成人专升本高等数学公式大全

合集下载

专升本高数公式大全

专升本高数公式大全

专升本高数公式大全1.二次函数的图像方程:f(x)=a(x-h)²+k2.平面直角坐标方程:Ax+By+C=03.二次曲线方程:Ax² + By² + Cxy + Dx + Ey + F = 04.圆的标准方程:(x-a)²+(y-b)²=r²5.椭圆的标准方程:(x-a)²/b²+(y-b)²/a²=16.双曲线的标准方程:(x-a)²/b²-(y-b)²/a²=17.抛物线的标准方程:(x-a)²=4p(y-b)8.三角函数的正余弦和差公式:(1) sin(A ± B)= sinAcosB ± cosAsinB(2) cos(A ± B) = cosAcosB ∓ sinAsinB(3) tan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)9.三角函数的倍角公式:(1) sin2A = 2sinAcosA(2) cos2A = cos²A - sin²A(3) tan2A = (2tanA) / (1 - tan²A)10.三角函数的半角公式:(1) sin(A/2) = ±√[(1 - cosA) / 2](2) c os(A/2) = ±√[(1 + cosA) / 2](3) tan(A/2) = ±√[(1 - cosA) / (1 + cosA)]注:±的选取根据A的象限确定。

11.三角方程的化简公式:(1) sin²x + cos²x = 1(2) 1 + tan²x = sec²x(3) 1 + cot²x = csc²x12.导数的基本公式:(1) (cf(x))' = cf'(x)(2)(f(x)±g(x))'=f'(x)±g'(x)(3)(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)(4)(f(x)/g(x))'=[f'(x)g(x)-f(x)g'(x)]/[g(x)]²(5)(f(g(x)))'=f'(g(x))g'(x)(6)(f(x)⋅g(x)⋅h(x))'=f'(x)g(x)h(x)+f(x)g'(x)h(x)+f(x)g(x)h'( x)13.微分的基本公式:(1) dy = f'(x)dx(2) dy = dx/g'(y)(3) dy = p(x)dx + q(x)dx² + r(x)f'(x)14.积分的基本公式:(1) ∫cf(x)dx = c∫f(x)dx(2) ∫[f(x) ± g(x)]dx = ∫f(x)dx ± ∫g(x)dx(3) ∫f'(x)dx = f(x) + C(4) ∫f'(g(x))g'(x)dx = f(g(x)) + C15.牛顿-莱布尼兹公式:∫[a, b]f(x)dx = F(b) - F(a)注:其中F(x)为f(x)的一个原函数。

成考专升本常用数学公式

成考专升本常用数学公式

成考专升本常用数学公式数学公式是数学中的重要内容,它们是数学理论和方法的归纳总结,是数学知识的产物。

在成考专升本的数学考试中,经常会使用到一些常用的数学公式,掌握这些公式对于提高解题能力和提高分数是非常重要的。

下面我们来介绍一些常用的数学公式。

一、代数公式1.二项式定理(a + b)^n = C(n,0)a^n + C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 + ... + C(n,n-1)ab^(n-1) + C(n,n)b^n其中C(n,m)表示从n个不同元素中取m个元素的组合数。

2.平方差公式a^2-b^2=(a+b)(a-b)3.三次方差公式a^3 - b^3 = (a - b)(a^2 + ab + b^2)4.二次方差公式a^4-b^4=(a^2+b^2)(a^2-b^2)5.一次方差公式a^n - b^n = (a - b)(a^(n-1) + a^(n-2)b + ... + ab^(n-2) + b^(n-1))6.二次根式根号(ab) = 根号a * 根号b7.乘方a^m*a^n=a^(m+n)8.开方根号(a*b)=根号a*根号b根号(a/b)=根号a/根号b二、几何公式1.三角形面积公式S=1/2*底*高2.平行四边形面积公式S=底*高3.梯形面积公式S=(上底+下底)*高/24.正方形面积公式S=边长^25.矩形面积公式S=长*宽6.圆面积公式S=π*半径^27.圆周长公式L=2*π*半径8.球表面积公式S=4*π*半径^29.球体积公式V=4/3*π*半径^3三、三角函数公式1.正弦定理a/sinA = b/sinB = c/sinC = 2R其中R为三角形外接圆半径。

2.余弦定理a^2 = b^2 + c^2 - 2bc * cosAb^2 = a^2 + c^2 - 2ac * cosBc^2 = a^2 + b^2 - 2ab * cosC3.三角函数关系sin^2θ + cos^2θ = 1tanθ = sinθ / cosθcotθ = cosθ / sinθsecθ = 1 / cosθcscθ = 1 / sinθ4.三角函数和角度之间的转换弧度=角度*π/180角度=弧度*180/π四、导数公式1.常数导数若f(x)=C,其中C为常数,则f'(x)=02.幂函数的导数若f(x) = x^n(n为常数),则f'(x) = nx^(n-1)3.指数函数的导数若f(x) = a^x(a为常数),则f'(x) = a^x * ln(a)以上是一些成考专升本常用的数学公式,掌握这些公式能够更加方便地解题,提高答题效率。

专升本高等数学公式定理大全

专升本高等数学公式定理大全

专升本高等数学公式定理大全一、导数相关公式和定理:1.基本导数公式:-常数函数导数为零:(k)'=0-幂函数导数:(x^n)'=n*x^(n-1)- 指数函数导数:(a^x)' = a^x * ln(a)- 对数函数导数:(log_a(x))' = 1 / (x * ln(a)) 2.常用导数公式:- sin(x)' = cos(x)- cos(x)' = -sin(x)- tan(x)' = sec^2(x)- cot(x)' = -csc^2(x)- sec(x)' = sec(x) * tan(x)- csc(x)' = -csc(x) * cot(x)- arcsin(x)' = 1 / sqrt(1 - x^2)- arccos(x)' = -1 / sqrt(1 - x^2)- arctan(x)' = 1 / (1 + x^2)3.高阶导数公式:-(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)-(f(g(x)))'=f'(g(x))*g'(x)-(f(x)/g(x))'=(f'(x)g(x)-f(x)g'(x))/g^2(x)4.微分中值定理:-罗尔定理:若函数在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),则存在c∈(a,b),使得f'(c)=0。

-拉格朗日定理:若函数在[a,b]上连续,在(a,b)内可导,那么存在c∈(a,b),使得[f(b)-f(a)]/[b-a]=f'(c)。

-柯西中值定理:若函数u(x)和v(x)在[a,b]上连续,在(a,b)内可导,并且v'(x)≠0,那么存在c∈(a,b),使得[u(b)-u(a)]/[v(b)-v(a)]=u'(c)/v'(c)。

成人高考专升本高等数学公式大全

成人高考专升本高等数学公式大全

成人高考专升本高等数学公式大全1.代数基本公式:-平方差公式:$a^2-b^2=(a+b)(a-b)$-三角恒等式:- 正弦定理:$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$- 余弦定理:$c^2 = a^2 + b^2 - 2ab\cos C$- 正弦余弦定理:$\sin^2 A + \cos^2 A = 1$- 二项式定理:$(a + b)^n = \sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^k$2.函数与极限公式:-导数的四则运算:- $(u \pm v)' = u' \pm v'$- $(uv)' = u'v + uv'$- $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$- 泰勒公式:$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)(x - a)^2}{2!} + \cdots$-常用极限:- $\lim_{x \to 0}\frac{\sin x}{x} = 1$- $\lim_{x \to \infty}(1 + \frac{1}{x})^x = e$- $\lim_{x \to \infty}(1 + \frac{k}{x})^x = e^k$- $\lim_{n \to \infty}(1 + \frac{x}{n})^n = e^x$3.微分公式:-求导法则:-$(c)'=0$- $(x^n)' = nx^{n-1}$-$(e^x)'=e^x$- $(\ln x)' = \frac{1}{x}$-高阶导数:-$(f(x)g(x))''=f''(x)g(x)+2f'(x)g'(x)+f(x)g''(x)$-$(f(g(x)))''=f''(g(x))(g'(x))^2+f'(g(x))g''(x)$-微分运算法则:- $\frac{d(u \pm v)}{dx} = \frac{du}{dx} \pm \frac{dv}{dx}$ - $\frac{d(kv)}{dx} = k\frac{dv}{dx}$- $\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$- $\frac{d(\frac{u}{v})}{dx} = \frac{v\frac{du}{dx} -u\frac{dv}{dx}}{v^2}$4.积分公式:-不定积分法则:- $\int k \,dx = kx + C$- $\int x^n \,dx = \frac{x^{n+1}}{n+1} + C, (n \neq -1)$- $\int e^x \,dx = e^x + C$- $\int \frac{1}{x} \,dx = \ln ,x, + C$-定积分法则:- $\int_a^b kf(x) \,dx = k\int_a^b f(x) \,dx$- $\int_a^b [f(x) + g(x)] \,dx = \int_a^b f(x) \,dx +\int_a^b g(x) \,dx$- $\int_a^b (f(x) - g(x)) \,dx = \int_a^b f(x) \,dx -\int_a^b g(x) \,dx$5.级数公式:-等比级数求和:$S_n = \frac{a(1-q^n)}{1-q}$,其中 $S_n$ 是前n 项和,a 是首项,q 是公比。

专升本高等数学公式全集

专升本高等数学公式全集

专升本高等数学公式(全)常数项级数:是发散的调和级数:等差数列:等比数列:nnn n qqq qq nn 1312112)1(32111112+++++=++++--=++++-级数审敛法:散。

存在,则收敛;否则发、定义法:时,不确定时,级数发散时,级数收敛,则设:、比值审敛法:时,不确定时,级数发散时,级数收敛,则设:别法):—根植审敛法(柯西判—、正项级数的审敛法n n n n nn n nn n s u u u s U U u ∞→+∞→∞→+++=⎪⎩⎪⎨⎧=><=⎪⎩⎪⎨⎧=><=lim ;3111lim2111lim1211 ρρρρρρρρ。

的绝对值其余项,那么级数收敛且其和如果交错级数满足—莱布尼兹定理:—的审敛法或交错级数1113214321,0lim )0,(+∞→+≤≤⎪⎩⎪⎨⎧=≥>+-+-+-+-n n n nn n n n u r r u s u u u u u u u u u u u绝对收敛与条件收敛:∑∑∑∑>≤-+++++++++时收敛1时发散p 级数: 收敛; 级数:收敛;发散,而调和级数:为条件收敛级数。

收敛,则称发散,而如果收敛级数;肯定收敛,且称为绝对收敛,则如果为任意实数;,其中111)1(1)1()1()2()1()2()2()1(232121p np nnn u u u u u u u u pnn n n幂级数:010)3(lim)3(1111111221032=+∞=+∞===≠==><+++++≥-<++++++++∞→R R R a a a a R R x R x R x R x a x a x a a x xx x x x x n n nn n nn n时,时,时,的系数,则是,,其中求收敛半径的方法:设称为收敛半径。

,其中时不定时发散时收敛,使在数轴上都收敛,则必存收敛,也不是在全,如果它不是仅在原点 对于级数时,发散时,收敛于 ρρρρρ函数展开成幂级数:+++''+'+===-+=+-++-''+-=∞→++nn n n n n n nn x n fx f x f f x f x R x f x x n fR x x n x fx x x f x x x f x f !)0(!2)0()0()0()(00lim )(,)()!1()()(!)()(!2)())(()()(2010)1(00)(20000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:ξ一些函数展开成幂级数:)()!12()1(!5!3sin )11(!)1()1(!2)1(1)1(121532+∞<<-∞+--+-+-=<<-++--++-++=+--x n xxxx x x xn n m m m xm m mx x n n nm可降阶的高阶微分方程类型一:()()n y f x =解法(多次积分法):(1)()()n du u yf x f x dx-=⇒=⇒令多次积分求类型二:''(,')y f x y = 解法:'(,)dp p y f x p dx=⇒=⇒令一阶微分方程类型三:''(,')y f y y =解法:'(,)dp dp dy dp p y pf y p dxdy dxdy=⇒==⇒⇒令类型二类型四:)()('x Q y x p y =+若Q(X)等于0,则通解为⎰=-dxx p Ce y)((一阶齐次线性)。

高等数学专升本公式集合

高等数学专升本公式集合

高等数学专升本公式集合以下是高等数学专升本常用公式集合:1.导数公式:1)反函数求导:如果y=f(x) (x在某区间上连续、可导),f'(x)≠0,且存在f'(x)的逆函数,则y=f^(-1)(x)在对应的区间上可导,且有(f^(-1))'(x) = 1 / f'(f^(-1)(x));2)乘积法则:(uv)' = u'v + uv';3)商法则:(u/v)' = (u'v - uv') / v^2;4)链式法则:(F(g(x)))' = F'(g(x)) * g'(x),其中F(u)是u的原函数。

2.积分公式:1)基本积分公式:∫x^n dx = x^(n+1) / (n+1) + C (这里C是常数);2)分部积分法:∫u dv = uv - ∫v du;3)替换法:设x=g(t),则dx=g'(t) dt,将dx替换为g'(t) dt 来进行积分。

3.泰勒级数公式:1)常用泰勒级数展开:- e^x = 1 + x + x^2 / 2! + x^3 / 3! + ...;- sin x = x - x^3 / 3! + x^5 / 5! - ...;- cos x = 1 - x^2 / 2! + x^4 / 4! - ...;- ln(1+x) = x - x^2 / 2 + x^3 / 3 - ...。

4.极限公式:1)常用极限:- lim(x→0) (sin x / x) = 1;- lim(x→∞) (1 + 1/x)^x = e;- lim(x→a) (f(x))^g(x) = lim(x→a) e^(g(x) * ln(f(x)))。

5.级数公式:1)常用级数:-等比数列求和:∑(n=0)^(∞) ar^n = a / (1-r),其中|r|<1;-幂级数求和:∑(n=0)^(∞) a(n)x^n,其中a(n)是常数。

成人高考专升本数学公式汇编

成人高考专升本数学公式汇编

成人高考专升本数学公式汇编数学是成人高考专升本考试中的一门重要科目,掌握数学公式和定理是提高解题效率的关键。

下面是一些常用的数学公式的汇编,供参考:一、代数公式:1.分配律:对于任意实数a、b、c,有如下公式:a*(b+c)=a*b+a*c(a+b)*c=a*c+b*c2.平方差公式:a^2-b^2=(a+b)*(a-b)3.二次方程的解法公式:对于一般形式的二次方程 ax^2 + bx + c = 0,其解为:x1,2 = (-b ± √(b^2 - 4ac)) / 2a4.一元一次方程的解法:对于形如 ax + b = 0 的一元一次方程,其解为:x=-b/a二、几何公式:1.三角形的面积公式:对于已知三角形的三边长a、b、c,可利用海伦公式计算三角形的面积S:S=√(p*(p-a)*(p-b)*(p-c))其中,p=(a+b+c)/22.圆的面积和周长公式:对于已知圆的半径r,可计算圆的面积和周长:S=π*r^2C=2π*r3.直角三角形的勾股定理:对于直角三角形,其边长分别为a、b、c(a和b为直角边,c为斜边),满足以下关系:c^2=a^2+b^24.正弦定理和余弦定理:对于任意三角形的三个内角A、B、C及对应的三边a、b、c,满足以下关系:a/sinA = b/sinB = c/sinC (正弦定理)a^2 = b^2 + c^2 - 2bc*cosA (余弦定理)三、概率与统计公式:1.排列公式:P(n,m)=n!/(n-m)!2.组合公式:C(n,m)=n!/(m!*(n-m)!)3.二项式定理:对于任意实数a、b和非负整数n,有如下展开式:(a+b)^n=C(n,0)*a^n*b^0+C(n,1)*a^(n-1)*b^1+...+C(n,n)*a^0*b^n 除了以上列举的一些常用公式外,还有很多其他的数学公式可以根据具体题型和知识点进行查找和应用。

在备考过程中,可以根据教材和习题册提供的公式,进行适当的总结和归纳,建立自己的公式汇编,以提高解题的速度和准确性。

专升本成人高考高数常用公式

专升本成人高考高数常用公式

专升本成人高考高数常用公式在成人高考高数中,常用的公式有:1. 三角函数相关公式:- sin²θ + cos²θ = 1 (正弦、余弦平方和为1)- sin(α ± β) = sin α cos β ± cos α sin β (正弦的和差公式)- cos(α ± β) = cos α cos β ∓ sin α sin β (余弦的和差公式) - tan(α ± β) = (tan α ± tan β) / (1 ∓ tan α tan β) (正切的和差公式)- sin 2θ = 2 sin θ cos θ (正弦的倍角公式)- cos 2θ = cos²θ - sin²θ = 2 cos²θ - 1 = 1 - 2 sin²θ (余弦的倍角公式)2. 导数相关公式:- (x^n)' = nx^(n-1) (幂函数的导数)- (sin x)' = cos x (正弦函数的导数)- (cos x)' = -sin x (余弦函数的导数)- (tan x)' = sec²x (正切函数的导数)- (e^x)' = e^x (指数函数的导数)- (ln x)' = 1/x (自然对数函数的导数)3. 积分相关公式:- ∫(x^n) dx = x^(n+1) / (n+1) + C (幂函数的不定积分)- ∫sin x dx = -cos x + C (正弦函数的不定积分)- ∫cos x dx = sin x + C (余弦函数的不定积分)- ∫tan x dx = -ln|cos x| + C (正切函数的不定积分)- ∫e^x dx = e^x + C (指数函数的不定积分)- ∫(1/x) dx = ln|x| + C (自然对数函数的不定积分)以上是一些常用的高数公式,需要注意的是,公式可以根据需要进行组合和变形,因此熟练掌握和灵活运用是非常重要的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin ududx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=---'=-)(F )()()()()()())(()()(ξξξ曲率:.1;0.)1(lim M s M M :.,13202aK a K y y ds d s K M M sK tg y dx y ds s =='+''==∆∆='∆'∆∆∆==''+=→∆的圆:半径为直线:点的曲率:弧长。

:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:ααααα定积分的近似计算:αααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==⎰⎰⎰----+++++++++-≈++++-≈+++-≈ban n n ban n ba n y y y y y y y y nab x f y y y y n a b x f y y y nab x f )](4)(2)[(3)(])(21[)()()(1312420110110 抛物线法:梯形法:矩形法:定积分应用相关公式:⎰⎰--==⋅=⋅=bab a dt t f a b dxx f a b y k rm m kF Ap F s F W )(1)(1,2221均方根:函数的平均值:为引力系数引力:水压力:功: 空间解析几何和向量代数:。

代表平行六面体的体积为锐角时,向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。

与是向量在轴上的投影:点的距离:空间ααθθθϕϕ,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(2222222212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a kj ib ac b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u j z z y y x x M Md zyxz y xz y xzyxz y xzy x z y x zz y y x x z z y y x x u u⋅⨯==⋅⨯=⨯=⋅==⨯=++⋅++++=++=⋅=⋅+=+⋅=-+-+-==(马鞍面)双叶双曲面:单叶双曲面:、双曲面:同号)(、抛物面:、椭球面:二次曲面:参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:113,,22211};,,{,1302),,(},,,{0)()()(1222222222222222222220000002220000000000=+-=-+=+=++⎪⎩⎪⎨⎧+=+=+===-=-=-+++++==++=+++==-+-+-cz b y a x c z b y a x q p z q y p x c z b y a x ptz z nty y mtx x p n m s t p z z n y y m x x C B A DCz By Ax d czb y a x D Cz By Ax z y x M C B A n z z C y y B x x A多元函数微分法及应用zy z x y x y x y x y x F F y zF F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy yvdx x v dv dy y u dx x u du y x v v y x u u xvv z x u u z x z y x v y x u f z tvv z t u u z dt dz t v t u f z y y x f x y x f dz z dz zu dy y u dx x u du dy y z dx x z dz -=∂∂-=∂∂=⋅-∂∂-∂∂=-==∂∂+∂∂=∂∂+∂∂===∂∂⋅∂∂+∂∂⋅∂∂=∂∂=∂∂⋅∂∂+∂∂⋅∂∂==∆+∆=≈∆∂∂+∂∂+∂∂=∂∂+∂∂=, , 隐函数+, , 隐函数隐函数的求导公式: 时,,当 :多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22),(),(1),(),(1),(),(1),(),(1),(),(0),,,(0),,,(y u G F J y v v y G F J y u x u G F J x v v x G F J x u G G F F vG uG v FuFv u G F J v u y x G v u y x F vu v u ∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂=∂∂∂∂∂∂∂∂=∂∂=⎩⎨⎧== 隐函数方程组:微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:上的投影。

相关文档
最新文档