超声波测距带有实物
HC-SR04超声波测距模块

H C-S R04超声波测距模块1、产品特点:HC—SR04 超声波测距模块可提供2cm-400cm 的非接触式距离感测功能,测距精度可达高到3mm;模块包括超声波发射器、接收器与控制电路。
基本工作原理:(1)采用 IO 口 TRIG 触发测距,给至少 10us 的高电平信号; (2)模块自动发送 8 个40khz 的方波,自动检测是否有信号返回; (3)有信号返回,通过 IO 口 ECHO 输出一个高电平,高电平持续的时间就是超声波从发射到返回的时间。
测试距离=(高电平时间*声速(340M/S))/2;2、实物图:如右图接线,VCC 供5V 电源,GND 为地线,TRIG 触发控制信号输入,ECHO 回响信号输出等四支线.图一实物图3、电气参数:电气参数HC—SR04 超声波模块工作电压DC 5 V工作电流15mA工作频率40Hz最远射程4m最近射程2cm测量角度15 度4、超声波时序图:图二、超声波时序图以上时序图表明你只需要提供一个 10uS 以上脉冲触发信号,该模块内部将发出 8 个 40kHz 周期电平,即输出超声波,并检测回波。
一旦检测到有回波信号则输出回响信号回响信号的脉冲宽度与所测的距离成正比.由此通过发射信号到收到的回响信号时间间隔可以计算得到距离。
公式:uS/58=厘米或者 uS/148=英寸;或是:距离=高电平时间*声速(340M/S)/2;建议测量周期为 60ms 以上,以防止发射信号对回响信号的影响.注:1、此模块不宜带电连接,若要带电连接,则先让模块的GND 端先连接,否则会影响模块的正常工作。
2、测距时,被测物体的面积不少于0。
5 平方米且平面尽量要求平整,否则影响测量的结果5、实物规格:。
超声波沿直线传播的实用例子

超声波沿直线传播的实用例子
超声波是一种特殊的声波,它在特定波长的条件下沿着空气传播,是当今技术领域最常用
的传感方法之一。
超声波在工程测量中有许多应用,其中最重要的是沿着空气传播的超声
波的应用。
这种现实之中的技术对于许多工程测量有着越来越大的意义。
首先,超声波在测量距离上有着广泛的应用,从小型物体到大型建筑物,都可以测量沿着
空气传播的超声波。
其次,超声波还可以用于探测和诊断,可以通过超声传感器检测周围环境中的固体、液体或气体。
这种无线传感器被广泛用于工业生产现场,如制造、石油和化工等,用于检测环境中的参数,例如温度和液位等。
此外,还有一些人工应用,如提供安全防范、楼宇安全检测、空调风量测试等。
超声波传
感器可用于检测楼宇的安全状况,它可以检测到楼宇壁板上的裂缝和渗漏缝,以便早发现
潜在的安全隐患。
此外,它还可以用于空调风量测试,帮助用户确定空调系统运行是否顺畅,以确保用户安全和舒适。
从上面可以看出,沿着一条直线传播的超声波在工程测量领域有多种应用,可以有效地测
量距离,并检测和诊断环境中的参数。
随着技术的不断发展,超声波的应用会越来越广泛,带来更多的福利和惊喜给人们。
超声波测距的基本工作过程

超声波测距的基本工作过程超声波测距,听起来是不是特别高大上?其实啊,就像蝙蝠在黑夜里找路一样。
蝙蝠怎么知道前面有没有障碍物呢?它就靠发出超声波,然后根据超声波反射回来的情况来判断。
超声波测距的原理啊,跟这差不多。
咱得先有个能发出超声波的东西,这就好比是一个会喊口号的小喇叭。
这个小喇叭发出超声波,这超声波啊,就像一个个看不见的小信使,快速地朝着目标飞奔而去。
这些小信使可不会偷懒,它们直直地往前冲,遇到东西就会被弹回来。
这时候呢,就需要一个特别机灵的小耳朵来听这些被弹回来的小信使带回来的消息了。
这个小耳朵就是接收超声波的装置。
你看啊,从发出超声波到接收到反射回来的超声波,这里面是有个时间差的。
这个时间差可太重要了,就像跑步比赛里,从起跑的枪声到运动员跑回来冲线的时间一样关键。
这个时间差能告诉我们什么呢?它能告诉我们超声波跑了多远的路啊。
怎么算呢?这就像你知道一个人走路的速度,又知道他走了多长时间,就能算出他走了多远的路是一个道理。
超声波在空气里传播的速度是差不多固定的,知道了这个速度,再加上这个时间差,就能算出超声波从发射出去到碰到障碍物再反射回来所走过的路程了。
可是啊,这还没完呢。
这个路程是超声波往返的路程,就像你从家去学校再回来的路程一样。
我们要的是从发射点到障碍物的距离,那怎么办呢?简单啊,把这个总路程除以2不就得了。
这就像把你往返学校的路程除以2就得到家到学校的距离一样。
在实际的超声波测距设备里,这些过程都是一瞬间就完成的。
就好像眨个眼的功夫,它就已经把距离算出来了。
这设备里面的小喇叭和小耳朵都特别的精密,就像最顶尖的工匠打造出来的一样。
它们要保证发出的超声波频率稳定,接收的时候也不能出岔子。
要是小喇叭喊得含糊不清,或者小耳朵听错了,那算出来的距离可就不准了。
这就好比你让人去送信,结果送信的人都迷迷糊糊的,那消息能准确传达吗?再说说这超声波测距的应用吧。
你看现在的汽车,好多都有倒车雷达。
这倒车雷达就是靠超声波测距来工作的。
AJ-SR04M-超声波测距模块(单头)

一体化超声波测距模块使用说明书型号: AJ-SRO4M-T-X产品实物图:深圳市安吉电子深圳安吉电子目录>>产品概述 (2)>>产品特点 (4)>>产品应用 (4)>>技术参数 (5)产品结构图 (5)电气参数 (5)>>模块输出格式说明 (6)模式切换方法 (6)模块启动流程 (6)模式1工作方式 (7)模式2工作方式 (8)模式3工作方式 (9)模式4工作方式 (10)模式5工作方式 (11)开关量工作方式 (12)>>模块安装说明 (13)波束角图 (13)位置选择 (14)情况一 (14)情况二 (14)情况三 (15)情况四 (15)情况五 (16)测人范围 (16)>>注意事项 (17)>>产品尺寸 (17)超声波换能器尺寸 (17)控制主板尺寸 (18)板载换能器主板尺寸 (18)>>产品概述AJ-SR04M-T-X超声波测距模块,是采用收发一体的防水带线探头,运用非接触试超声波探测技术设计而成。
产品在20cm 至800cm 范围内,能够准确探测出与平面物体间的距离,并且在20cm 至250cm 范围内,能够准确测人。
基本工作原理:此超声波测距模块连接3-5.5V 电源后,模块本具备5种工作模式。
如有相关要求,可以与本公司联系,我们会为您提供和定做符合您需求的产品模式1:普通脉宽方波 最低功耗2.5mA模式2:低功耗脉宽方波 最低功耗40uA模式3:自动串口 最低功耗2.5mA模式4:串口触发 最低功耗20uA模式5:ASCII码输出 最低功耗20uA>>产品特点1、体积小,使用便捷;2、功耗低, 先择低功耗模式时 <20ua ;3、使用电压宽 3-5.5V工作电压3、测量精度高最高分辩率1mm精度;4、抗干扰强;5、一体化封闭式防水带线探头,适用于潮湿、恶劣的测量场>>产品应用场合1、智能小车测距,避障2、物体距离测量,人体高度测量3、智能交通控制,停车位控制4、教研,安防,工业控制5、人工智能,飞机高度测量等>>技术参数:产品结构图深圳安吉电子深圳安吉电子电气参数>>模块输出格式说明切换模式的方法,在断电的情况下面更换模块上面R19阻值即可变更模式模块启动流程图模式1引脚定义: Trig 触发信号Echo 输出回响信号模式1工作方式:当给Trig一个大于10us高电平触发信号,模块会工作一次相应Echo引脚会输出一次高电平,高电平的时间即为距离物体的距离通过Echo计算距离的公式: uS/58=厘米或者uS/148=英寸;或是:距离=高电平时间*声速(340M/S)/2;模式1模块最低功耗为2.5mA模式2引脚定义: Trig 触发信号Echo 输出回响信号模式2工作方式:当给Trig一个大于1ms高电平触发信号,模块会工作一次相应Echo引脚会输出一次高电平,高电平的时间即为距离物体的距离(注意Trig高电平的时候要大于1ms才能保证正常触发)通过Echo计算距离的公式: uS/58=厘米或者uS/148=英寸;或是:距离=高电平时间*声速(340M/S)/2;模式2模块最低功耗为40uA模式3引脚定义: RX 无任何意义TX 输出回响信号模式3工作方式: 模块每100ms自动输出一帧,含4 个8 位数据.帧格式为:0XFF+H_DATA+L_DATA+SUM 波特率设置 9600,none,8bit,1stop1、0XFF:为一帧开始数据,用于判断.2、H_DATA:距离数据的高8 位.3、L_DATA:距离数据的低8 位.4、SUM: 数据和,用于效验.H_DATA+L_DATA=SUM(仅低8 位).5、H_DATA 与L_DATA 合成16 位数据,即以毫米为单位的距离值.例如:产品应答: FF 07 A1 A7其中校验码SUM=A8=(0x07+0xA1)&0x00ff0x07 为距离的高位数据;0xA1 为距离的低位数据;距离值为0x07A1; 转换成十进制为1953; 单位为: 毫米通过Echo计算距离的公式: uS/58=厘米或者uS/148=英寸;或是:距离=高电平时间*声速(340M/S)/2;模式3模块最低功耗为2.5mA模式4引脚定义: RX 发任何数都会触发一次,或者置一次低电平也会触发一次 TX 输出回响信号模式4工作方式: 向RX引脚发送一次串口数据或者把RX引脚置低一次,模块测距后会输出一帧数据,含4 个8 位数据.帧格式为: 0XFF+H_DATA+L_DATA+SUM ,波特率设置 9600,none,8bit,1stop1、0XFF:为一帧开始数据,用于判断.2、H_DATA:距离数据的高8 位.3、L_DATA:距离数据的低8 位.4、SUM: 数据和,用于效验.H_DATA+L_DATA=SUM(仅低8 位).5、H_DATA 与L_DATA 合成16 位数据,即以毫米为单位的距离值.例如:产品应答: FF 07 A1 A7其中校验码SUM=A8=(0x07+0xA1)&0x00ff0x07 为距离的高位数据;0xA1 为距离的低位数据;距离值为0x07A1; 转换成十进制为1953; 单位为: 毫米通过Echo计算距离的公式: uS/58=厘米或者uS/148=英寸;或是:距离=高电平时间*声速(340M/S)/2;模式4模块最低功耗为20uA模式5引脚定义: RX 发任何数都会触发一次,或者置一次低电平也会触发一次 TX 输出回响信号模式5工作方式: 向RX引脚发送一次串口数据或者把RX引脚置低一次,模块测距后会输出一帧数据,数据用ASCII码显示出来,波特率设置 9600,none,8bit,1stop模式5模块最低功耗为20uA开关量模式引脚定义: Trig 默认高电平为工作,置低电平模块暂停工作Echo 大于设定值输出低电平,小于输出高电平开关量模式工作方式: 模块200ms会自动检测一次,并判断Trig引脚状态高电平模块则工作一次低电平模块则暂工作等待高电平到来,大于设定值Echo输出低电平,小于Echo输出高电平如何设置距离:一: 模块通上电源二: 探头对着物体比如墙面三: 按下”设定开关”大于0.5秒,如果探头离墙面2 米设置的距离就是2 米>>模块安装说明波束角图深圳安吉电子波束角:超声波传感器在发射超声波时沿传感器中轴线的延长线(垂直于传感器表面0°线)方向上的超声射线能量最大。
超声波测距 演示文稿 (2) 共25页PPT资料

超声在许多领域内比可听 声的用途更加广泛,是基于 以下凡个原因
1.具有方向性,超声波的频 率越高,则方向性越强。
2.在无损探伤、水下声纳系 统、超声测距系统中方向性
超声波测速原理
测量距离的方法有很多种,短距离的可以 用尺,远距离的有激光测距等,超声波测 距适用于高精度的中长距离测量。因为超 声波在标准空气中的传播速度为331.45米/ 秒,由单片机负责计时,单片机使用12M晶 振,所以此系统的测量精度理论上可以达 到毫米级。
J4 CON1
1
J1
U1
8 9C 51
8 7 6 5 4 3 2 1
1P1.0 2 3 4 5 6 7 8
P10 P11 P12 P13 P14 P15 P16 P17
J6 CON8 /K1E3Y
1
INT01 2
INT1/P 3 3 INT0/P 3 2
CON1
15 14
T1/P 3 5 T0/P 3 4
以下主要对发送电路、接收电路、显示电路与键盘的 接口电路的单片机管脚分配进行分析。
设计中我们使用1602C液晶来显示距离的数据变化、。 试验中我们选择MCU的I/O口P0和P2作为数码管的控 制端口。另外在发送电路和接收电路中采用CPU的11 管脚作为数据发送端和CPU的10管脚作为接收端。 EA(第31脚)为访问外部/内部程序内存选通信号。 由于程序量不大,利用89C51片内的4K程序内存足够, 不必使用外部内存,因此,EA接+5V。
二 调试开发环境 keil c51编译环境 单片机开发板
三 分析与设计
单片机电路原理分析 单片机电路在其中起决定性的中枢控制作用。 它首先负责对接收器接收到来自超声波接 受系统发来的数据,进行处理并且送入显 示电路。其次负责超声波发射器的发送控 制,此外单片机还负责对键盘的管理,实 现人机交互控制。
HC-SR04超声波测距模块

.超声波测距模块04C-SRH 1、产品特点:2cm-400cm 的非接触式距离感测功能,HC-SR04 超声波测距模块可提供基本工;模块包括超声波发射器、接收器与控制电路。
测距精度可达高到3mm作原理:模块自动发的高电平信号; (2) TRIG 触发测距,给至少 10us (1)采用 IO 口有信号返回,通过 40khz 的方波,自动检测是否有信号返回; (3) 8 送个输出一个高电平,高电平持续的时间就是超声IO 口 ECHO(340M/S))/2;声速=(高电平时间*波从发射到返回的时间。
测试距离、实物图:2VCC 供如右图接线,,GND 为地电5V 源信线,TRIG 触发控制信响号输入,ECHO 回线。
等四支号输出图一实物图3、电气参数HC-SR04超声波模电气参工作电DC 5 V工作电15mA工作频率40Hz....4、超声波时序图:图二、超声波时序图以上时序图表明你只需要提供一个 10uS 以上脉冲触发信号,该模块内部将发出 8 个 40kHz 周期电平并检测回波。
一旦检测到有回波信号则输出回响信号回响信号的脉冲宽度与所测的距离成正比。
由此通过发射信号到收到的回响信号时间间隔可以计算得到距离。
公式:uS/58=厘米或者 uS/148=英寸;或是:距离=高电平时间*声速(340M/S)/2;建议测量周期为 60ms 以上,以防止发射信号对回响信号的影响。
注:1、此模块不宜带电连接,若要带电连接,则先让模块的GND 端先连接,否则会影响模块的正常工作。
2、测距时,被测物体的面积不少于0.5 平方米且平面尽量要求平整,否则影响测量的结果、实物规格:5.。
超声波测距精选PPT演示文稿
距离计算
距离计算公式: D=S/2=(V×t)/2
20
开始
系统初始化 发送超声波 等待发射超声波
计算距离 显示结果
21
重新开始
初始化
超声测距器单片机程序
/*--------------------------------------
MCU AT89C51 XAL 12MHz
--------------------------------------*/
❖ uchar tab2[]={0x01,0x02,0x04,0x08,};
❖ extern void cs_t(void);
❖ extern void delay(uint);
❖ data uchar dispram[5];
❖ void dΒιβλιοθήκη splay()❖ { int j;
❖ for(j=0;j<=3;j++)
❖ {P0=tab1[dispram[j]];
❖
P2=tab2[j];delay(2);
❖
}
❖
}
❖ data uchar testok;
22
主程序
❖ void main(void) ❖{ ❖ data uint i; ❖ data ulong time; ❖ P0 = 0xff; /*初始化*/ ❖ P2 = 0xff; ❖ TMOD = 0x11; /*工作方式选择*/ ❖ IE = 0x80; /*CPU开中断*/ ❖ while (1) ❖{ ❖ cs_t(); /*产生 40KHz的方波*/ ❖ delay(1); ❖ testok = 0; ❖ EX0 = 1; /*开外部中断0 */ ❖ ET0 = 1; /*开定时/计数器0 */ ❖ while(!testok) display(); ❖
超声波测距PPT课件
控制系统软件流程图
超声波测距系统的软件设计
软件开发环境的简介
keil C51 ❖ Keil C51是美国Keil Software公司出品的51系
列兼容单片机C语言软件开发系统。Keil C51软件提 供丰富的库函数和功能强大的集成开发调试工具, 全Windows界面。另外重要的一点,只要看一下编 译后生成的汇编代码,就能体会到Keil C51生成的 目标代码效率非常之高,多数语句生成的汇编代码 很紧凑,容易理解。在开发大型软件时更能体现高 级语言的优势。
ceil C51的开发界面
STC-ISP V3.1 软件下载界面
结语
❖ 应用本系统3 mm~20 m内的目标做了多次 测量,测量结果为,其最大误差为1.5 mm, 且重复性好。可见基于单片机设计的超声波 测距系统具有硬件结构简单、工作可靠、测 量误差小等特点。因此,它可用于许多对测 量要求精度高,测量范围适当的设备和各种 检测系统中。
❖ 单片机采用89S51或其兼容系列。采用 12MHz高精度的晶振,以获得较稳定的时钟 频率,减小测量误差。单片机用P1.0端口输 出超声波转化器所需的40KHz方波信号,利 用外中断0口检测超声波接受电路输出的返回 信号。显示电路采用简单实用的4位共阳LED 数码管,段码用74LS244驱动,位码用PNP 三极管驱动。
致谢
❖ 感谢大学四年里教过我的老师,不仅让我学 到了许多专业知识,更让我知道有严谨和勤 奋的学习态度,坚忍不拔的精神是多么重要, 最重要的是对人生的态度。
❖ 感谢我的导师对我毕业设计的悉心指导,提 出了很好的建议和提供很多帮助。
❖ 最后,感谢辩组的老师,谢谢!
的时间误差引起的。
❖
对于时间误差主要由发送计时点和接收计时点准确性确定,为了能够提高计时点选择
超声波测距详细资料
超声波测距板学习板超声波测距学习板,可应用于汽车倒车、建筑施工工地以及一些工业现场的位置监控,也可用于如液位、井深、管道长度的测量等场合。
要求测量范围在0.27~4.00m,测量精度1cm,测量时与被测物体无直接接触,能够清晰稳定地显示测量结果。
超声波测距原理超声波发生器内部结构有两个压电晶片和一个共振板。
当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。
反之,如果两电极间未外加电压,当共振板接收到超声波本时,将压迫压电晶片作振动,将机械能转换为电信号,就成为超声波接收器。
在超声探测电路中,发射端得到输出脉冲为一系列方波,其宽度为发射超声的时间间隔,被测物距离越大,脉冲宽度越大,输出脉冲个数与被测距离成正比。
超声测距大致有以下方法:① 取输出脉冲的平均值电压,该电压 (其幅值基本固定 )与距离成正比,测量电压即可测得距离;② 测量输出脉冲的宽度,即发射超声波与接收超声波的时间间隔 t,故被测距离为 S=1/2vt。
本测量电路采用第二种方案。
由于超声波的声速与温度有关,如果温度变化不大,则可认为声速基本不变。
如果测距精度要求很高,则应通过温度补偿的方法加以校正。
超声波测距适用于高精度的中长距离测量。
因为超声波在标准空气中的传播速度为331.45米/秒,由单片机负责计时,单片机使用12.0M晶振,所以此系统的测量精度理论上可以达到毫米级。
超声波学习板采用AT89C51或AT89S51单片机,晶振:12M,单片机用P1.0口输出超声波换能器所需的40K方波信号,利用外中断0口监测超声波接收电路输出的返回信号,显示电路采用简单的4位共阳LED数码管,段码用74LS245,位码用8550驱动.超声波测距的算法设计: 超声波在空气中传播速度为每秒钟340米(15℃时)。
X2是声波返回的时刻,X1是声波发声的时刻,X2-X1得出的是一个时间差的绝对值,假定X2-X1=0.03S,则有340m×0.03S=10.2m。
超声波测距实验报告
超声波测距系统实物设计报告一.设计要求1.测量距离不小于0.3米,数字显示清晰,无数字叠加,动态显示测量结果,更新时间约为0.5秒左右。
2.测量精度优于0.1米,显示精度0.01米。
3.距离小于0.3米时,蜂鸣器发出”嘀嘀”报警。
4.测量距离超过1.0米时,指示灯显示超量程。
二.系统设计思路1.原理框图2.系统组成模块(一)(一)40KHZ 40KHZ 方波产生电路1、分析:利用555定时器组成的多谐振荡器作为时钟信号的产生电路,通过理论计算加上微调电阻和电容的值,得到所需频率的矩形波,当R2远大于R1时,矩形波的占空比接近50%50%,可近似为方波。
,可近似为方波。
超声波振荡器控制门超声波放大器闸门CP 信号(2Hz )计数开启清零计数超声波放大滤波正弦波前沿检测超声波接收器超量程灯光显示小于0.3米蜂鸣报计数显示电路反射物超声波发射器17KHzCP 2、单元电路如下图;3、参数计算:4、仿真结果:(二)(二)2Hz 2Hz 时钟信号发生电路:时钟信号发生电路:1、分析:利用555定时器组成的多谐振荡器作为时钟信号的产生电路,定时器组成的多谐振荡器作为时钟信号的产生电路,通过通过理论计算加上调整电阻和电容的值,得到所需频率的矩形波。
其中占空比在70%70%以上。
以上。
以上。
2、单元电路如下所示:参数计算:R1=710K 欧,R2=375欧,C1=1微F (三)17kHz 时钟信号发生电路:时钟信号发生电路:1、分析:利用555定时器组成的多谐振荡器作为时钟信号的产生电路,定时器组成的多谐振荡器作为时钟信号的产生电路,通过通过理论计算加上调整电阻和电容的值,得到所需频率的矩形波。
理论计算加上调整电阻和电容的值,得到所需频率的矩形波。
2、单元电路如下所示:3、参数计算:R1=1K 欧,R2=395欧,C5=47nf ;4、仿真5、功能:数字显示的测量结果要求动态更新时间约0.5秒左右,所以要求一个频率约2Hz 的时钟信号来控制刷新数据,保证结果显示稳定不闪烁。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单片机课程设计课题:超声波测距离系别:电气与信息工程学院专业:电子信息工程姓名:管俊豪学号:093411121河南城建学院2014年01月01日成绩评定·一、指导教师评语(根据学生设计报告质量、答辩情况及其平时表现综合评定)。
二、评分课程设计成绩评定目录1 绪论 (1)1.1摘要 (1)1.2 课题的提出及研究意义 (1)1.2.1 课题的提出 (1)1.2.2 课题的研究意义 (1)2 超声波的介绍 (2)2.1超声波测距的原理 (2)2.2单片机实现测距的原理 (3)2.3超声波测距误差分析 (3)3 系统硬件设计 (4)3.1总体方案设计介绍 (4)3.2硬件电路设计 (5)3.3 STC89C52单片机主要特性 (5)3.4AT89C51管脚说明 (7)3.5超声波发射和接收模组 (8)3.6数据显示模块 (9)3.7 STC89C52复位电路 (10)4.系统程序的设计 (10)4.1超声波测距器的算法设计 (10)4.2 主程序 (12)4.3 超声波发生子程序和超声波接收及显示程序 (13)4.4调试及性能分析 (16)4.5性能指示 (17)5课程设计体会 (18)6.附件 (19)6.1控制源程序 (19)6.2电路图 (23)6.3实物整体图 (23)7参考文献 (24)1 绪论1.1摘要随着科学技术的快速发展,超声波将在测距仪中的应用越来越广。
但就目前技术水平来说,人们可以具体利用的测距技术还十分有限,因此,这是一个正在蓬勃发展而又有无限前景的技术及产业领域。
展望未来,超声波测距仪作为一种新型的非常重要有用的工具在各方面都将有很大的发展空间,它将朝着更加高定位高精度的方向发展,以满足日益发展的社会需求,如声纳的发展趋势基本为:研制具有更高定位精度的被动测距声纳,以满足水中武器实施全隐蔽攻击的需要;继续发展采用低频线谱检测的潜艇拖曳线列阵声纳,实现超远程的被动探测和识别;研制更适合于浅海工作的潜艇声纳,特别是解决浅海水中目标识别问题;大力降低潜艇自噪声,改善潜艇声纳的工作环境。
无庸置疑,未来的超声波测距仪将与自动化智能化接轨,与其他的测距仪集成和融合,形成多测距仪。
随着测距仪的技术进步,测距仪将从具有单纯判断功能发展到具有学习功能,最终发展到具有创造力。
在新的世纪里,面貌一新的测距仪将发挥更大的作用。
本设计采用以STC89C52单片机为核心的低成本、高精度、微型化数字显示超声波测距仪的硬件电路和软件设计方法。
整个电路采用模块化设计,由主程序、中断程序、发射子程序、接收子程序、显示子程序等模块组成。
各探头的信号经单片机综合分析处理,实现超声波测距仪的各种功能。
在此基础上设计了系统的总体方案,最后通过硬件和软件实现了各个功能模块。
1.2 课题的提出及研究意义1.2.1 课题的提出测距的原理和方法有很多,根据其信息载体的不同可归纳为光学方法、无线电方法和超声波方法。
前两者在某些地方有局限性,相比之下,超声波方法具有突出的优点,首先,超声波对色彩、光照度不敏感,可用于测量透明及漫反射性差的物体(如玻璃、抛光体);其次,超声波对外界光线和电磁场不敏感,可用于黑暗、有灰尘或烟雾、电磁干扰强、有毒等恶劣环境中;最后,超声波传感器结构简单、体积小、费用低,信息处理简单可靠,易于小型化和集成化。
因此超声波作为非接触测量手段,己越来越引起人们的重视。
本课题设计为基于超声波的测距。
1.2.2 课题的研究意义超声波测距是一种极有潜力的方法,近距范围内超声测距有其不受光线影响、结构简单、成本低等特点。
超声测量另一个突出优点是:环境介质可以为空气、液体或固体,适用范围广泛。
更重要的是超声波检测降低了劳动强度,避免工人在恶劣工作环境下(高、低温,高、低压,强辐射,有毒气、液体环境等)受到伤害,还大大提高了测量精度,可靠性高;另外,超声波测距还可以应用到其他的功能系统中,例如在机器人避障系统、移动机器人避障的超声测距系统、智能机器人管家和简易智能电动车自动避障系统、车载系统、自动泊车系统、自动刹车系统和倒车雷达系统中,超声波测距也有其重要的应用。
目前超声波测距已得到广泛应用,国内一般使用专用集成电路根据超声波测距原理设计各种测距仪器,但是专用集成电路的成本较高、功能单一。
而以单片机为核心的测距仪器可以实现预置、多端口检测、显示、报警等多种功能,并且成本低、精度高、操作简单、工作稳定、可靠。
以8051为内核的单片机系列,其硬件结构具有功能部件齐全、功能强等特点。
尤其值得一提的是,出8位CPU 外,还具备一个很强的位处理器,它实际上是一个完整的位微计算机,即包含完整的位CPU,位RAM、ROM(EPROM),位寻址寄存器、I/O口和指令集。
所以,8051是双CPU的单片机。
位处理在开关决策、逻辑电路仿真、过程测控等方面极为有效;而8位处理则在数据采集和处理等方面具有明显长处。
2 超声波的介绍2.1超声波测距的原理超声波测距的原理是利用超声波在空气中的传播速度为已知,测量声波在发射后遇到障碍物反射回来的时间,根据发射和接收的时间差计算出发射点到障碍物的实际距离。
由此可见,超声波测距原理与雷达原理是一样的。
测距的公式表示为:L=C×T式中L为测量的距离长度;C为超声波在空气中的传播速度;T为测量距离传播的时间差(T为发射到接收时间数值的一半)。
超声波测距主要应用于倒车提醒、建筑工地、工业现场等的距离测量,虽然目前的测距量程上能达到百米,但测量的精度往往只能达到厘米数量级。
由于超声波易于定向发射、方向性好、强度易控制、与被测量物体不需要直接接触的优点,是作为液体高度测量的理想手段。
在精密的液位测量中需要达到毫米级的测量精度,但是目前国内的超声波测距专用集成电路都是只有厘米级的测量精度。
通过分析超声波测距误差产生的原因,提高测量时间差到微秒级,以及用LM92温度传感器进行声波传播速度的补偿后,我们设计的高精度超声波测距仪能达到毫米级的测量精度。
2.2超声波测距误差分析根据超声波测距公式L=C×T,可知测距的误差是由超声波的传播速度误差和测量距离传播的时间误差引起的。
1)时间误差当要求测距误差小于1mm时,假设已知超声波速度C=344m/s (20℃室温),忽略声速的传播误差。
测距误差s△t<(0.001/344) ≈0.000002907s 即2.907μs。
在超声波的传播速度是准确的前提下,测量距离的传播时间差值精度只要在达到微秒级,就能保证测距误差小于1mm的误差。
使用的12MHz晶体作时钟基准的89C51单片机定时器能方便的计数到1μs的精度,因此系统采用89C51定时器能保证时间误差在1mm的测量范围内。
2)超声波传播速度误差超声波的传播速度受空气的密度所影响,空气的密度越高则超声波的传播速度就越快,而空气的密度又与温度有着密切的关系。
已知超声波速度与温度的关系如下:式中:r —气体定压热容与定容热容的比值,对空气为1.40,R —气体普适常量,8.314kg·mol-1·K-1,M—气体分子量,空气为28.8×10-3kg·mol-1,T —绝对温度,273K+T℃。
近似公式为:C=C0+0.607×T℃式中:C0为零度时的声波速度332m/s;T为实际温度(℃)。
对于超声波测距精度要求达到1mm时,就必须把超声波传播的环境温度考虑进去。
例如当温度0℃时超声波速度是332m/s,30℃时是350m/s,温度变化引起的超声波速度变化为18m/s。
若超声波在30℃的环境下以0℃的声速测量100m距离所引起的测量误差将达到5m,测量1m误差将达到5mm。
超声波发生器可以分为两类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。
电气方式包括压电型、电动型等;机械方式有加尔统笛、液哨和气流旋笛等。
它们所产生的超声波的频率、功率、和声波特性各不相同,因而用途也各不相同。
目前在近距离测量方面常用的是压电式超声波换能器。
2.3单片机实现测距的原理单片机发出超声波测距是通过不断检测超声波发射后遇到障碍物所反射的回波,从而测出发射和接收回波的时间差tr,然后求出距离S=Ct/2,式中的C 为超声波波速。
限制该系统的最大可测距离存在4个因素:超声波的幅度、反射的质地、反射和入射声波之间的夹角以及接收换能器的灵敏度。
接收换能器对声波脉冲的直接接收能力将决定最小的可测距离。
为了增加所测量的覆盖范围、减小测量误差,可采用多个超声波换能器分别作为多路超声波发射/接收的设计方法。
由于超声波属于声波范围,其波速C与温度有关。
3 系统硬件设计3.1总体方案设计介绍本文所研究的超声波测距仪利用超声波指向性强、能量消耗缓慢、传播距离较远等优点,即用超声波发射器向某一方向发送超声波,同时在发射的时候开始计时,在超声波遇到障碍物的时候反射回来,超声波接收器在接收到反射回来的超声波时,停止计时。
设超声波在空气中的传播速度为V,在空气中的传播时间为T,汽车与障碍物的距离为S,S=VT/2,这样可以测出汽车与障碍物之间的距离,然后在液晶显示屏1602上显示出来。
其工作机理是依据压电材料的正逆压电效应,利用逆压电效应产生超声波,即逆压电效应是在压电材料上加上某种特定频率的交变正弦信号,材料就会产生随所加电压的变化规律而变化的机械形变,这种机械形变推动周围介质振动,产生疏密相间的机械波,如果其振动频率在超声范围内,这种机械波就是超声波。
本文所设计的超声波测距仪主要由STC89C52单片机、超声波发射电路、超声波接收放大电路、显示电路、复位电路。
首先由单片机驱动产生12MHZ晶振,由超声波发射探头发送出去,在遇到障碍物反射回来时由超声波接收探头检测到信号,然后经过滤波、放大、整形之后送入单片机进行计算,把计算结果输出到LED液晶显示屏上。
超声波发生器可以分为两大类:一类是用电气方式产生超声波;另一类是用机械方式。
产生超声波。
电气方式包括压电型、电动型等;机械方式有加尔统笛、液和气流旋笛等。
它们所产生的超声波的频率,功率和声波特性各不相同,因而用途也各不相同。
目前在近距离测量方面较为常用的是压电式超声波换能器。
根据设计要求并综合各方面因素,超声波测距器系统设计如图3.1所示。
图3.1 超声波测距器系统设计框图3.2硬件电路设计硬件电路的设计主要包括单片机系统及显示电路、超声波发射电路和超声波检测接收电路三部分。
单片机采用AT89C51或其兼容系列。
采用12MHz高精度的晶振,以获得较稳定时钟频率,减小测量误差。
单片机用P1端口输出及输入超声波换能器所需的40kHz的方波信号,利用外中断0口监测超声波接收电路输出的返回信号。