量子力学——第五章作业参考答案
量子力学课后习题答案

量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
量子力学答案(第二版)苏汝铿第五章课后答案5.1-5#7

r r0 r r0
2 1 r2 3 Ze Ze 3 , ' H eV r r 2 r 2 r 0 0 r 0,
2
r r0 r r0
将其视为微扰。类氢离子中 1s 轨道电子波函数为
2
D
l 0 , m
2
l|m c o s | 0 / E 0
l E
由于
cos Y00
1 Y10 3
根据球谐函数的正交性可知,能量二级修正中只有 l 1, m 0 有贡献。
所以
E0 D 1 0 | c o s
2
2
| 00 E 0/ E
2
1
2
/ 2I ,
l 0,1, 2...
对确定的 l , m 0, 1, 2,..., l ,即能级的简并度为 2l 1 。 定理:某能级 En 非简并时, H 和宇称算符 具有共同本征矢 n 。 因而,
n r n n r n n r n n r n
07QMEx5.1-5.3 如果类氢原子的核不是点电荷,而是半径为 r0 ,电荷分布的小球,计算这种效应对类
5.1
氢原子基态能量的一级修正。 解: 由电磁学知球形电荷分布的静电势为
Ze 3 1 r 2 , r0 2 2 r02 V (r ) Ze , r
Z 1s R10Y00 a0
3/ 2
2e
Zr a0
1 4
2 Zr a0
1s 能级的一级修正为
E1s 1s H 1s
'
1
曾谨言《量子力学教程》(第3版)配套题库【课后习题-中心力场】

十万种考研考证电子书、题库视频学习平台
,即得
最后,计算(r-3). 对于 S 态(l=0),r→0 处φ→C(常数),所以
当 l≠0,利用题(5.7)式(7b),即得
因此
当 l→0,上式右端→∞,所以上式实际上适用于一切 l 值.
讨论:由于总能量算符及径向方程均与磁量子数优无关,所以 与 m 无关.但
2 / 18
圣才电子书 十万种考研考证电子书、题库视频学习平台
(c)μ子偶素(muonium,指μ+-μ-束缚体系). 解:(a)由于正负电子的质量均为 me,电子偶素的约化质量为
此体系的能谱为
(b)μ原子中μ子质量为mμ≈207me,原子核的质量为 M,而约化质量为:
a 为 Bohr 半径,上式右边第 2 项为屏蔽 Coulomb 势,求价电子的能级.
(c)r2 的平均值也已在题 5.9 中算出.对于本题,
因此,r 的涨落为
可见 n 越大,
越小,量子力学的结果和 Bohr 量子化轨道的图像越加接近.
5.7 按(5.1)节,式(8),中心力场V(r)中的粒子的径向方程可以写成
利用 Feynman-Hellmann 定理(见 4.7 题),证明对于处在能量本征态下的三维各向同性 谐振子,有
体系的能谱为
(c)设μ子质量为 mμ,则μ子偶素的约化质量为
,体系的能谱为
概括起来,如采用自然单位(能量自然单位是
,则这几个体系的能级公式都与
氢原子相同,即 μ的大小,其顺序如下
但每个体系的约化质量μ不同.按能量自然单位或按约化质量
电子偶素 氢原子
μ子偶素
μ原子
5.4 对于氢原子基态,计算△x△p.
解:氢原子基态波函数为
量子力学基础教程答案

量子力学基础教程答案【篇一:量子力学课后答案】class=txt>????? 第一章绪论第二章波函数和薛定谔方程第三章力学量的算符表示第四章态和力学量的表象第五章微扰理论第六章弹性散射第七章自旋和全同粒子?301.1.由黑体辐射公式导出维恩位移定律:?mt?b,b?2.9?10m?c。
证明:由普朗克黑体辐射公式:8?h?31 ??d??d?, h3c ekt?1c c及??、d???2d?得?? 8?hc1?? ?5,hc?e?kt?1 d?hc令x?,再由??0,得?.所满足的超越方程为 ?d? ktxex 5?x e?1 hc x?4.97,即得用图解法求得?4.97,将数据代入求得?mt?b,b?2.9?10?3m?0c ?mkt1.2.在0k附近,钠的价电子能量约为3ev,求de broglie波长.0hh?10解:? ???7.09?10m?7.09a p2me # 3e?kt,求t?1k时氦原子的de broglie波长。
1.3. 氦原子的动能为 2h0hh?10??12.63?10m?12.63a 解:? ??p2me3mkt ?23?1其中m?4.003?1.66?10?27kg,k?1.38?10j?k # 1.4利用玻尔—索末菲量子化条件,求:(1)一维谐振子的能量。
(2)在均匀磁场中作圆周运动的电子的轨道半径。
绪论第一章b?10t,玻尔磁子?b?0.923?10?23j?t?1,求动能的量子化间隔?e,并与t?4k及已知外磁场t?100k 的热运动能量相比较。
p21解:(1)方法1:谐振子的能量e????2q2 2?2p2q2可以化为??1 22 ?2e?2e? ????2???2e 的平面运动,轨道为椭圆,两半轴分别为a?2?e,b?,相空间面积为 2 ??2?eepdq??ab???nh,n?0,1,2,? ?? e?nh?,n?0,1,2,? 所以,能量方法2:一维谐振子的运动方程为q????2q?0,其解为q?asin??t??? 速度为 q??a?cos??t???,动量为p??q??a??cos??t???,则相积分为 2222tta??a??t222pdq? a??cos??t???dt?(1?cos??t???)dt??nh,n?0,1,2,? 002222a??nh e???nh?,n?0,1,2,? 2t 2?v?v evb?(2)设磁场垂直于电子运动方向,受洛仑兹力作用作匀速圆周运动。
量子力学习题解答-第5章

第五章全同粒子本章主要内容概要1. 全同粒子:质量、电荷、自旋等固有性质完全相同的微观粒子称为全同粒子。
在一个量子体系中全同粒子是不可区分的,两全同粒子相互交换不会引起物理性质的改变(全同性原理)。
所有的微观粒子可以分为两类:波色子和费米子。
所有自旋为 整数倍的粒子称为波色子,而所有自旋为/2 奇数倍的粒子称为费米子。
由费米子组成的量子体系,不能有两个或两个以上的费米子处于同一个状态(泡利不相容原理),体系的波函数在交换任意两个费米子时是反对称的。
对由波色子组成的量子体系,则不受泡利不相容原理的限制,两个或两个以上的波色子可以处于同一个状态,体系的波函数在交换任意两个波色子时是对称的。
如果体系的波函数可以由归一化的单粒子波函数()i q αφ的积表示,其中i 表示不同的单粒子态,q α表示第α个粒子的量子数(包括空间与自旋),则由N 个费米子组成体系的反对称波函数可以用N 阶行列式表示为12121212()()()()()()(,,...,,...,)()()()i i i N j j j N A N k k k N q q q q q q q q q q q q q αφφφφφφΦ=交换任何两个粒子就是交换行列式中的两列,这使行列式改变符号,即波函数A Φ在交换两粒子时是反对称的。
当任两粒子处于相同状态,即行列式中两行相同,行列式为零,表示不能有两个或两个以上的费米子处于同一个状态。
对由N 个波色子组成的体系,体系的对称波函数可以表示为 1212(,,...,,...,)()()...()A N i j k N Pq q q q C P q q q αφφφΦ=∑其中P 表示N 个粒子在波函数中的某一种排列,P∑表示对所有可能排列求和,由于波色子可以处于相同的状态,,,...,i j k 可以相等,C 是归一化常数为求和的项数,,,...,i j k 完全相等时为1,全不相等时为1/2.交换力:以两粒子体系为例,若体系的波函数可以表示为空间部分和自旋部分之积,对称和反对称的空间波函数为121212(,)()()()()]a b b a x x x x x x ψψψψψ±=±这种波函数对称化的要求会使两粒子间出现一种力的作用,称为交换力。
量子力学答案(第二版)苏汝铿第五章课后答案5.4-5#3

b2 (0) E1(0) E2
b2 a (0) E2 E1(0)
(3) '
(ii)严格求解法: 这就是根据表象理论,分立表象中,本征方程可以书写成矩阵方程式形式,并可以求得本征 值和本征矢(用单列矩阵表示) 。 我们设算符 H(1)具有本征矢
C1 ,本征值是 ,列矩阵方程式: C2
E1(0) 解 : (i)取 H 0 0 0
'
0 E1(0) 0
0 0 (0) E2
( 3)
0 a 0 0 b 则有: H H H 0 0 * * 0 b a
本题的微扰矩阵(3)是简并的波函数(零级)计算得来的,若像无简并微扰论那样计算二 级能量修正是可能的,但近似程度差,从(3)看出一级能量修正为零,准确到二级修正量 的能量本征值是:
1
, f n ,代入(1)式中,得
到与 En 相应的零级波函数的系数.从而给出零级波函数和能量本征值的一级修正,
0 0 n a n
En En En
0 1
考虑 的系数,讨论第 n 个能级.
2
当 m n 时,得到能级的二级修正 E
(5)
C1 C2 1
2
2
(6)
(5)式有 C1C2 非平凡解的条件是:
E1( 0) a b E
( 0) 2
b a
0
(0) ( E1( 0) a )( E 2 a ) b2 0 ( 0) (0) E ( 0) E 2 ( E1( 0) E 2 ) a 1 b2 2 2 2
0 0 1 2
量子力学周世勋第二版课后习题解答第5章

5.1 如果类氢原子的核不是点电荷,而是半径为0r 、电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正。
解:这种分布只对0r r <的区域有影响,对0r r ≥的区域无影响。
据题意知)()(ˆ0r U r U H -=' 其中)(0r U 是不考虑这种效应的势能分布,即 rze r U 024πε-=)()(r U 为考虑这种效应后的势能分布,在0r r ≥区域,rZe r U 024)(πε-=在0r r <区域,)(r U 可由下式得出,⎰∞-=rE d rer U )( ⎪⎪⎩⎪⎪⎨⎧≥≤=⋅⋅=)( 4 )( ,434410200300330420r r r Ze r r r r Ze r r Ze r E πεπεπππε⎰⎰∞--=0)(r r rEdr e Edr er U⎰⎰∞--=002023002144r r rdr r Ze rdr r Ze πεπε)3(84)(82203020*********r r r Ze r Ze r r r Ze --=---=πεπεπε )( 0r r ≤⎪⎩⎪⎨⎧≥≤+--=-=')( 0 )( 4)3(8)()(ˆ000222030020r r r r r Ze r r r Ze r U r U H πεπε由于0r 很小,所以)(2ˆˆ022)0(r U H H+∇-=<<'μ,可视为一种微扰,由它引起的一级修正为(基态r a Ze a Z 02/1303)0(1)(-=πψ) ⎰∞'=τψψd H E )0(1*)0(1)1(1ˆ ⎰-+--=0002202220302334]4)3(8[r r a Zdr r e r Ze r r r Ze a Z ππεπεπ ∴0a r <<,故102≈-r a Ze 。
∴ ⎰⎰+--=0302404220330024)1(1)3(2r r r d ra e Z dr r r r r a e Z Eπεπε2030024505030300242)5(2r a e Z r r r a e Z πεπε+--= 23002410r a e Z πε= 2032452r a e Z s = 5.2 转动惯量为I 、电偶极矩为D 的空间转子处在均匀电场在ε中,如果电场较小,用微扰法求转子基态能量的二级修正。
量子力学第五章 对称性及守恒定律

第五章: 对称性及守恒定律[1]证明力学量Aˆ(不显含t )的平均值对时间的二次微商为: ]ˆ],ˆ,ˆ[[222H H A A dtd -= (H ˆ是哈密顿量) (解)根据力学量平均值的时间导数公式,若力学量Aˆ 不显含t ,有]ˆ,ˆ[1H A i dt A d= (1) 将前式对时间求导,将等号右方看成为另一力学量]ˆ,ˆ[1H A i的平均值,则有: ]ˆ],ˆ,ˆ[[1]ˆ],ˆ,ˆ[1[1222H H A H H A i i dt A d -== (2) 此式遍乘2即得待证式。
[2]证明,在不连续谱的能量本征态(束缚定态)下,不显含t 的物理量对时间t 的导数的平均值等于零。
(证明)设Aˆ是个不含t 的物理量,ψ是能量H ˆ的公立的本征态之一,求A ˆ在ψ态中的平均值,有:⎰⎰⎰=ττψψd AA ˆ*将此平均值求时间导数,可得以下式(推导见课本§5.1)(1) 今ψ代表Hˆ的本征态,故ψ满足本征方程式 ψψE H=ˆ (E 为本征值) (2) 又因为Hˆ是厄密算符,按定义有下式(ψ需要是束缚态,这样下述积公存在) τψψτψψτd AHd A H ⎰⎰⎰⎰⎰⎰=)ˆ(*)ˆ()~(ˆ* (3)(题中说力学量导数的平均值,与平均值的导数指同一量)(2)(3)代入(1)得:τψψτψψd A H id H A i dt A d )ˆ(*)ˆ(1)ˆ(ˆ*1⎰⎰⎰⎰⎰⎰-= ⎰⎰⎰⎰⎰⎰-=τψψτψψd A iE d A i E ˆ**ˆ* 因*E E =,而0=dtAd[3]设粒子的哈密顿量为 )(2ˆˆ2r V p H +=μ。
(1) 证明V r p p r dtd ∀⋅-=⋅μ/)(2。
(2) 证明:对于定态 V r T ∀⋅=2(证明)(1)z y x p z p y p xp r ˆˆˆˆˆˆ++=⋅,运用力学量平均值导数公式,以及对易算符的公配律: ]ˆ,ˆˆ[1)ˆˆ(H p r i p rdt d⋅=⋅)],,(ˆ21,ˆˆˆˆˆˆ[]ˆ,ˆˆ[2z y x V pp z p y p x H p r z y x +++=⋅μ)],,()ˆˆˆ(21,ˆˆˆˆˆˆ[222z y x V p p p p z p y p xz y x z y x +++++=μ)],,(,[21],ˆˆˆˆˆˆ[222z y x V zp yp xp p p p p z p y p xz y x z y x z y x +++++++=μ(2) 分动量算符仅与一个座标有关,例如xi p x ∂∂= ,而不同座标的算符相对易,因此(2)式可简化成:]ˆ,ˆˆ[21]ˆ,ˆˆ[21]ˆ,ˆˆ[21]ˆ,ˆˆ[222z z y y x x p p z p p y p p x H p rμμμ++=⋅ )],,(,ˆˆˆˆˆˆ[z y x V p z p y p xz y x +++ ],ˆˆ[],ˆˆ[],ˆˆ[]ˆ,ˆˆ[21]ˆ,ˆˆ[21]ˆ,ˆˆ[21222V p z V p y V p xp p z p p y p p x z y x z z y y x x +++++=μμμ (3)前式是轮换对称式,其中对易算符可展开如下:x x x x p x pp x p p x ˆˆˆˆˆ]ˆ,ˆˆ[232-= x x x x x x p x p p x p p x p p x ˆˆˆˆˆˆˆˆˆˆˆ2223-+-= x x x x x p p x pp p x ˆ]ˆ,ˆ[ˆˆ]ˆ,ˆ[2+= 222ˆ2ˆˆx x x pi p i p i =+= (4) ],ˆ[ˆˆˆˆˆˆˆˆˆˆˆˆˆ],ˆˆ[V p x p V x V p x p x V V p x V p xx x x x x x =-=-= xV x i ∂∂=ˆˆ (5) 将(4)(5)代入(3),得:}{)ˆˆˆ(]ˆ,ˆˆ[222zV z y V y x V x i p p p i H p rz y x ∂∂+∂∂+∂∂+++=⋅ μ }ˆ{2V r pi ∀⋅+=μ代入(1),证得题给公式:V r pp r dt d ∀⋅-=⋅ μ2ˆ)( (6)(2)在定态ψ之下求不显含时间t 的力学量Aˆ的平均值,按前述习题2的结论,其 结果是零,令p r Aˆˆˆ ⋅= 则0)ˆˆ(*2=∀⋅-=⋅=⋅⎰⎰⎰V r p d p r p r dt d τμτψψ (7) 但动能平均值 μτψμψτ22ˆ*22p d p T =≡⎰⎰⎰由前式 V r T ∀⋅⋅=21[4]设粒子的势场),,(z y x V 是z y x ,,的n 次齐次式证明维里定理(Virial theorem )式中V是势能,T是动能,并应用于特例:(1)谐振子 T V = (2)库仑场 T V 2-=(3)T V n Cr V n 2,==(解)先证明维里定理:假设粒子所在的势场是直角坐标),,(z y x 的n 次齐次式,则不论n 是正、负数,势场用直角痤标表示的函数,可以表示为以下形式,式中V假定是有理函数(若是无理式,也可展开成级数):∑=ijkkj i ijk z y x C z y x V ),,( (1)此处的k j i ,,暂设是正或负的整数,它们满足:n k j i =++ (定数)ijk C 是展开式系数,该求和式可设为有限项,即多项式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.6 证明:根据
∑n
n
n = 1 ,有
C0 = e
n
1 2 − α iδ 2
e , δ 为实数
(6)
H = H ∑ n n = ∑ H n n = ∑ En n n
n n
通常,可取 C0 为正实数,即取 δ = 0 ;这时
9.1 证明:消灭算符 a 对于能量本征态 n 的作用结果为[参阅 9.1 节式(22)]
A2 = B 2 = C 2 = 1 ,
BC − CB = iA ,
由 A = 0 ,可以得到, a4 = 0 . (1) (2) (3) (4) (5) (6) (7) 最后,由 A A + AA = 1 (反对易关系) ,可以得到 a2
† †
2
= 1 ,即 a2 = eiα ( α 为实数).
B 分别左乘、右乘式(2)并利用式(1)得 C − BCB = iBA , BCB − C = iAB .
⎛ 0 b⎞ 设 b2 = b = b 可得到 B = ⎜ −1 ⎟, 0⎠ ⎝b
−1 3
=−
同理可得 C = ⎜
⎛ 0 c⎞ ⎟. −1 0⎠ ⎝c
7.4
解:
( x ) p ' p '' =
( p ) p ' p '' =
由 BC − CB = iA , b, c 满足下式
⎛ ∂ ⎞ ∂ p ' x p '' = ∫ δ ( p − p ' ) ⎜ i= ⎟ δ ( p − p '') dp = i= δ ( p '− p '') ; ∂p ' ⎝ ∂p ⎠
2
=−
由 AB + BA = 0 得到, b1 = b4 = 0 ;在由 B = 1 得到 b2b3 = 1 .
=2 ∂2 δ ( x − x ') 2 δ ( x − x '') dx + ∫ δ ( x − x ') V ( x ) δ ( x − x '') dx ∂x 2m ∫ =2 ∂ 2 δ ( x '− x '') + V ( x ') δ ( x '− x '') . 2m ∂x '2
α = ∑ Cn n = e
n
1 2 ∞ − α 2
∑
n =0
αn
n!
n
(7)
a n = n n −1
(1)
这就是算符 a 的本征态;由于 a 并非 Hermite 算符,所以本征值 α 原则上可以取任意复数; 式(7)中 n 台的成分为
2
和 a 不对易) 除 n = 0 以外,一般 n 不是算符 a 的本征台(根源于 n ,而且,上式表明 a 的
式(3)加上式(4)有
于是 A = ⎜
⎛ 0 eiα ⎞ ⎟. ⎝0 0 ⎠
AB + BA = 0 . 同理可以证明 AC + CA = 0 , AB + BA = AC + CA = 0 .
(b) A = 1 ,在 A 表象下, A = ±1 ;又无简并,则在 A 表象下
2
7.3
解:
( x ) x ' x '' =
2
∑
n
α2
n!
n
=1
由于
∑
n=0
∞
α
2n
n!
=e
α
2
所以
21
22
( p ) x ' x '' =
( H ) x ' x '' =
x ' x x '' = ∫ δ ( x − x ') xδ ( x − x '' ) dx = x ' δ ( x '− x '') ;
∂ ⎞ ∂ ⎛ x ' p x '' = ∫ δ ( x − x ' ) ⎜ −i= ⎟ δ ( x − x '' ) dx = −i= δ ( x '− x '') ; ∂x ⎠ ∂x ' ⎝
⎡ p2 ⎤ x ' H x '' = ∫ δ ( x − x ') ⎢ + V ( x ) ⎥ δ ( x − x '' ) dx m 2 ⎣ ⎦
⎛1 0 ⎞ A=⎜ ⎟. ⎝ 0 −1 ⎠
令B =⎜
⎛ b1 ⎝ b3
b2 ⎞ ⎛ c1 ⎟ ,C = ⎜ b4 ⎠ ⎝ c3
c2 ⎞ ⎟, c4 ⎠
b 2 − c 2 = ibc .
7.2 解:
2
( H ) p ' p '' =
(a)证明:利用 A = 0 ,
=
B 2 = A† AA† A = A† A(1 − AA† ) = A† A − A† AAA† = A† A = B .
19
⎛ ∂ ⎞ p '2 δ ( p '− p '') + V ⎜ i= ⎟ δ ( p '− p '' ) . 2m ⎝ ∂p ' ⎠
p ' p p '' = ∫ δ ( p − p ' ) pδ ( p − p '') dp = p ' δ ( p '− p '') ; ⎡ p2 ⎛ ∂ ⎞⎤ p ' H p '' = ∫ δ ( p − p ') ⎢ + V ⎜ i= ⎟ ⎥ δ ( p − p '' ) dp m 2 ⎝ ∂p ⎠ ⎦ ⎣
α α = α ∑ Cn n = a ∑ Cn n = ∑ Cn n n − 1
n n n
以 n − 1 左乘上式,并利用正交归一条件
n ' n = δ n'n
即得
Cn =
α
n
Cn −1
(4)
依次递推,即得
Cn =
αn
n!
C0
(5)Biblioteka C0 为归一化常数,归一化条件为
α α = ∑ Cn = C0
2 n
本征态不可能由有限个 n 叠加而成,必须包含所有 n ;设
nα
= Cn =
2
α
2n
n!
e− α
2
α = ∑ Cn (α ) n
n =0
∞
呈 Poisson 分布;式(7)称为谐振子的相干态( coherent state ). (2 )
满足本征方程
a α =α α
(3)
α 为本征值;利用式(1) ,即得
(b) B = B ,所以 B 的本征值为 0,1.又由于 B 的本征态无简并,则在 B 表象下
2
第五章作业参考答案
[曾谨言著《量子力学教程》(第二版) 习题 7: P141-142]
7.1 解: (a)证明:
⎛0 0⎞ B=⎜ ⎟. ⎝0 1⎠
令A=⎜
2
⎛ a1 ⎝ a3
a2 ⎞ † ⎟ ,由 A A = B ,可以得到, a1 = a3 = 0 . a4 ⎠