问题中抽象出数学模型,运用最小二乘法求解,并分析结果。

建模方法-最小二乘法

建模方法-最小二乘法

解得 从而得到
A= −4.48072, b = −1.0567
a = e = 11.3253×10
A
−3 −1.0567t
−3
y = 11.3253×10 e
= F (t)
(2)
请回答: 请回答: 怎样比较这两个数学模型的好坏呢? 怎样比较这两个数学模型的好坏呢? 只要分别计算这两个数学模型的误差, 答 : 只要分别计算这两个数学模型的误差 , 从中挑选误差较小的模型即可。 从中挑选误差较小的模型即可。
δ = ∑δi2 = ∑[S∗( xi ) − yi ]2
2 2 i=0 i=0
m
m
[ = min ∑ S( xi ) − yi ]2
S( x)∈ ϕ i=0
m
3. 广义定义 通常把最小二乘法 δ 都考虑为加权平方和
2 2

δ = ∑ω(xi )[S∗( xi ) − yi ]2
2 2 i=0
m
ω( x) ≥ 0
i i
(2)使残差的绝对值之和为最小 使残差的绝对值之和为最小
∑e
i
i
= min
(3)使残差的平方和为最小 使残差的平方和为最小
∑e
i
2 i
= min
最小二乘法
2. 一般定义 已知: 一组数据( 已知: 一组数据(xi,yi)(i=0,1,…,m), , 求: 在函数类 ϕ = span{ϕ0 ,ϕ1,...,ϕn }中找一 ∗ 使误差平方和最小, 个函数 y = S (x) ,使误差平方和最小, 即
y = 1.2408
(i = 1,...,16) 。 xi , yi ) 可由原始 (
计算出来。 数据 (ti , yi ) 计算出来。

数学建模教案修订版

数学建模教案修订版

数学建模教案修订版一、教学内容本节课选自《数学建模》教材第二章第三节,详细内容为多变量线性回归模型的构建与求解。

通过本节内容的学习,使学生了解多变量线性回归模型的基本概念,掌握模型构建和求解的方法。

二、教学目标1. 知识与技能:理解多变量线性回归模型的基本原理,掌握模型参数的求解方法。

2. 过程与方法:培养学生运用数学知识解决实际问题的能力,提高团队协作能力。

3. 情感态度与价值观:激发学生学习数学的兴趣,培养学生的科学素养。

三、教学难点与重点1. 教学难点:多变量线性回归模型的求解方法。

2. 教学重点:多变量线性回归模型的构建与应用。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:教材、计算器、草稿纸。

五、教学过程1. 实践情景引入(5分钟)利用多媒体展示实际案例,如房屋价格与面积、楼层等因素的关系,引导学生思考如何建立数学模型来描述这些关系。

2. 知识讲解(15分钟)讲解多变量线性回归模型的基本概念、构建方法和求解步骤。

3. 例题讲解(15分钟)选取一道与实际案例相关的例题,详细讲解模型构建和求解的过程。

4. 随堂练习(10分钟)让学生独立完成一道与例题类似的题目,巩固所学知识。

5. 小组讨论(10分钟)7. 课堂小结(5分钟)强调多变量线性回归模型在实际应用中的重要性,鼓励学生在课后继续探索相关知识。

六、板书设计1. 多变量线性回归模型的基本概念2. 模型构建方法与求解步骤3. 例题及解答七、作业设计1. 作业题目:利用多变量线性回归模型分析某城市房屋价格与面积、楼层等因素的关系。

2. 答案:根据实际情况,给出模型的参数估计值和预测结果。

八、课后反思及拓展延伸1. 反思:本节课的教学效果,学生的掌握程度,教学过程中的不足之处。

2. 拓展延伸:引导学生了解其他类型的回归模型,如非线性回归、岭回归等,激发学生的求知欲。

重点和难点解析1. 教学难点:多变量线性回归模型的求解方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模教案-最小二乘法
设(x 1, y 1 ), (x 2, y 2), …, (x n, y n)是直角平面坐标系下给出的一组数据,若x 1<x 2<…<x
n,我们也可以把这组数据看作是一个离散的函数。

根据观察,如果这组数据图象“很象”一条直线(不是直线),我们的问题是确定一条直线y = bx +a ,使得它能"最好"的反映出这组数据的变化。

对个别观察值来说,它可能是正的,也可能是负的。

为了不使它们相加彼此抵消,故"最好"应该是
Mathematical Modeling
最小二乘法
设(x 1, y 1 ), (x 2, y 2), …, (x n, y n)是直角平面坐标系下给出的一组数据,若x 1<x 2<…<x
n,我们也可以把这组数据看作是一个离散的函数。

根据观察,如果这组数据图象“很象”一条直线(不是直线),我们的问题是确定一条直线y = bx +a ,使得它能"最好"的反映出这组数据的变化。

对个别观察值来说,它可能是正的,也可能是负的。

为了不使它们相加彼此抵消,故"最好"应该是。

相关文档
最新文档