(word完整版)美赛一等奖经验总结,推荐文档
美赛赛题总结

美赛赛题总结一、引言概述美赛(MCM/ICM)是一项国际性的数学建模竞赛,旨在鼓励学生运用数学建模方法解决实际问题。
参与美赛不仅能够提高学生的数学建模能力,还培养了解决现实挑战的综合素养。
本文将对美赛赛题进行总结,包括解题思路、方法应用和团队合作等方面。
二、解题思路2.1 问题分析问题理解:在解题过程中,首先确保对问题有深刻的理解,梳理问题的关键信息。
问题分类:对问题进行分类,明确问题的数学建模方向,为后续的建模提供指导。
限制条件:分析问题中的各类限制条件,为建模提供问题的边界条件。
2.2 模型建立变量定义:明确定义问题中的变量,建立数学模型的基础。
方程构建:建立数学方程,将实际问题转化为数学表达式。
模型假设:根据实际情况进行模型假设,简化问题,提高建模效率。
2.3 方法选择数学工具:选择适当的数学工具,如微积分、概率统计等,用于解决建立的数学方程。
数据处理:对问题中的实际数据进行处理,确保模型的准确性。
算法应用:根据问题的特点,选择适当的算法进行求解。
三、效果评估与未来展望3.1 结果分析模型验证:针对建立的数学模型,进行模型的验证,检验模型的准确性。
结果解释:对得到的数学结果进行解释,明确数学模型在实际问题中的意义。
灵敏性分析:进行灵敏性分析,评估模型对输入参数的敏感性。
3.2 创新点总结方法创新:总结在解题过程中采用的创新方法,突出团队的独特视角。
模型创新:强调团队在模型建立中的创新点,展示团队的独特见解。
实用性评估:对模型在实际应用中的实用性进行评估,突出团队的创新成果。
3.3 团队合作分工合作:回顾团队合作过程,总结各成员在问题分析、建模和求解中的贡献。
沟通协作:强调团队成员之间的有效沟通和紧密协作对解决问题的积极影响。
团队经验:总结团队在美赛中的经验,提出未来团队合作的改进点。
总结通过对美赛赛题的总结,团队不仅加深了对实际问题的理解,还提高了数学建模和团队合作的能力。
在未来,可以更加注重创新思维,深入挖掘问题背后的数学本质,以更高水平应对各类挑战,为实际问题提供更有效的解决方案。
美赛O奖经验分享

美赛O奖经验分享主讲人:熊风华中科技大学电信11级我与美赛熊风华中科技大学电子信息与通信学院1102班参加过两次美赛2013年美赛(ICM) C题一等奖(Meritorious)2014年美赛(MCM) B题特等奖(Outstanding)(B题唯一一篇入选官方杂志umap的论文)比赛负责的部分:建模、算法、编程准备和大家分享的内容1.APMCM B题评讲2.个人对美赛的理解3.对最后11天准备美赛的一些建议4.Q & AB 题:如何评价微信公众号微信是腾讯公司推出的是一款跨平台的通讯工具。
微信公众平台,是用户利用公众账号进行自媒体活动,简单来说就是进行一对多的媒体性的行为活动,如商家通过申请公众微信服务号通过二次开发,如对接微信会员云营销系统展示商家微官网、微会员、微推送、微支付、微活动,微报名、微分享、微名片等,已经形成了一种主流的线上线下微信互动营销方式。
值得注意的是, 微信每天允许公号向受众群发1 条消息, 而只有极少数公号会每天都把这一次群发用掉。
大多数公号都是基于自身话题领域,根据自己的内容定位,或推送他们认为值得受众关注的重要新闻, 或推送受众可能更容易感兴趣的趣味性内容。
微信公众平台包括不同领域的各种账号,分析这些平台运营是否有效,是否能够在微时代更好地运用自己成为了各大企业思考的问题。
请建立数学模型完成以下问题:1、查找相关资料分析微信公众帐号的领域,建立模型,预测不同领域的公众帐号数量的增长趋势。
2、请建立数学模型分析不同领域的微信帐号运营是否有效,说明你的数学模型的优缺点。
3、假如给你一个“数学建模”的微信帐号,你该如何运营,给出方案并预测关注量增长趋势。
问题分析1. 问题一:预测问题预测常用的模型:灰色预测、时间序列、回归与拟合2. 问题二:评价问题评价常用的模型:模糊综合评价、层次分析法(AHP)、3. 问题三:发散+ 预测言之成理即可大家用到的模型基本都是比较合适的,但普通都存在一些问题举个例子:摘要没有实际的内容一篇好的摘要要讲清楚的东西:(1)建立了什么模型(2)用了什么算法来求解(3)得到了什么结果/结论(最好有数字)(4)对模型进行了什么分析(比如敏感性分析),得到了什么结论注意:(1)摘要里最好不要出现公式(2)摘要里不要有语法错误(3)摘要尽量简洁我的观点:摘要实在实在是太重要了!(1)在哪里都可以马虎,但在摘要的地方不能马虎!!!(2)一篇摘要不好的文章,最多只有SP(三等奖)!(3)一篇摘要好的文章,最少也有H(二等奖)(4)对摘要的态度一定要非常非常重视。
美赛Outstanding Winner作者经验分享

首页个人主页竞赛广场校园广场学神日志谢永意个性签名:Never say Never吕静我的竞赛二本民族院校也可以拿美赛Outstanding Winner 和 SIAM Award关联竞赛: 数学建模 数学 关键字: 2014年美国大学生数学建模竞赛特等奖(Outstanding Winner ) SIAM Award2014年的美赛,我们队很荣幸地拿到了Outstanding Winner SIAM Award ,这也是我国第四所大学拿到这个单项奖,之前是华中科大、清华和浙大。
可喜的是今年的SIAM 奖都来自中国的学生,浙江大学和我们西南民族大学包揽了AB 题的SIAM 奖。
应赛氪邀请,写了这一篇类似经验的分享。
我也想借这个机会总结一下我们第一次参加美赛就拿O 奖和SIAM 奖的经历,希望能给数模爱好者们一些帮助。
团队成员:谢永意,章瑶,刘一平获奖时大二都来自西南民族大学计科学院信息与计算科学1201班本篇经验贴作者为本队刘一平一、2013年五一数学建模联赛五一数学建模联赛对我们来说是我们和数学建模的相识,我们队里只有章瑶和谢永意参加了,我有事没有参加,虽然比赛规模没有国赛美赛那么大,但是对于刚上大一的我们来说,这也是一次受益终生的经历。
我们三个都是好朋友,听他俩说那次比赛经历相当坎坷,虽然是数学系的但毕竟才上大一,对于一些数学软件还是很白菜的,他们都是在短时间内学习使用软件,论文书写,还有模型建立的,那次比赛也算是为国赛奠定基础了。
那次比赛他们两个的成绩都还是不错的,一个三等奖一个二等奖,也是那次比赛让他们对国赛又充满了渴望,毕竟三天都是神经紧绷着,这种感觉很爽的,只有经历过的人才会体会到。
而且能学到很多东西。
也是那次比赛我之后才知道原来还有SPSS 这种软件。
二、2013年国赛2012年放暑假之前我们学校就有老师在上数学建模的培训课,我那个时候还没有组队,就是每天去打酱油,记得培训结束的最后一天,老师让同学们自愿组队,我本来是想回家的,不想留在学校,但是谢永意想参加国赛,所以我们就问了几个同学,但是毕竟培训都结束了好多人都组好队了,我们真的已经不抱希望了,就在这个时候我看到了我们班的学霸章瑶,就问了一下她,结果她也是想如果没人组队就直接回家的,既然我和谢永意邀请都邀请了她那就留下来培训了。
建模美赛获奖范文

建模美赛获奖范文全文共四篇示例,供读者参考第一篇示例:近日,我校数学建模团队在全国大学生数学建模竞赛中荣获一等奖的喜讯传来,这是我校首次在该比赛中获得如此优异的成绩。
本文将从建模过程、团队合作、参赛经验等方面进行详细介绍,希望能为更多热爱数学建模的同学提供一些借鉴和参考。
让我们来了解一下比赛的背景和要求。
全国大学生数学建模竞赛是由中国工程院主办,旨在促进大学生对数学建模的兴趣和掌握数学建模的基本方法和技巧。
比赛通常会设置一些实际问题,参赛队伍需要在规定时间内通过建立数学模型、分析问题、提出解决方案等步骤来完成任务。
最终评选出的优胜队伍将获得一等奖、二等奖等不同级别的奖项。
在本次比赛中,我们团队选择了一道关于城市交通拥堵研究的题目,并从交通流理论、路网优化等角度进行建模和分析。
通过对城市交通流量、拥堵原因、路段限制等方面的研究,我们提出了一种基于智能交通系统的解决方案,有效缓解了城市交通拥堵问题。
在展示环节,我们通过图表、数据分析等方式清晰地呈现了我们的建模过程和成果,最终赢得了评委的认可。
在整个建模过程中,团队合作起着至关重要的作用。
每个成员都发挥了自己的专长和优势,在分析问题、建模求解、撰写报告等方面各司其职。
团队内部的沟通和协作非常顺畅,大家都能积极提出自己的想法和看法,达成共识后再进行实际操作。
通过团队合作,我们不仅完成了比赛的任务,也培养了团队精神和合作能力,这对我们日后的学习和工作都具有重要意义。
参加数学建模竞赛是一次非常宝贵的经历,不仅能提升自己的数学建模能力,也能锻炼自己的解决问题的能力和团队协作能力。
在比赛的过程中,我们学会了如何快速建立数学模型、如何分析和解决实际问题、如何展示自己的成果等,这些能力对我们未来的学习和工作都将大有裨益。
在未来,我们将继续努力,在数学建模领域不断学习和提升自己的能力,为更多的实际问题提供有效的数学解决方案。
我们也希望通过自己的经验和教训,为更多热爱数学建模的同学提供一些指导和帮助,共同进步,共同成长。
获奖总结范文

尊敬的领导、各位老师、亲爱的同学们:大家好!在这美好的时刻,我很荣幸能够站在这里,与大家分享我近期所获得的一项荣誉。
在此,我要衷心感谢学校、老师、同学们对我的关心与支持,是你们的鼓励和帮助,让我在学业和竞赛中取得了优异的成绩。
下面,我就此次获奖经历进行简要总结。
一、获奖背景本次获奖是在全国大学生数学建模竞赛中,我所在的团队在众多参赛队伍中脱颖而出,荣获一等奖。
这次竞赛历时三天,要求我们运用数学建模的方法解决实际问题,并撰写论文。
在此过程中,我们团队紧密合作,充分发挥了团队精神,最终取得了优异的成绩。
二、获奖过程1. 确定选题:在竞赛前期,我们团队针对竞赛题目进行了深入研究,结合团队成员的专业特长,最终确定了符合我们研究方向的题目。
2. 分工合作:在选题确定后,我们根据各自的优势进行了分工,明确了每个人的责任和任务。
3. 数据收集:为了提高模型的准确性,我们团队成员查阅了大量文献资料,收集了大量的数据,为后续建模奠定了基础。
4. 模型构建:在充分了解题目背景和需求的基础上,我们团队运用数学知识,构建了适合该问题的数学模型。
5. 模型求解:在模型构建完成后,我们运用计算机软件进行求解,并对结果进行分析和验证。
6. 论文撰写:在完成模型求解后,我们团队根据竞赛要求,撰写了论文,对整个建模过程进行了总结。
三、获奖心得1. 团队合作:在此次竞赛中,我们团队充分发挥了团队精神,每个人各司其职,共同为团队的成功付出努力。
2. 勤奋学习:为了在竞赛中取得好成绩,我们团队成员在赛前进行了充分的准备,不断学习新知识,提高自己的能力。
3. 严谨求实:在建模过程中,我们注重数据的真实性和准确性,力求为问题提供可靠的解决方案。
4. 沟通交流:在团队协作中,我们注重沟通,积极交流,确保每个人都能及时了解团队进度,为共同目标而努力。
总之,此次获奖是对我们团队努力的肯定,也是对我们自身能力的提升。
在今后的学习和工作中,我们将继续发扬团队精神,努力提高自己的综合素质,为实现更高目标而努力奋斗。
当我谈数学建模时我谈些什么——美赛一等奖经验总结

前言:2012年3月28号晚,我知道了美赛成绩,一等奖(Meritorious Winner),没有太多的喜悦,只是感觉释怀,一年以来的努力总算有了回报。
从国赛遗憾丢掉国奖,到美赛一等,这一路走来太多的不易,感谢我的家人、队友以及朋友的支持,没有你们,我无以为继。
个人背景:我2010年入学,所在的学校是广东省一所普通大学,今年大二,学工商管理专业,没学过编程。
学校组织参加过几届美赛,之前唯一的一个一等奖是三年前拿到的,那一队的主力师兄凭借这一奖项去了北卡罗来纳大学教堂山分校,学运筹学。
今年再次拿到一等奖,我创了两个校记录:一是第一个在大二拿到数模美赛一等奖,二是第一个在文科专业拿数模美赛一等奖。
我的数模历程如下:2011.4 校内赛三等奖2011.8 通过选拔参加暑期国赛培训(学校之前不允许大一学生参加)2011.9 国赛广东省二等奖2011.11 电工杯三等奖2012.2 美赛一等奖(Meritorious Winner)动机:我参加数学建模的动机比较单纯,完全是出于兴趣。
我的专业是工商管理,没有学过编程,觉得没必要学。
我所感兴趣的是模型本身,它的思想,它的内涵,它的发展过程、它的适用问题等等。
我希望通过学习模型,能够更好的去理解一些现象,了解其中蕴含的数学机理。
数学模型中包含着一种简洁的哲学,深刻而迷人。
当然获得荣誉方面的动机可定也有,谁不想拿奖呢?模型:数学模型的功能大致有三种:评价、优化、预测。
几乎所有模型都是围绕这三种功能来做的。
比如,今年美赛A题树叶分类属于评价模型,B题漂流露营安排则属于优化模型。
对于不同功能的模型有不同的方法,例如评价模型方法有层次分析、模糊综合评价、熵值法等;优化模型方法有启发式算法(模拟退火、遗传算法等)、仿真方法(蒙特卡洛、元胞自动机等);预测模型方法有灰色预测、神经网络、马尔科夫链等。
在数学中国网站上有许多关于这些方法的相关介绍与文献。
关于模型软件与书籍,这方面的文章很多,这里只做简单介绍。
数学建模论文写作技巧论文自评(美赛一等奖获得者从获奖论文评述中总结的经验)

数学建模论文写作技巧论文自评(美赛一等奖获得者从获奖论文评述中总结的经验)论文自评Successful teams would have to combine existing models, data, and new ideas in creative and original ways.(成功的队伍会把现有的模型、数据和新的思想创造性地组合起来)Here are some of the issues that kept papers from the final rounds:(以下问题会使得论文无法进入最后一轮评审)Errors in mathematics, which quickly took them out of further consideration. (数学上的错误,使他们无法进行更深层次的思考)Including mathematics that didn’t fit the flow of the presentation. In a few cases, mathematics appears to have been inserted to make a paper look more credible or to take the place of other work that had led to a dead end. (数学方法被插入论文中是为了使论文看起来更可信或是取代某些其他的工作将会使论文被淘汰)Changing notation, sometimes even within a single section. (改变符号,有时甚至在同一个章节中)Using undefined or poorly defined symbols, or using symbols before defining them. (用没有定义过的符号,或者在定义之前使用它们) ?Incomplete expressions, either because the team made an error or because the expression did not survive the word-processor. (One of theOutstanding papers addressed in this commentary had a few incomplete, probably because they didn’t survive the word-processor, but the coherence of its model and the strength of its presentation overcame that defect.)(不完整的表述)Some models were difficult to understand; poor writing was the most common cause. Another cause was the use of inapposite mathematics. Ifthe mathematics was a result of a “drive-by” insertion, fitting it into the model could be difficult.(一些模型是很难理解,可怜的写作是最常见的原因。
美赛感想[五篇模版]
![美赛感想[五篇模版]](https://img.taocdn.com/s3/m/5226bb79302b3169a45177232f60ddccdb38e646.png)
美赛感想[五篇模版]第一篇:美赛感想ICM参赛感想建模是解决问题的重要环节,一个美妙地解决实际问题的好方案通常由一个贴近现实而又提炼本质的模型以及若干巧妙严谨的求解工具所构成。
由于平时所接触的内容过多地囿于自己学习与研究领域中,因此为了接触新的领域并同时训练自身学习建模能力,我们聚集了来自电子系、经管学院、交叉信息研究院的三名队员参加了2014年2月举行的美国大学生数学建模及交叉学科建模大赛。
美赛要求在4天(96个小时)内针对选定的题目完成一篇完整的科技论文,因此高效合理地利用时间至关重要。
我们在比赛前进行了一定的准备,例如熟悉比赛的基本形式,准备好科技论文的LaTeX模板,并且借助清华大学数学系赛前分发的往届赛事材料对题目风格进行初步了解,并思考优秀作品所共有的特点。
通过这些准备,我们认准了比赛时的一些注意事项,包括:无论题目如何提问,整篇论文都需要有一条明确的主线;论文逻辑必须清晰,排版合理,符号与语法的使用需要符合科技论文规范;一定要完成题目里所有要求完成的部分;等等。
最重要的一点是,我们意识到若想获得好成绩,或者要有明显的创新亮点,或者要循规蹈矩地在每一点上都做得无懈可击,这也正是我们所设想的不同方向。
同时我们也确定了基本分工,即让编程能力强的交叉信息研究院队员邝仲弘负责主编程工作,让批判性思维比较好、数据收集能力强的经管学院队员孙映宁负责头脑风暴与数据收集,而让以前有科技论文撰写经验、同时在各学科上都有一定基础的电子系队员韩衍隽作为队长负责整体流程的安排与文书工作。
今年比赛于中国时间上午九点开始。
根据以往的建议,我们第一天完全仅用于确定选题。
对题目进行翻译和初步讨论后,我们首先放弃对中国学生没有优势的B题,然后分工对A题和C题进行初始建模。
由于队员邝仲弘学过有关网络科学的课程,因此我们最终选定思路更清晰也更有把握的C题,同时学习邝仲弘所共享的网络科学教材。
第二天的主要任务则是主体建模,确定整体框架,明确大部分问题的基本解答思路,完成数据搜集、编程等工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当我谈数学建模时我谈些什么——美赛一等奖经验总结作者:彭子未前言:2012 年3月28号晚,我知道了美赛成绩,一等奖(Meritorus Winner),没有太多的喜悦,只是感觉释怀,一年以来的努力总算有了回报。
从国赛遗憾丢掉国奖,到美赛一等,这一路走来太多的不易,感谢我的家人、队友以及朋友的支持,没有你们,我无以为继。
这篇文章在美赛结束后就已经写好了,算是对自己建模心得体会的一个总结。
现在成绩尘埃落定,我也有足够的自信把它贴出来,希望能够帮到各位对数模感兴趣的同学。
欢迎大家批评指正,欢迎与我交流,这样我们才都能进步。
个人背景:我2010年入学,所在的学校是广东省一所普通大学,今年大二,学工商管理专业,没学过编程。
学校组织参加过几届美赛,之前唯一的一个一等奖是三年前拿到的,那一队的主力师兄凭借这一奖项去了北卡罗来纳大学教堂山分校,学运筹学。
今年再次拿到一等奖,我创了两个校记录:一是第一个在大二拿到数模美赛一等奖,二是第一个在文科专业拿数模美赛一等奖。
我的数模历程如下:2011.4 校内赛三等奖2011.8 通过选拔参加暑期国赛培训(学校之前不允许大一学生参加)2011.9 国赛广东省二等奖2011.11 电工杯三等奖2012.2 美赛一等奖(Meritorious Winner)动机:我参加数学建模的动机比较单纯,完全是出于兴趣。
我的专业是工商管理,没有学过编程,觉得没必要学。
我所感兴趣的是模型本身,它的思想,它的内涵,它的发展过程、它的适用问题等等。
我希望通过学习模型,能够更好的去理解一些现象,了解其中蕴含的数学机理。
数学模型中包含着一种简洁的哲学,深刻而迷人。
当然获得荣誉方面的动机可定也有,谁不想拿奖呢?模型:数学模型的功能大致有三种:评价、优化、预测。
几乎所有模型都是围绕这三种功能来做的。
比如,今年美赛A题树叶分类属于评价模型,B题漂流露营安排则属于优化模型。
对于不同功能的模型有不同的方法,例如评价模型方法有层次分析、模糊综合评价、熵值法等;优化模型方法有启发式算法(模拟退火、遗传算法等)、仿真方法(蒙特卡洛、元胞自动机等);预测模型方法有灰色预测、神经网络、马尔科夫链等。
在数学中国网站上有许多关于这些方法的相关介绍与文献。
关于模型软件与书籍,这方面的文章很多,这里只做简单介绍。
关于软件这三款已经足够:Matlab、SPSS、Lingo,学好一个即可(我只会用SPSS,另外两个队友会)。
书籍方面,推荐三本,一本入门,一本进级,一本参考,这三本足够:《数学模型》姜启源谢金星叶俊高等教育出版社《数学建模方法与分析》Mark M. Meerschaert 机械工业出版社《数学建模算法与程序》司守奎国防工业出版社入门的《数学模型》看一遍即可,对数学模型有一个初步的认识与把握,国赛前看完这本再练习几篇文章就差不多了。
另外,关于入门,韩中庚的《数学建模方法及其应用》也是不错的,两本书选一本阅读即可。
如果参加美赛的话,进级的《数学建模方法与分析》要仔细研究,这本书写的非常好,可以算是所有数模书籍中最好的了,没有之一,建议大家去买一本。
这本书中开篇指出的最优化模型五步方法非常不错,后面的方法介绍的动态模型与概率模型也非常到位。
参考书目《数学建模算法与程序》详细的介绍了多种建模方法,适合用来理解模型思想,参考自学。
分工:数模团队三个人,一般是分别负责建模、编程、写作。
当然编程的可以建模,建模的也可以写作。
这个要视具体情况来定,但这三样必须要有人擅长,这样才能保证团队最大发挥出潜能。
这三个人中负责建模的人是核心,因为建模的人决定了整篇论文的思路与结构,尤其是模型的选择直接关系到了论文的结果与质量。
这次美赛,我们选的是A题,我负责建模与部分的写作。
模型的选择与论文的结构是按照我的思路来做的,现在看来还是比较成功的。
对于建模的人,首先要去大量的阅读文献,要见识尽可能多的模型,这样拿到一道题就能迅速反应到是哪一方面的模型,确定题目的整体思路。
其次是接口的制作,这是体现建模人水平的地方。
所谓接口的制作就是把死的方法应用到具体问题上的过程,即用怎样的表达完成程序设计来实现模型。
比如说遗传算法的方法步骤大家都知道,但是应用到具体问题上,编码、交换、变异等等怎么去做就是接口的制作。
往往对于一道题目大家都能想到某种方法,可就是做不出来,这其实是因为接口不对导致的。
做接口的技巧只能从不断地实践中习得,所以说建模的人任重道远。
另外,在平时训练时,团队讨论可以激烈一些,甚至可以吵架,但比赛时,一定要保持心平气和,不必激烈争论,大家各让3分,用最平和的方法讨论问题,往往能取得效果并且不耽误时间。
经常有队伍在比赛期间发生不愉快,导致最后的失败,这是不应该发生的,毕竟大家为了一个共同的目标而奋斗,这种经历是很难得的。
所以一定要协调好队员们之间的关系,这样才能保证正常发挥,顺利进行比赛。
美赛特点:一般人都认为美赛比国赛要难,这种难在思维上,美赛题目往往很新颖,一时间想不出用什么模型来解。
这些题目发散性很强,需要查找大量文献来确定题目的真正意图,美赛更为注重思想对结果的要求却不是很严格,如果你能做出一个很优秀的模型,也许结果并不理想也可能获得高奖。
另外,美赛还难在它的实现,很多东西想到了,但实现起来非常困难,这需要较高的编程水平。
除了以上的差异,在实践过程中,美赛和国赛最大的区别有三点:第一点区别当然是美赛要用英文写作,而且要阅读很多英文文献。
对于文献阅读,可以安装有道词典,开启截屏取词功能,这样基本上阅读英文文献就没什么障碍了。
对于写作,有的组是写好中文再翻译,有的是直接写英文,这两种方式都可行。
对于翻译一定至少要留出8小时来,摘要可能就要修改1小时。
如果想快点翻,可以直接使用有道词典,翻出来后再修改,虽然可能不地道,但至少比较准确,这样可大量节省翻译时间。
另外word 要打开纠错功能,绿线代表拼写错误,红线代表语法错误,完成论文后整体浏览时要多注意这两种线,很可能会发现疏漏之处。
我一直认为翻译不是美赛的重点,只要能把意思表达清楚就行了,不必在翻译上浪费太多时间。
第二点区别是美赛大量的用到了启发式算法,如遗传算法、模拟退火、粒子群等等。
如果说你在国赛时还认为这些算法遥不可及,那么到了美赛你就必须掌握它了。
其实我认为对于搞编程实现的队员只要弄懂一种启发式算法就好,因为启发式算法是用来解决优化问题(多数为NP问题)的,不同算法间有很大的相似性,所以只要把一种学精了,这一类的问题就都能解了。
个人认为粒子群算法还是不错滴,遗传与模拟退火有些老套了,不过选择什么还是由你个人的接受程度决定,甚至你也可以自创算法。
第三点区别是美赛论文的排版不少人会使用Latex,一款用代码编辑的排版软件,它多用在对书籍和论文的排版上,效果美观但是操作很复杂,尤其是插入图片与表格,不是一般的麻烦。
而且,学习这种软件必须是一次性全部学完不能间断(据说完整的学习时间大概是几十个小时),只学某部分是没有用的。
如果时间不够,不建议去使用。
其实除了目录功能,生成的PDF文本使用Word排版几乎能实现与Latex一样的效果,所以我个人建议用Word。
前期准备:关于参赛经验,小组成员最好都曾经参加过数学建模比赛,无论是国赛或是电工杯或是挑战赛等等。
个人认为美赛的难度比较大,如果是第一次参加,往往很难做出理想结果,这样会打击到参加数模的积极性。
所以不建议第一次搞数模竞赛就参加美赛。
赛前要准备吃的东西,酌情而定。
要准备一些红糖,以防身体不适。
要注意尽量不要上火,可以准备些水果。
另外,我建议准备3瓶红牛,第二三四天各喝一瓶,确实能有保持精力的功效。
正常的饭还是要吃,可以叫外卖或者托人去买饭。
总之这几天一定要吃好。
关于书籍,没什么好说的,尽可能的借吧,虽然借了不一定有啥用,但是放在那里总归是心里踏实。
建议编程、模型、算法方面的书都借一些,另外最好也去借些数学工具书,方便翻译。
另外还有就是要准备好查找文献的期刊网入口,无论是中文的知网、维普,还是英文的SCI、Springer等都要提前找到,一般学校的图书馆都会有,没有的话问其他学校同学借图书馆账号,或是找代理,总之最后不要影响到比赛查找文献就行。
时间:美赛的时间是四天四夜,日期上是经过5天,比国赛多一天一夜。
因为需要翻译,所以美赛的时间同样很紧张,这就要求牺牲睡眠时间来完成比赛。
一般来说,国赛期间的睡眠时间不超过10小时,那么美赛期间的睡眠时间最好不要超过15小时(我是国赛6小时、美赛10小时)。
这样能保证高质量完成论文,并且身体能承受这样的负荷。
现在来讨论一下时间安排。
第一天上午出题目,几名队员可以分工合作在一小时内翻译出题目的含义,搜索一些关键词,看看题目的资料与数据是否能找到,根据题目的具体情况来选择。
一般来说,MCM 会出一道离散模型题目、一道连续模型题目;而ICM题目是交叉学科的,涉及其他专业知识。
总之第一天的上午必须将题目定下来。
接着第一天下午的工作就是找资料,数据库、资料搜索方面的知识这里就不详细叙述了,数学中国上都能找到。
这一阶段的任务就是大量积累资料,资料包括文献与数据。
先不着急阅读,把能下载的资料都下载下来,下载不下来的保留网页。
知道再也找不到相关的资料就可以停止搜索了,当然在做题过程中还需要针对某些细节再次查找资料,这里所说的停止搜索是指停止大范围集中式搜索。
大概在第一天的晚上开始阅读资料,这要进行到第二天上午,在这个过程中,要选择可以接受的模型,想办法加以创新改进。
第一天晚上建议睡5小时左右,这样能保证之后的工作。
第二天一天是阅读资料理清思路并建立模型框架的过程。
第二天晚上之前论文的总体思路要确定下来,就是针对题目中的某个问题选择什么方法,主体模型是什么,创新点在哪都要清楚,而细节问题暂时先不考虑,总之论文思路与模型的总框架要在第二天晚上之前全部搞清楚。
如果没有理清论文思路建议不要睡觉,知道理清楚为止,第二天晚上建议睡眠4小时左右。
第三天,必须开始写作与实现模型。
其实第二天就可以写一些关于问题介绍、前人研究历程等的内容。
到了第三天就必须动笔了,可以先简略写中文,之后再详细翻译成英文,也可以直接写成英文。
根据模型所编的程序一定要这一天内跑出结果来,可以根据所得结果来改进模型,争取得到较优的结果。
当然数据的处理也一定要在这一天完成。
第三天是对模型的修正与完善,主要是对细节的把握以及模型结果的处理。
建议得到比较合适的结果时再休息,第三天晚上建议睡眠3小时左右。
第四天,写作与翻译。
根据前面的思路与得到的结果进行写作与翻译工作。
写作要力求表达清晰准确。
另外还有一个工作是为模型配图与表,图片能够生动的表达模型含义,表格可能是模型结果得到的数据,图与表要按照要求写标题与注释,要大小合适、美观。