量子力学概论第5章 全同粒子
量子力学第五章

pˆ12ψ (1,2) =ψ (2,1)
∴ pˆ12ψ (1,2) = λψ (1,2)
这就是交换算符的本征值方程. 且λ就是其本征值.
又有: pˆ12 pˆ12ψ (1,2) = pˆ12λψ (1,2) = λpˆ12ψ (1,2) = λ2ψ (1,2) ∴ pˆ122ψ (1,2) = λ2ψ (1,2)
问题: 量子力学中是否存在没经典对应量的力学量?
对由多个粒子组成的系统,量子力学中还有其它 新的基本假设吗?
能够举一些使用量子力学去解决实际问题的例子 吗?
§1、电子的自旋
一、实验与假设: 1) 斯特恩―盖拉赫实验 1921年,施忒恩(O.Stern)和盖拉赫(W.Gerlach)发现 一些处于S 态的原子射线束,在非均匀磁场中一束分为两束。
∵ pˆ122ψ (1,2) = pˆ12ψ (2,1) =ψ (1,2)
∴ λ2ψ (1,2) =ψ (1,2)
λ2 =1
λ =1
λ = −1
对λ=1有: 对λ=−1有:
pˆ12ψ (1,2) =ψ (1,2)
pˆ12ψ (1,2) = −ψ (1,2)
称为对称性波函数. 称为反对称性波函数.
可以证明: 全同粒子的波函数的这种交换对称性是不随时间 改变的.
2)自旋角动量算符的本征值与自旋量子数:
① 由于电子的自旋角动量它在空间任何方向的投影只取两个值 Sz=± /2.这就是说:
Sˆx,Sˆy,Sˆz 的所有可能的测得值只有+ /2和- /2.因此, 这就是它 们所有可能的本征值
②
S2的本征值:
S
2 x
=
S
2 y
=
S
2 z
=
量子力学讲义五六章

第5章 微扰理论到现在为止,我们利用薛定谔方程求出了六大体系的本征值和本征函数 1、一维自由粒子体系:2ˆˆ2x p H m=, x p ip x x ex ⋅=πψ21)(, 22xp E m=)(∞<<-∞x p , 1=f2、一维无限深势阱222,0ˆ200a x x d H m dx x a ⎧∞<>⎪=-+⎨≤≤⎪⎩ , x an a n πψs i n 2=,22222n n E ma π= ,3,2,1=n ,1=f 3、一维线性谐振子体系:2222021ˆ,22d H m x dx ωμ=-+ ,)()(2221x H e N x n x n n αψα-=, m ωα=,ω )21(+=n E n ,,3,2,1,0=n ,1=f4、平面刚性转子2ˆˆ2z l H I=, ϕπϕim m e21)(=Φ, Im E m 222 =,,2,1,0±±=m ,5、空间刚性转子2ˆˆ2l HI=,ϕθϕθim nl lm lm e P N Y )(cos ),(=,Il l E l 2)1(2+=,,2,1,0=l ,l m ±±±=,,2,1,0 ,12+=l f6、氢原子与类氢原子222ˆ2ze H rμ=-∇-,),()(),,(ϕθϕθψlm nl nlm Y r R r =,242222222n z e z eE n aμμ=-=- , ,3,2,1=n ,1,,2,1,0-=n l ,l m ±±±=,,2,1,0 ,2n f =在量子力学中,能精确求解的问题为数是有限的,要么非常特殊,要么非常简单。
我们在这章中,介绍一些常用的近似处理方法。
也就是说,当将量子力学原理用于实际问题中,我们必须进行一些近似处理,才能得到所要的结果,才能将问题解决。
微扰论是从简单问题的精确解出发来求较复杂问题的近似解。
量子力学讲义第五章

第五章 中心力场§5.1 中心力场中粒子运动的一般性质一、角动量守恒与径向方程设质量为μ的粒子在中心力场中运动,则哈密顿量算符表示为:2ˆˆ()2p H V r μ=+ 22()2V r μ=-∇+ ,与经典力学中一样,角动量 l r p =⨯ 也是守恒量,即ˆ0l t∂=∂ˆˆ[,]0l H = 222221ˆ()22l H r V r r r r rμμ∂∂⎛⎫=-++ ⎪∂∂⎝⎭ 2,0z l l ⎡⎤=⎢⎥⎣⎦; 2ˆ,0l H ⎡⎤=⎢⎥⎣⎦ ; ()2ˆ,,z H l l构成力学量完全集,存在共同本征态; 定态薛定谔(能量本征方程):222221()22l r V r E r r r r ψψμμ⎡⎤∂∂⎛⎫⎢⎥-++= ⎪∂∂⎝⎭⎢⎥⎣⎦上式左边第二项称为离心势能,第一项称为径向动能算符。
取ψ为 ()2,,z H l l 共同本征态,即:()()(),,,l lmr R r Y ψθϕθϕ= (),lm Y θϕ是()2,z l l共同本征态:0,1,2,...l =,0,1,2,...,m l =±±± 分离变量:()()22222120l l l E V l l d d R R R r dr dr r μ-+⎛⎫++-= ⎪⎝⎭径向方程可写为:()()22222()120l l l E V r l l dR d R R dr r dr r μ-+⎡⎤++-=⎢⎥⎣⎦,0,1,2,...l = (1) 为求解径向方程,引入变换:()()l l r R r rχ=;径向方程简化为:()()22222()10l l E V r l l d dr r μχχ-+⎡⎤+-=⎢⎥⎣⎦ (2) 不同的中心力场中粒子的能量本征波函数的差别仅在于径向波函数R l (r )或χl (r ),它们由中心势V (r )的性质决定。
一般而言,中心力场中粒子的能级是2l +1重简并的。
写出全同粒子系统的总轨道角动量lz和l2的二次量子化形式

写出全同粒子系统的总轨道角动量lz和l2的二次量子化形式1. 引言1.1 概述本文旨在探讨全同粒子系统的总轨道角动量lz和l2的二次量子化形式。
在量子力学中,全同粒子系统是一类具有相同物理性质的粒子组成的系统,它们之间没有任何区别。
而总轨道角动量lz和l2则是描述这些粒子在空间中运动时所拥有的角动量。
1.2 文章结构本文按照以下结构进行论述:首先,我们将介绍全同粒子系统总轨道角动量lz 的定义,并给出相关概念和数学表示;其次,我们将阐述lz的本征值及其对应的本征态表示;最后,我们将推导和解释lz的二次量子化表达式。
随后,我们将进行类似的分析并讨论全同粒子系统总轨道角动量l2的二次量子化形式。
1.3 目的本文旨在深入理解全同粒子系统总轨道角动量lz和l2,并通过推导和解释其二次量子化形式,进一步揭示全同粒子系统中这两个重要物理概念的内涵和意义。
这对于更好地理解多粒子体系及其特性、研究复杂体系的性质和行为具有重要的理论与实际意义。
同时,本文还将探讨相关研究的未来发展方向。
以上是“1. 引言”部分内容的详细清晰撰写。
2. 全同粒子系统总轨道角动量lz的二次量子化形式2.1 全同粒子系统总轨道角动量lz的定义在全同粒子系统中,总轨道角动量lz表示所有单个粒子的轨道角动量在z方向上的矢量和。
它是各个粒子的单个轨道角动量lz值之和。
2.2 lz的本征值和本征态表示根据量子力学理论,lz具有离散值,可用来描述全同粒子系统在z方向上的旋转运动。
其本征值为mħ,其中m为整数或半整数,ħ为约化普朗克常数。
对于N个全同粒子构成的系统,其总轨道角动量lz可以通过求解含有N个因素化项的哈密顿算符得到。
由于全同粒子系统需要满足泡利不相容原理,因此泡利原理会导致只有一部分选定组态有效。
2.3 lz的二次量子化表达式推导与解释在二次量子化中,我们使用产生算符a†和湮灭算符a来描述波函数。
这些算符与单个粒子态以及多体态之间的关系如下所示:$$\begin{align*}a^\dagger_i |0⟩ & = \text{产生一个粒子在单粒子态} |i⟩ \\a_i |0⟩ & = 0\end{align*}$$其中,$|0⟩$表示全空模式,没有任何粒子。
量子力学周世勋习题解答第五章

第五章习题解5.1 如果类氢原子的核不是点电荷,而是半径为0r 、电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正。
解:这种分布只对0r r <的区域有影响,对0r r ≥的区域无影响。
据题意知)()(ˆ0r U r U H -=' 其中)(0r U 是不考虑这种效应的势能分布,即 rze r U 024πε-=)()(r U 为考虑这种效应后的势能分布,在0r r ≥区域,rZe r U 024)(πε-=在0r r <区域,)(r U 可由下式得出, ⎰∞-=r Edr e r U )(⎪⎪⎩⎪⎪⎨⎧≥≤=⋅⋅=)( 4 )( ,434410200300330420r r r Ze r r r r Ze r r Ze r E πεπεπππε⎰⎰∞--=0)(r r rEdr e Edr e r U⎰⎰∞--=002023002144r r rdr r Ze rdr r Ze πεπε)3(84)(82203020*********r r r Ze r Ze r r r Ze --=---=πεπεπε )( 0r r ≤⎪⎩⎪⎨⎧≥≤+--=-=')( 0 )( 4)3(8)()(ˆ000222030020r r r r r Ze r r r Ze r U r U H πεπε由于0r 很小,所以)(2ˆˆ022)0(r U H H +∇-=<<'μ ,可视为一种微扰,由它引起的一级修正为(基态r a Ze a Z 02/1303)0(1)(-=πψ)⎰∞'=τψψd H E 111 ⎰-+--=0002202220302334]4)3(8[r r a Zdr r e r Ze r r r Ze a Z ππεπεπ ∴0a r <<,故102≈-r a Ze 。
∴ ⎰⎰+--=0302404220330024)1(1)3(2r r rdr a e Z dr r r r r a e Z Eπεπε2030024505030300242)5(2r a e Z r r r a e Z πεπε+--= 23002410r a e Z πε= 2032452r a e Z s = #5.2 转动惯量为I 、电偶极矩为D 的空间转子处在均匀电场在ε中,如果电场较小,用微扰法求转子基态能量的二级修正。
全同粒子

对于全同粒子多体系, 任何两个粒子交换一下, 对于全同粒子多体系 任何两个粒子交换一下 其量子态是不变的, 即要求该体系的波函数对于粒 其量子态是不变的 即要求该体系的波函数对于粒 子交换具有一定的对称性. 子交换具有一定的对称性 那么, 忽略粒子相互作用的情况下, 那么 在忽略粒子相互作用的情况下 如 何去构造 构造具有完全交换对称性或反对性的波 何去构造具有完全交换对称性或反对性的波 函数? 函数 接下来我们将对这问题做一般的讨论. 接下来我们将对这问题做一般的讨论 考虑 N个全同粒子组成的多体系的情况 个全同粒子组成的多体系的情况. 个全同粒子组成的多体系的情况
1 2 N
经过
各种可能的置换P, 各种可能的置换 ,得到 P , ψ k1 ( q1 )ψ k2 ( q2 )Lψ k N ( qN ) 一共得出N! 一共得出 !项,即行列式展开后得出的N! 项. 即行列式展开后得出的
4.3.4 N个全同 个全同Bose子组成的体系 个全同 子组成的体系
Bose 子不受 子不受Pauli原理限制,可以有任意数目 原理限制, 原理限制 可以有任意数目 子处于相同的单粒子态 的Bose子处于相同的单粒子态 设有 ni 个Bose子 子处于相同的单粒子态. 子 N 处于 ki 态上 ( i = 1, 2,L , N ) , n i = N ,这些 ni 中, ∑ i =1 有些可以为0,有些可以大于1.此时 此时, 有些可以为 ,有些可以大于 此时,对称的多粒 子波函数可以表示成 P ψ k1 ( q1 )Lψ k1 qn1 ⋅ψ k2 qn1 +1 Lψ k2 qn1 + n2 L ∑ 144 2444 1444 24444 4 3 4 3 P n1个 n2个
3
§5.5 全同粒子系统

既然所有Pij都是守恒量,所以其对称性不 随时间变化,即全同粒子的统计性质(Bose 或Fermi统计)是不变的。
结论:描写全同粒子系统状态的波函数只能是 5对2 称的或反对称的,它们的对称性不随时间变化。10
④全同粒子的分类 所有的基本粒子可分为两类:
玻色子Fermion和费米子Boson
1)玻色子:
凡自旋为整数倍,波函数满足交换对称,
遵从Bose-Einstein统计的粒子。 如π介子(s=0)、光子( s=1 )等。
52
11
引力子(Graviton)
引力子(Graviton),又称重力子,在物理学中是一个传 递引力的假想粒子。为了传递引力,引力子必须永远 相吸、作用范围无限远及以无限多的型态出现。在量 子力学中,引力子被定义为一个自旋为2、质量为零的 玻色子。
52
16
2、两个全同粒子组成的体系 ①简介
忽略相互作用,Hamiltonian可表为
Hˆ h(q1) h(q2 )
q1 q2 Hˆ 不变
故
[P12, Hˆ ] 0
设h(q)的单粒子本征态为
k
(q),本征能为
,
k
则有
h(q)k (q) kk (q)
其中k为力学量(包含Hˆ)的一组完备量子数
(q1, q2,, qi ,q j ,)
来描述。其中 qi (i 1,2,N) 表示第i个
粒子的全部坐标(空间和自旋)。
若Pij表示第i个粒子与第j个粒子的全部 坐标变换,即
Pij (q1, q2,, qi ,q j ,, qN )
52
(q1, q2,, q j ,qi ,, qN ) 5
量子力学第五章全同粒子

第五章:全同粒子
杨焕雄
中国科学技术大学物理学院近代物理系 hyang@
November 25, 2019
1 / 23
双粒子体系:
单粒子量子力学体系的状态用波函数 p~r; s3; tq 描写:
p~r; s3; tq 是粒子空间位置坐标~r,自旋角动量 s3 以及
时间参数 t 的函数.
考虑 N 个全同粒子组成的多粒子体系,设其量子态用波函数
Ψpq1; ¨ ¨ ¨ ; qi; ¨ ¨ ¨ ; qj; ¨ ¨ ¨ ; qNq 描写, qi(i “ 1; 2; ¨ ¨ ¨ ; N)代表第 i 个粒子的全部坐标(例如
包括空间坐标与自旋). 设 Pˆij 表示交换第 i 个粒子与第 j 个粒子 的全部坐标的线性算符:
PˆijΨpq1; ¨ ¨ ¨ ; qi; ¨ ¨ ¨ ; qj; ¨ ¨ ¨ ; qNq “ Ψpq1; ¨ ¨ ¨ ; qj; ¨ ¨ ¨ ; qi; ¨ ¨ ¨ ; qNq
粒子的全同性意味着 Ψ 与 PˆijΨ 描写的是同一个量子态,它们最 多可以相差一个非零的常数因子 c,
PˆijΨ “ c Ψ
8 / 23
两端再作用一次 Pˆij,得:
Ψ “ Pˆ2ijΨ “ c PˆijΨ “ c2 Ψ;
ù c2 “ 1; c “ ˘1
所以,全同粒子体系的波函数必须满足下列关系之一:或者关于 交换任意两个粒子对称:
PˆijΨ “ Ψ
或者关于交换任意两个粒子反对称:
PˆijΨ “ ´Ψ
迄今一切实验表明,全同粒子体系的波函数的交换对称性与粒子 的自旋角动量有密切的关系:
s13 ;s23
›
›
以下仅考虑有效势能不显含时间的情形. 此时,通过分离变 量可求得薛定谔方程一组完备的特解:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题5.1 假设我们有两个没有相互作用——它们相处在一起 运动……不要深究这个在现实中到底会不会发生——的粒子, 质量都为m,处在无限深方势阱中(见2.2节)。单粒子态为: ψn(x)=2asinnπax, En=n2K(方便起见令K≡π2ћ2/2ma2。)如 果粒子是可分辨的,粒子1在n1态上,粒子2在n2态上,完整 的波函数为简单乘积:
第5章 全同粒子
5.1 双粒子体系 5.2 原子 5.3 固体 5.4 量子统计力学
5.1 双粒子体系
5.1.1 玻色子和费米子 5.1.2 交换力
5.1.1 玻色子和费米子
我们可以简单地构造一个波函数,这个波函数并不给出哪个粒 子是处于哪个态。有两种不同的构造方法: ψ±(r1,r2)=A[ψa(r1)ψb(r2)±ψb(r1)ψa(r2)].(5.10) 这样,理论上将允许两种全同粒子:玻色子(Bosons),这时上 式取正号;费米子(Fermions),这时上式取负号。光子和介子 是玻色子;质子和电子是费米子。恰巧的是: 所有自旋为ћ整数倍的粒子为玻色子所有自旋为ћ半整数倍的 粒子为费米子(5.11) 这种自旋与统计(我们将看到,玻色子和费米子有截然不同的 统计性质)之间的联系,可以在相对论量子力学中得到证明; 在非相对论理论中,它被作为一个公理3。
表5.1 周期表前四行元素的基态电子组态
表5.1 周期表前四行元素的基态电子组态
5.3.1 自由电子气体 5.3.2 价带结构
5.3 固体
5.3.1 自由电子气体
图5.3 自由电子气。格子中的每一个 交点代表一个定态。阴影立方体为一
个态所占据的体积
图5.4 k空间中一个球壳的八分之一
5.3.2 价带结构
5.4.4 α和β的重要物理意义
图5.8 T=0以及T>0时的费米-狄拉克分布
5.4.5 黑体谱
1.一个光子的能量与它的频率满足普朗克方程,E=hν=ћω。 2.波数k和其频率满足k=2π/λ=ω/c,c为光速。 3.只有两个自旋态存在(量子数m可以为+1或-1,但不能为0)。 4.光子数不是守恒量;当温度升高时,光子数(每单位体积的)将 增加。
ψn1n2(x1,x2)=ψn1(x1)ψn2(x2), En1n2=(n12+n22)K. 例如,基态为 ψ11=2asinπx1asinπx2a, E11=2K; 第一激发态是双重简并的:
ψ12=2asinπx1asin2πx2a, E12=5K,
ψ21=2asin2πx1asinπx2a, E21=5K; 等等,依次类推。如果两个粒子为全同玻色子,基态保持不变, 但第一激发态变成非简并的:
图5.9 普朗克的黑体光谱公式,式5.113
2asinπx1asin2πx2a+sin2πx1asinπx2a (能量仍然为5K)。如果两个粒子为全同费米子,能量为2K的 态不存在;基态为 2asinπx1asin2πx2a-sin2πx1asinπx2a, 其能量为5K。
5.1.2 交换力
图5.1 共价键示意图 a)对称结构产生吸引力 b)反对称结构产生排斥力
5.2.1 氦原子 5.2.2 元素周期表
5.2 原子
5.2.1 氦原子
图5.2 氦原子能级图(符号的解释在5.2.2节中)。注意到仲氦能量都比对应的正氦能量高。垂直 轴的数值是相对于氦离子(H )基态的:4×(-13.6)eV=-54.4 eV;减去54.5 eV就得到态的总能量
5.2.2 元素周期表
图5.5 狄拉克梳,式5.57
图5.6 β=10时f(z)(式5.66)的图像,可以看出允带(阴影部分)被禁带(
)所分割
图5.7 周期势所允许的能 量基本形成了连续带
5.4 量子统计力学
5.4.1 5.4.2 5.4.3 5.4.4 5.4.5
一个例子 一般情况 最概然组态 α和β的重要物理意义 黑体光谱