计量经济学实验二 一元回归模型

合集下载

计量经济学实验一 一元回归模型

计量经济学实验一 一元回归模型

实验二一元回归模型【实验目的】掌握一元线性、非线性回归模型的建模方法【实验内容】建立我国税收预测模型【实验步骤】【例1】建立我国税收预测模型。

表1列出了我国1985-1998年间税收收入Y和国内生产总值(GDP)x的时间序列数据,请利用统计软件Eviews建立一元线性回归模型。

一、建立工作文件⒈菜单方式在录入和分析数据之前,应先创建一个工作文件(Workfile)。

启动Eviews软件之后,在主菜单上依次点击File\New\Workfile(菜单选择方式如图1所示),将弹出一个对话框(如图2所示)。

用户可以选择数据的时间频率(Frequency)、起始期和终止期。

图1 Eviews菜单方式创建工作文件示意图图2 工作文件定义对话框本例中选择时间频率为Annual(年度数据),在起始栏和终止栏分别输入相应的日期85和98。

然后点击OK,在Eviews软件的主显示窗口将显示相应的工作文件窗口(如图3所示)。

图3 Eviews工作文件窗口一个新建的工作文件窗口内只有2个对象(Object),分别为c(系数向量)和resid(残差)。

它们当前的取值分别是0和NA(空值)。

可以通过鼠标左键双击对象名打开该对象查看其数据,也可以用相同的方法查看工作文件窗口中其它对象的数值。

⒉命令方式还可以用输入命令的方式建立工作文件。

在Eviews软件的命令窗口中直接键入CREATE命令,其格式为:CREATE 时间频率类型起始期终止期本例应为:CREATE A 85 98二、输入数据在Eviews软件的命令窗口中键入数据输入/编辑命令:DA TA Y X此时将显示一个数组窗口(如图4所示),即可以输入每个变量的数值图4 Eviews数组窗口三、图形分析借助图形分析可以直观地观察经济变量的变动规律和相关关系,以便合理地确定模型的数学形式。

⒈趋势图分析命令格式:PLOT 变量1 变量2 ……变量K作用:⑴分析经济变量的发展变化趋势⑵观察是否存在异常值本例为:PLOT Y X⒉相关图分析命令格式:SCAT 变量1 变量2作用:⑴观察变量之间的相关程度⑵观察变量之间的相关类型,即为线性相关还是曲线相关,曲线相关时大致是哪种类型的曲线说明:⑴SCAT命令中,第一个变量为横轴变量,一般取为解释变量;第二个变量为纵轴变量,一般取为被解释变量⑵SCAT命令每次只能显示两个变量之间的相关图,若模型中含有多个解释变量,可以逐个进行分析⑶通过改变图形的类型,可以将趋势图转变为相关图本例为:SCA T Y X图5 税收与GDP趋势图图5、图6分别是我国税收与GDP时间序列趋势图和相关图分析结果。

《计量经济学》eviews实验报告一元线性回归模型详解

《计量经济学》eviews实验报告一元线性回归模型详解

计量经济学》实验报告一元线性回归模型-、实验内容(一)eviews基本操作(二)1、利用EViews软件进行如下操作:(1)EViews软件的启动(2)数据的输入、编辑(3)图形分析与描述统计分析(4)数据文件的存贮、调用2、查找2000-2014年涉及主要数据建立中国消费函数模型中国国民收入与居民消费水平:表1年份X(GDP)Y(社会消费品总量)200099776.339105.72001110270.443055.42002121002.048135.92003136564.652516.32004160714.459501.02005185895.868352.62006217656.679145.22007268019.493571.62008316751.7114830.12009345629.2132678.42010408903.0156998.42011484123.5183918.62012534123.0210307.02013588018.8242842.82014635910.0271896.1数据来源:二、实验目的1.掌握eviews的基本操作。

2.掌握一元线性回归模型的基本理论,一元线性回归模型的建立、估计、检验及预测的方法,以及相应的EViews软件操作方法。

三、实验步骤(简要写明实验步骤)1、数据的输入、编辑2、图形分析与描述统计分析3、数据文件的存贮、调用4、一元线性回归的过程点击view中的Graph-scatter-中的第三个获得在上方输入Isycx回车得到下图DependsntVariable:Y Method:LeastSquares□ate:03;27/16Time:20:18 Sample:20002014 Includedobservations:15VariableCoefficientStd.Errort-StatisticProb.C-3J73.7023i820.535-2.1917610.0472X0416716 0.0107S838.73S44 a.ooao R-squared0.991410 Meandependentwar119790.2 AdjustedR.-squared 0.990750 S.D.dependentrar 7692177 S.E.ofregression 7J98.292 Akaike infocriterion20.77945 Sumsquaredresid 7;12E^-08 Scliwarz 匚「爬伽20.37386 Loglikelihood -1&3.3459Hannan-Quinncriter. 20.77845 F-statistic 1I3&0-435 Durbin-Watsonstat0.477498Prob(F-statistic)a.oooooo在上图中view 处点击view-中的actual ,Fitted ,Residual 中的第一 个得到回归残差打开Resid 中的view-descriptivestatistics 得到残差直方图/icw Proc Qtjject PrintN^me FreezeEstimateForecastStatsResids凹Group:UNIIILtD Worktile:UN III LtLJ::Unti1DependentVariablesMethod;LeastSquares□ate:03?27/16Time:20:27Sample(adjusted):20002014Includedobservations:15afteradjustmentsVariable Coefficient Std.Errort-Statistic ProtJ.C-3373.7023^20.535-2.191761 0.0472X0.4167160.01075S38.735440.0000R-squared0.991410 Meandependeniwar1-19790.3 AdjustedR-squa.red0990750S.D.dependentvar 76921.77 SE.ofregre.ssion 7J98.292 Akaike infacriterion20.77945 Sumsquaredresid 7.12&-0S Schwarzcriterion 20.S73S6 Laglikelihood -153.84&9Hannan-Quinncrite匚20.77545 F-statistic1I3&0.435Durbin-Watsonstat 0.477498 ProbCF-statistic) a.ooaooo在回归方程中有Forecast,残差立为yfse,点击ok后自动得到下图roreestYFM J訓YForea空巾取且:20002015 AdjustedSErmpfe:2000231i mskJddd obaerratire:15Roof kter squa red Error理l%2Mean/^oLteError畐惯啟iJean Afe.PereersErro r5.451SSQThenhe鼻BI附GKWCE口.他腐4Prop&niwi□ooooooVactaree Propor^tori0.001^24G M『倚■底Props^lori09®475在上方空白处输入lsycs…之后点击proc中的forcase根据公式Y。

计量经济学的2.2 一元线性回归模型的参数估计

计量经济学的2.2 一元线性回归模型的参数估计

基于样本数据,所得到的总体回归函数的一个估 计函数称为样本回归函数。
问题:当我们设定总体回归模型的函数形式后, 如何通过样本数据得到总体回归函数的一个估计 (即样本回归函数)?--参数估计问题
E (Y | X i ) 0 1 X i
ˆ ˆ ˆ Yi f ( X i ) 0 1 X i
Xi确定
作此假设的理由:当我们把PRF表述为 时,我们假定了X和u(后者代表所有被省略的变量的影 响)对Y有各自的(并且可加的)影响。但若X和u是相关 25 的,就不可能评估它们各自对Y的影响。
线性回归模型的基本假设(4)
假设4、服从零均值、同方差、零协方差的正态分布 i~N(0, 2 ) i=1,2, …,n 意为:ui服从正态分布且相互独立。因为对两个正态 分布的变量来说,零协方差或零相关意为这两个变量 独立。 作该假设的理由:i代表回归模型中末明显引进的许多解释
Yi 0 1 X i i
i=1,2,…,n
Y为被解释变量,X为解释变量,0与1为待估 参数, 为随机干扰项
3
回归分析的主要目的是要通过样本回归函 数(模型)SRF尽可能准确地估计总体回归函 数(模型)PRF。
ˆ ˆ ˆ Yi 0 1 X i
ˆ ˆ ˆ Yi 0 1 X i ui
同方差假设表明:对应于不同X值的全部Y值具有同 样的重要性。
22
线性回归模型的基本假设(2-3)
假设2、随机误差项具有零均值、同方差和不自相关 性(不序列相关): (2.3) 不自相关: Cov(i, j|Xi, Xj)=0 i≠j i,j= 1,2, …,n 或记为 Cov(i, j)=0 i≠j i,j= 1,2, …,n 意为:相关系数为0, i, j非线性相关。 几何意义如下

计量经济学【一元线性回归模型——回归分析概述】

计量经济学【一元线性回归模型——回归分析概述】

四、随机误差项的涵义
随机误差项是在模型设定中省略下来而又集体的
影响着被解释变量 Y 的全部变量的替代物。涵义如
下: 1、在解释变量中被忽略的因素的影响; 2、变量观测值观测误差的影响; 3、模型关系的设定误差的影响; 4、其它随机因素的影响。 设定随机误差项的主要原因: 1、理论的含糊性; 2、数据的欠缺; 3、节省的原则。
➢ 例如:
二、总体回归函数(方程)PRF Population regression function
由于变量间统计相关关系的随机性(非确定性),回归 分析关心的是根据解释变量的已知或给定值,考察被解 释变量的总体均值,即当解释变量取某个确定值时,与 之统计相关的被解释变量所有可能出现的对应值的平均 值。
样本回归函数的随机形式:
其中 为(样本)残差(Residual),可看成是随机误差项 的 的具体估计值。由于引入随机项,称为样本回归 模型。
总体回归线与样本回归线的基本关系
例2.1:一个假想的社区是由60户家庭组成的总体,要
研究该社区每月家庭消费支出Y 与每月家庭可支配收入 X 的关系;即知道了家庭的每月收入,预测该社区家庭
每月消费支出的 (总体) 平均水平。为达到此目的,将该 60户家庭划分为组内收入差不多的10组,以分析每一收 入组的家庭消费支出。
表2.1 某社区家庭每月收入与消费支出调查统计表
回归分析是研究因果相关,也就是有因果关系的相关关 系;既然回归分析是研究变量之间的因果关系,因此回归 分析对变量的处理方法存在不对称性,也就是说,回归分 析将变量区分为被解释变量和解释变量,其中被解释变量 是“结果”,解释变量是“原因”,并且回归分析方法认为作 为“原因”的解释变量属于非随机变量,作为“结果”的被解 释变量为随机变量;也就是说,作为“原因”的解释变量取 确定值时,作为“结果”的被解释变量取值是随机的。

计量经济学: 一元回归模型

计量经济学: 一元回归模型
–被解释变量(Explained Variable)或应变量 (Dependent Variable)。 –解释变量(Explanatory Variable)或自变量 (Independent Variable)。
• 关于变量的术语
– Explained Variable ~ Explanatory Variable
– – – – 相关系数(correlation coefficient) 正相关(positive correlation) 负相关(negative correlation) 不相关(non-correlation)
• 回归分析仅对存在因果关系而言。
• 注意:
–不存在线性相关并不意味着不相关。
i i i 0 1 i i
i
i
i
0
1
i
i
§2.2 一元线性回归模型的基本假设 (Assumptions of Simple Linear Regression Model)
一、关于模型设定的假设 二、关于解释变量的假设 三、关于随机项的假设
说明
• 为保证参数估计量具有良好的性质,通常对模型 提出若干基本假设。 • 实际上这些假设与所采用的估计方法紧密相关。 • 下面的假设主要是针对采用普通最小二乘法 (Ordinary Least Squares, OLS)估计而提出的。 所以,在有些教科书中称为“The Assumption Underlying the Method of Least Squares”。 • 在不同的教科书上关于基本假设的陈述略有不同, 下面进行了重新归纳。
2无偏性即估计量的均值期望等于总体回归参数真值3有效性最小方差性即在所有线性无偏估计量中最小二乘估计量2证明最小方差性假设为不全为零的常数则容易证明具有最的小方差由于最小二乘估计量拥有一个好的估计量所应具备的小样本特性它自然也拥有大样本特性

计量经济学第2章 一元线性回归模型

计量经济学第2章 一元线性回归模型

15
~ ~ • 因为 2是β2的线性无偏估计,因此根据线性性, 2 ~ 可以写成下列形式: 2 CiYi
• 其中αi是线性组合的系数,为确定性的数值。则有
E ( 2 ) E[ Ci ( 1 2 X i ui )]
E[ 1 Ci 2 Ci X i Ci ui ]
6
ˆ ˆ X )2 ] ˆ , ˆ ) [ (Yi Q( 1 2 i 1 2 ˆ ˆ X 2 Yi 1 2 i ˆ ˆ 1 1 2 ˆ ˆ ˆ ˆ [ ( Y X ) ] 1 2 i Q( 1 , 2 ) i ˆ ˆ X X 2 Yi 1 2 i i ˆ ˆ 2 2
16
~
i
i
• 因此 ~ 2 CiYi 1 Ci 2 Ci X i Ci ui 2 Ci ui
• 再计算方差Var( ) 2 ,得 ~ ~ ~ 2 ~ Var ( 2 ) E[ 2 E ( 2 )] E ( 2 2 ) 2
C E (ui )
2 i 2 i
i
~
i
i
i
i
E ( 2 Ci ui 2 ) 2 E ( Ci ui ) 2
i
2 u
C
i
2 i
i
~ ˆ)的大小,可以对上述表达式做一 • 为了比较Var( ) 和 Var( 2 2
些处理: ~ 2 2 2 2 Var ( 2 ) u C ( C b b ) i u i i i
8
• 2.几个常用的结果
• (1) • (2) • (3) • (4)

计量经济学-2.1 一元回归模型

计量经济学-2.1 一元回归模型

1122 1298 1496 1716 1969 1155 1331 1562 1749 2013
2244 2585 2299 2640
1188 1364 1573 1771 2035 2310
1210 1408 1606 1804 2101
1430 1650 1870 2112 1485 1716 1947 2200
–“衍生的随机误差”包含上述所有内容,并不一定 服从极限法则,不一定满足基本假设。
–在§9.3中将进一步讨论。
四、样本回归函数 Sample Regression Function, SRF
1、样本回归函数
• 问题:能否从一次抽样中获得总体的近似信息? 如果可以,如பைடு நூலகம்从抽样中获得总体的近似信息?
• 随机误差项主要包括下列因素:
–在解释变量中被忽略的因素的影响;
• 影响不显著的因素 • 未知的影响因素 • 无法获得数据的因素
–变量观测值的观测误差的影响;
–模型关系的设定误差的影响;
–其它随机因素的影响。
• 关于随机项的说明:
–将随机项区分为“源生的随机扰动”和“衍生的随 机误差”。
–“源生的随机扰动”仅包含无数对被解释变量影响 不显著的因素的影响,服从极限法则(大数定律和 中心极限定理),满足基本假设。
• 关于变量的术语
– Explained Variable ~ Explanatory Variable – Dependent Variable ~ Independent Variable – Endogenous Variable ~ Exogenous Variable – Response Variable ~ Control Variable – Predicted Variable ~ Predictor Variable – Regressand ~ Regressor

计量经济学 第二章 一元线性回归模型

计量经济学  第二章  一元线性回归模型

第二章 一元线性回归模型2.1 一元线性回归模型的基本假定2.1.1一元线性回归模型有一元线性回归模型(统计模型)如下, y t = β0 + β1 x t + u t上式表示变量y t 和x t 之间的真实关系。

其中y t 称被解释变量(因变量),x t 称解释变量(自变量),u t 称随机误差项,β0称常数项,β1称回归系数(通常未知)。

上模型可以分为两部分。

(1)回归函数部分,E(y t ) = β0 + β1 x t ,(2)随机部分,u t 。

图2.1 真实的回归直线这种模型可以赋予各种实际意义,居民收入与支出的关系;商品价格与供给量的关系;企业产量与库存的关系;身高与体重的关系等。

以收入与支出的关系为例。

假设固定对一个家庭进行观察,随着收入水平的不同,与支出呈线性函数关系。

但实际上数据来自各个家庭,来自同一收入水平的家庭,受其他条件的影响,如家庭子女的多少、消费习惯等等,其出也不尽相同。

所以由数据得到的散点图不在一条直线上(不呈函数关系),而是散在直线周围,服从统计关系。

“线性”一词在这里有两重含义。

它一方面指被解释变量Y 与解释变量X 之间为线性关系,即1tty x β∂=∂220tt y x β∂=∂另一方面也指被解释变量与参数0β、1β之间的线性关系,即。

1ty x β∂=∂,221ty β∂=∂0 ,1ty β∂=∂,2200ty β∂=∂2.1.2 随机误差项的性质随机误差项u t 中可能包括家庭人口数不同,消费习惯不同,不同地域的消费指数不同,不同家庭的外来收入不同等因素。

所以在经济问题上“控制其他因素不变”是不可能的。

随机误差项u t 正是计量模型与其它模型的区别所在,也是其优势所在,今后咱们的很多内容,都是围绕随机误差项u t 进行了。

回归模型的随机误差项中一般包括如下几项内容: (1)非重要解释变量的省略, (2)数学模型形式欠妥, (3)测量误差等,(4)随机误差(自然灾害、经济危机、人的偶然行为等)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二一元回归模型
【实验目的】
掌握一元线性、非线性回归模型的建模方法
【实验内容】
建立我国税收预测模型
【实验步骤】
【例1】建立我国税收预测模型。

表1列出了我国1985-1998年间税收收入Y和国内生产总值(GDP)x的时间序列数据,请利用统计软件Eviews建立一元线性回归模型。

一、建立工作文件
⒈菜单方式
在录入和分析数据之前,应先创建一个工作文件(Workfile)。

启动Eviews软件之后,在主菜单上依次点击File\New\Workfile(菜单选择方式如图1所示),将弹出一个对话框(如图2所示)。

用户可以选择数据的时间频率(Frequency)、起始期和终止期。

图1 Eviews菜单方式创建工作文件示意图
图2 工作文件定义对话框
本例中选择时间频率为Annual(年度数据),在起始栏和终止栏分别输入相应的日期85和98。

然后点击OK,在Eviews软件的主显示窗口将显示相应的工作文件窗口(如图3所示)。

图3 Eviews工作文件窗口
一个新建的工作文件窗口内只有2个对象(Object),分别为c(系数向量)和resid(残差)。

它们当前的取值分别是0和NA(空值)。

可以通过鼠标左键双击对象名打开该对象查看其数据,也可以用相同的方法查看工作文件窗口中其它对象的数值。

⒉命令方式
还可以用输入命令的方式建立工作文件。

在Eviews软件的命令窗口中直接键入CREATE命令,其格式为:
CREATE 时间频率类型起始期终止期
本例应为:CREATE A 85 98
二、输入数据
在Eviews软件的命令窗口中键入数据输入/编辑命令:
DA TA Y X
此时将显示一个数组窗口(如图4所示),即可以输入每个变量的数值
图4 Eviews数组窗口
三、图形分析
借助图形分析可以直观地观察经济变量的变动规律和相关关系,以便合理地确定模型的数学形式。

⒈趋势图分析
命令格式:PLOT 变量1 变量2 ……变量K
作用:⑴分析经济变量的发展变化趋势
⑵观察是否存在异常值
本例为:PLOT Y X
⒉相关图分析
命令格式:SCAT 变量1 变量2
作用:⑴观察变量之间的相关程度
⑵观察变量之间的相关类型,即为线性相关还是曲线相关,曲线相关时大致是哪种类型的曲线
说明:⑴SCAT命令中,第一个变量为横轴变量,一般取为解释变量;第二个变量为纵轴变量,一般取为被解释变量
⑵SCAT命令每次只能显示两个变量之间的相关图,若模型中含有多个解释变量,可以逐个进行分析
⑶通过改变图形的类型,可以将趋势图转变为相关图
本例为:SCA T Y X
图5 税收与GDP趋势图
图5、图6分别是我国税收与GDP时间序列趋势图和相关图分析结果。

两变量趋势图
分析结果显示,我国税收收入与GDP 二者存在差距逐渐增大的增长趋势。

相关图分析显示,我国税收收入增长与GDP 密切相关,二者为非线性的曲线相关关系。

图6 税收与GDP 相关图
三、估计线性回归模型
在数组窗口中点击Proc\Make Equation ,如果不需要重新确定方程中的变量或调整样本区间,可以直接点击OK 进行估计。

也可以在Eviews 主窗口中点击Quick\Estimate Equation ,在弹出的方程设定框(图7)内输入模型:
Y C X 或 X C C Y *+=)2()1(
图7 方程设定对话框
还可以通过在Eviews 命令窗口中键入LS 命令来估计模型,其命令格式为:
LS 被解释变量 C 解释变量
系统将弹出一个窗口来显示有关估计结果(如图8所示)。

因此,我国税收模型的估计式为:
x y
0946.054.987ˆ+= 这个估计结果表明,GDP 每增长1亿元,我国税收收入将增加0.09646亿元。

图8 我国税收预测模型的输出结果
五、估计非线性回归模型
由相关图分析可知,变量之间是非线性的曲线相关关系。

因此,可初步将模型设定为指数函数模型、对数模型和二次函数模型并分别进行估计。

在Eviews 命令窗口中分别键入以下命令命令来估计模型:
双对数函数模型:LS log(Y) C log(X) 对数函数模型:LS Y C log(X) 指数函数模型:LS log(Y) C X 二次函数模型:LS Y C X X^2
还可以采取菜单方式,在上述已经估计过的线性方程窗口中点击Estimate 项,然后在弹出的方程定义窗口中依次输入上述模型(方法通线性方程的估计),其估计结果显示如图9、图10、图11图、12所示。

双对数模型:x y
ln 6823.02704.1ˆln += (3.8305) (21.0487)
9736.02=R 9714.02=R 05.443=F
对数模型:
x y ln 92.298532.26163ˆ+-=
(-8.3066) (9.6999)
8869.02=R 8775.02=R 0875.94=F
指数模型:x y
5
1007.25086.7ˆln -*+= (231.7463) (27.2685)
9841.02=R 9828.02=R 57.743=F
二次函数模型:2
71058.50468.07.1645ˆx x y -*++=
(7.4918) (3.3422) (3.4806)
9918.02=R 9903.02=R 78.661=F
图9 双对数模型回归结果
图10 对数模型回归结果
图11 指数模型回归结果
图12 二次函数模型回归结果
六、模型比较
四个模型的经济意义都比较合理,解释变量也都通过了T检验。

但是从模型的拟合优
R值最大,其次为指数函数模型。

因此,对这两个模型再做进一度来看,二次函数模型的2
步比较。

在回归方程(以二次函数模型为例)窗口中点击View\Actual,Fitted,Residual\ Actual,Fitted,Residual Table(如图13),可以得到相应的残差分布表。

图13 回归方程残差分析菜单
上述两个回归模型的残差分别表分别如下(图14、图15)。

比较两表可以发现,虽然二次函数模型总拟合误差较小,但其近期误差却比指数函数模型大。

所以,如果所建立的模型是用于经济预测,则指数函数模型更加适合。

图14 二次函数回归模型残差分别表
图15 指数函数模型残差分布表。

相关文档
最新文档