悖论
悖论

-----B阿---------C龟 阿A------ ---B阿---------C阿------D龟
飞矢不动: 1、飞箭在每一瞬间只能占据空间上 的一个点,不能同时又在另一个点上 2、每一个点是静止的 3、许多静止的点的集合也是静止的
: OOOO 运动场: B : OOOO C : OOOO A : OOOO B :O O O O C : OOOO
3、如果有多,存在物在数目
上就是无穷的。因为在各个个 别事物之间永远有一些别的事 物,而这些事物之间又有别的 事物。这样一来,存在物就是 无穷的了。
论题:事物是没有运动的 1、二分法 2、阿基里斯追乌龟 3、飞矢不动 4、运动场
阿基里斯追乌龟: 阿A----------B龟 阿A----
古典逻辑、欧式几何的产生。19世纪数 学家哈密顿、梅雷、戴德金、海涅、波 雷尔、康托尔和维尔斯特拉斯等正式研 究了无理数,提出了一个含有有理数和无 理数的新的数类———实数,才完全消除 了第一次数学危机。
芝诺悖论
(爱利亚)芝诺(前490-436)追
随他的老师巴门尼德(前六世纪 末-五世纪初)继续证明世界是 单一的、没有运动的。
哲学悖论: A:有人说社会是在冲突中发展
的——冲突论:改革、革命 ┓A:有人说社会是在协调中发 展的——和谐发展观
A:有人提出要恢复繁体字
┓A
:有人说没必要恢复繁体字
科学悖论: 生物学悖论:人类进化是在遗传 中变异 光是粒子还是波? 实际上光既是粒子又是波,以粒 子的形式组成以波的形式发出
3、混淆了集合词项和非集合词项 自然数集合、桌子的集合是平常
集,集合词项 概念的集合、一切集合所组成的 集合是非常集,非集合词项
悖论—搜狗百科

悖论—搜狗百科悖论与解悖悖论是表面上同一命题或推理中隐含着两个对立的结论,而这两个结论都能自圆其说。
悖论的抽象公式就是:如果事件A 发生,则推导出非A,非A发生则推导出A。
悖论是命题或推理中隐含的思维的不同层次、意义(内容)和表达方式(形式)、主观和客观、主体和客体、事实和价值的混淆,是思维内容与思维形式、思维主体与思维客体、思维层次与思维对象的不对称,是思维结构、逻辑结构的不对称。
悖论根源于知性认识、知性逻辑(传统逻辑)、矛盾逻辑的局限性。
产生悖论的根本原因是把传统逻辑形式化、把传统逻辑普适性绝对化。
所有悖论都是因形式逻辑思维方式产生,形式逻辑思维方式发现不了、解释不了、解决不了的逻辑错误。
所谓解悖,就是运用对称逻辑思维方式发现、纠正悖论中的逻辑错误。
[1][2][3][4][5][6][7]用对称逻辑解“说谎者悖论”用对称逻辑解“说谎者悖论”“说谎者悖论”即“我在说谎”这句话中所蕴含的悖论。
这个悖论表面上由“我在说谎”和“我说实话”这两个对立的“命题”组成,实际上这两个“命题”并不等价——前一个命题包含思维内容,后一个“命题”只是前一个命题的语言表达式,因此后一个“命题”不是严格意义上的命题。
长期以来人们之所以把其看成悖论,是由于把两个“命题”看成等价,即都是思维内容和语言表达式统一的命题。
只要把思维的两大层次:命题的思维内容和命题的语言表达式区别开来,“我在说谎”这个悖论即可化解。
[7]西元前6世纪,克利特哲学家埃庇米尼得斯(Epimenides)说了一句很有名的话:“所有克利特人都说谎。
”这句话有名是因为它是一个经典悖论,即“说谎者悖论”。
因为如果艾皮米尼地斯所言为真,那么克利特人就全都是说谎者,身为克利特人之一的埃庇米尼得斯自然也不例外,于是他所说的这句话应为谎言,但这跟先前假设此言为真相矛盾;又假设此言为假,那么也就是说所有克利特人都不说谎,自己也是克利特人的艾皮米尼地斯就不是在说谎,就是说这句话是真的,但如果这句话是真的,又会产生矛盾。
十大经典悖论

十大经典悖论1. 赫拉克利特的悖论:你永远无法踏进同一条河流。
这个悖论源自古希腊哲学家赫拉克利特的一句名言:“你不能踏进同一条河流,因为它的水已经不是那条水,而你自己也不是那个人。
”这句话意味着一切事物都在不断变化,一切都是瞬息万变的,不存在恒定不变的东西。
因此,即使你站在同一个地点,望着同一条河流流过,也永远无法再次踏进同一条河流。
2. 色盲悖论:我们无法知道别人的颜色感知和我们自己的感知是否相同。
这个悖论源自于我们的视觉系统确是极其复杂和奇妙的,但人的眼睛只能看见有限的颜色,而有人可能看不见某些颜色或者已存在的颜色看得更加清晰。
因此,我们无法知道别人感知到的颜色和我们自己的感知是否相同,因为不同的颜色触发不同的神经反应。
3. 辛普森悖论:相反的结果,改变了数据的组合。
这个悖论源自数据分析的一个概念,它指的是当我们观察两组数据时,看似相反的趋势却可以被数据的不同组合方式所掩盖。
例如,拥有高学历的男性相对于拥有同样学历的女性而言获得更高的薪水,但是当我们将这两组数据组合时,我们发现女性比男性还要能够获得更高的薪水。
4. 俄狄浦斯悖论:我们的预测或努力可能会导致我们所想要避免的事情的发生。
这个悖论源自神话故事俄狄浦斯王的遭遇。
俄狄浦斯王通过占卜知道自己即将杀死自己的父亲并与母亲结婚,因此为了避免这样的命运,他离开了他的家乡。
然而,在他的旅途中,他无意中杀死了一个人,并不知道该人是他父亲。
最终,他成功地解决了由此引起的谋杀案并娶了继妻。
5. 费马最后定理的悖论:一个数学悖论,宣传广泛,引起了许多人的兴趣和探索。
费马最后定理的悖论是一个数学困惑,该定理声称:$x^n+y^n=z^n$在$n$为整数,$x$、$y$、$z$之间没有公因数的情况下不可能成立,其中$n$的值应该大于2。
在300多年的时间里,许多数学家都试图证明它,但是直到1994年,一位英国数学家安德鲁·怀尔斯终于找到了一个解。
6. 伯努利悖论:即使它不太可能发生,某些事件仍然有可能发生。
世界十大悖论

十大悖论1、说谎者悖论一个克里特人说:“我说这句话时正在说慌。
”然后这个克里特人问听众他上面说的是真话还是假话?这个悖论出自公元前六世纪希腊的克里特人伊壁孟德,使得希腊人大伤脑筋,连西方的圣经《新约》也引用过这一悖论。
对克里特人“我说这句话时正在说慌”不可判其真亦不可判其伪。
2、柏拉图与苏格拉底悖论柏拉图调侃他的老师:“苏格拉底老师下面的话是假话。
”苏格拉底回答说:“柏拉图上面的话是对的。
”不论假设苏格拉底的话是真是假,都会引起矛盾。
3、鸡蛋的悖论先有鸡还是先有蛋?4、书名的悖论美国数学家缪灵写了一部标题为《这本书的书名是什么》的书,问:缪灵的这本书的书名是什么?5、印度父女悖论女儿在卡片上写道:“今日下午三时之前,您将写一个‘不’字在此卡片上。
”随即女儿要求父亲判断她在卡片上写的事是否会发生;若判断会发生,则在卡片上写“是”,否则写“不”。
问:父亲是写“是”还是写“不”?6、蠕虫悖论一只蠕虫从一米长的橡皮绳的一端以每秒1厘米的速度爬向另一端,橡皮绳同时均匀地以每秒1米的速度向同方向延伸,蠕虫会爬到另一端吗?蠕虫每前进1厘米,同时绳子的另一端却拉远1米,近不抵疏,怕是永远爬不到头了。
现算算看:第1 秒,蠕虫爬了绳子的1/100(意为100分之1,下同),第2 秒,蠕虫爬了绳子的1/200,---------,第N秒,蠕虫爬了绳子的1/N×100,前2的K次方秒,蠕虫爬的总路程占绳子全长的比例为1/100(1+1/2+1/3+-----+1/2的K次方)而1+1/2+1/3+-----+1/2的K次方=(1+1/2)+(1/3+1/4)+(1/5+1/6+1/7+1/8)+-----+(1/<2的K-1次方+1>+1/<2的K-1方+2>+-----+1/2的K 次方)>1+1/2+(1/4+1/4)+(1/8+1/8+1/8+1/8)+-----(1/2的K次方+1/2的K次方+----+1/2的K次方)———————————∨————————共有2的K-1次方项=1+1/2+1/2+-----+1/2=1+K/2———∨—————共有2的K次方项当K=198时,1+K/2=100,于是1/100(1+1/2+1/4+----+1/2的198次方)>1所以不超过2 的198次方秒,蠕虫爬到了绳子的另一端。
12个经典悖论

12个经典悖论1. 赫塞尔巴赫悖论(Hilbert's paradox of the Grand Hotel):一个无限大的酒店已经满了,但是还能接纳更多的客人。
2. 巴塞尔问题(Basel problem):求和公式Σ(1/n^2)的结果等于π^2/6,这看起来与直觉相悖。
3. 伯特兰悖论(Bertrand paradox):选择一个随机的线段,然后选择一个随机的角度,使得这个线段能够成为一个等边三角形的一条边的概率是多少?4. 托尔斯泰悖论(Tolstoy's paradox):如果人类的生命是短暂的,那么人们为什么要耗费时间去做一些无意义的事情?5. 俄罗斯套娃悖论(Russian doll paradox):一个大套娃里面有一个中等大小的套娃,里面又有一个小套娃,依此类推,那么这个套娃的大小是多少?6. 巴贝尔塔斯曼悖论(Babel's paradox):如果每个人都说谎,那么谁在说谎?7. 哥德尔不完备定理(Gödel's incompleteness theorems):任何一个形式化的数学系统都无法包含所有真实陈述的完全集合。
8. 孔雀悖论(Peacock's paradox):为什么孔雀的尾巴上有如此华丽的羽毛,而不是简单的尾巴?9. 本杰明·利伯曼悖论(Benjamin Libet's paradox):我们的决定是基于神经活动的结果,那么自由意志是否存在?10. 船上的修补悖论(Ship of Theseus paradox):如果一艘船的所有部件都被逐渐替换,那么当所有部件都被替换后,这艘船还是原来的那艘船吗?11. 等待帕尔悖论(Waiting paradox):如果每一个人都等待别人先行动,那么最终谁都不会行动。
12. 赫拉克利特悖论(Heraclitus' paradox):你无法两次踏入同一条河流,因为河水在不断流动。
12个经典悖论

12个经典悖论12个经典悖论如下:1苏格拉底悖论:苏格拉底有一句名言:“我只知道一件事,那就是什么都不知道。
”2纸牌悖论:纸牌悖论就是纸牌的一面写着:“纸牌反面的句子是对的。
”而另一面却写着:“纸牌反面的句子是错的。
”3上帝万能悖论:“如果说上帝是万能的,他能否创造一块他举不起来的大石头?”4鳄鱼悖论:一条鳄鱼抢走了一个小孩,它对孩子的母亲说:“我会不会吃掉你的小孩?答对了,孩子还给你;答错了,我就吃了他。
”5老子悖论:“知者不言,言者不知。
”是一条悖论,被白居易一语道穿。
白居易在《读老子》里说道:“言者不知知者默,此语吾闻于老君。
若道老君是知者,缘何自着五千文?”6艾宾浩斯悖论:这条悖论是在研究人的记忆力时引发的。
“在记忆获得的初期,人们仅能记住不超过7个项目;但是如果经常复习,那么在一定时间之后,能记住32个项目,几乎是原来的两倍。
”7犹太人悖论:“谁是最优秀的歌手?”或者“谁是最优秀的演员?”这个悖论涉及到一个犹太人的名字,这个人物名字具有两面性,是“叛徒”还是“英雄”?8雷普索尔悖论:这个悖论是一个有关于生命与死亡之间的问题。
它的内容是:有些人声称自己看见了已经死去的人复活了,但是其他人却对此表示怀疑。
9沃森-克拉克悖论:这个悖论与专家系统有关。
专家系统并不完美:“如果专家系统是完美的,那么它就不会出错;但如果它出错了,那么它就不是完美的。
”10哈伯德悖论:这个悖论涉及到一种叫做“哈伯德氏菌”的细菌。
这种细菌可以导致肺炎,但是它也有好处:它可以使人变得更聪明。
11斯特鲁维悖论:这个悖论是有关于“真相”的问题。
它问的是:当一位侦探得到了足够的证据,可以判定他遇到的人是无辜的,但他还是继续调查下去,直到他抓到了真正的罪犯。
12凡勃伦悖论:“一般来说,距离决定速度。
但如果这个距离可以改变,那么时间就会变得不可控制。
”这条悖论探讨了空间和时间之间的关系。
著名的十大悖论

1.鳄鱼困境一个鳄鱼偷了一个父亲的儿子,它保证如果这个父亲能猜出它要做什么,它就会将儿子还给父亲。
那么如果这个父亲猜“鳄鱼不会将儿子还给他”,那会怎样?回答:这是一个无解得问题。
如果鳄鱼不还儿子,那么父亲就猜对了,鳄鱼就违背了诺言。
如果鳄鱼将儿子还给他,那么父亲就猜错了,鳄鱼又违背了诺言。
2.祖父悖论一个人回到了过去,在他祖母能遇到祖父之前就杀了他的祖父。
这就意味着这个人的父母之中有一个不会出生;依次这个人自己也不会出生;这就意味着他没有机会进行时光旅游挥刀过去;这就意味着他的祖父依然还活着;这就意味着这个人能构思回到过去,并杀了自己的祖父。
回答:当时间旅行者改变了过去的某事的瞬间,那么平行宇宙就会被切开,这个可以由量子力学来解释。
3、希尔伯特旅馆悖论这是德国大数学家大卫·希尔伯特提出的著名悖论。
希尔伯特旅馆有无限个房间,并且每个房间都住了客人。
一天来了一个新客人,旅馆老板说:“虽然我们已经客满,但你还是能住进来的。
我让1 号房间的客人搬到2 号房间,2 号房间搬到3 号房间??n 号房间搬到n1 号房间,你就可以住进1 号房间了。
”又一天,来了无限个客人,老板又说:“不用担心,大家仍然都能住进来。
我让1 号房间的客人搬到2 号房间,2 号搬到4 号,3 号搬到6 号??n 号搬到2n 号,然后你们排好队,依次住进奇数号的房间吧。
”4、理发师悖论理发师悖论是由英国哲学家罗素提出来的,这个通俗的故事表述了集合论中的一个著名的悖论。
罗素悖论萨维尔村唯一的理发师为自己立下一个规定:只帮那些自己不理发的人理发。
于是有人问他:您自己的胡子由谁来刮呢?"理发师顿时哑口无言。
这显然是两难:按照规则,因为其自己不给自己理发,所以他需要帮自己理发;但一旦理发同时又破坏了自己“不给自己理发的人理发的规则”。
5、说谎者悖论又叫谎言者悖论。
西元前6世纪,克里特哲学家埃庇米尼得斯说了一句很有名的话:“我的这句话是假的。
十个经典的悖论

10.预料不到的考试的悖论
一位老师宣布说,在下一星期的五天内(星期一到星期五)的某一天将进行一场考试,但他又告诉班上的同学:“你们无法知道是哪一天,只有到了考试那天的早上八点钟才通知你们下午一点钟考。”
7.全能悖论
上帝能造出一个重到他自己也举不起的东西吗?如果他能,那么他不能举起这个东西,就证明他力量方面不是全能的。如果他不能,那么不能创造出这样一个东西,就证明他在创造方面不是全能的。
8.找钱悖论
有—人去商店买东西,15元—个,他给了老板100元,老板找不开,找邻居换了100元零钱,找给他85元。后来邻居发现100元是假币,老板又赔100给邻居。问老板共赔多少钱?
4.无法阻挡的力量悖论
当一个无法阻挡的力量,碰到了一个无法移动的物体?如果这个力量移动了物体,那么这个物体就不是无法移动的。如果这个力量没有移动物体,那么这个无法阻挡的力量就被挡了下来。
5.色盲问题
假设:有一个人,他有一种奇怪的色盲症。他看到的两种颜色和别人不一样,他把蓝色看成绿色,把绿色看成蓝色。但是他自己并不知道他跟别人不一样,别人看到的天空是蓝色的,他看到的是绿色的,但是他和别人的叫法都一样,都是“蓝色”;小草是绿色的,他看到的却是蓝色的,但是他把蓝色叫做“绿色”。所以,他自己和别人都不知道他和别人的不同。
你能说出为什么这场考试无法进行吗?
9.电梯悖论
在一幢摩天大楼里,有一架电梯是由电脑控制运行的,它每层楼都停,且停留的时间都相同。然而,办公室靠近顶层的王先生说:“每当我要下楼的时候,都要等很久。停下的电梯总是要上楼,很少有下楼的。真奇怪!”李小姐对电梯也很不满意,她在接近底层的办公室上班,每天中午都要到顶楼的餐厅吃饭。她说:“不论我什么时候要上楼,停下来的电梯总是要下楼,很少有上楼的。真让人烦死了!”
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概念bèilùn (paradox,也称逆论,反论)逻辑学和数学中的“矛盾命题”,是指一种导致矛盾的命题。
悖论的定义可以这样表述:由一个被承认是真的命题为前提,设为B,进行正确的逻辑推理后,得出一个与前提互为矛盾命题的结论非B;反之,以非B为前提,亦可推得B。
那么命题B就是一个悖论。
当然非B也是一个悖论。
我们可以按照某些制定或约定的公理规则去判定或证明某一命题的真假,但是我们按照制定或约定的公理规则去判定或证明有些命题的真假时,有时却出现发生了无法解决的悖论问题,这种情况说明了什么问题?自然在整体上是包含多样性的,而我们却置这些情况于不顾,而专门关注属于我们感兴趣的那一种特殊情况,当特殊情况与其它相反的情况或普遍性存在的一般情况相遇时必然产生某种相悖的结论。
不是数学悖论对数学基础产生大的危机影响,而是对逻辑和认识产生重大影响。
无限集合本身就是一个模糊不清的概念规定,有限是可以称为集合,无限是不能称为集合的。
集合是指表示在某一个范围内无限则是指范围为无限大的,否则就不应该称为无限而称有限。
无限不应该成为一个任意性选择或适用的范围,一个数量当超过人类所能达到或认识的程度便进入无限的范围之中。
到现在为止,人类还没有完全清楚地知道我们所能认识到的半径有多大,所以无法准确精确地规定无限与有限它们之间的界限究竟在那里。
集合本身的概念就是一个没有限制性的概念,总的集合可任意分成若干集合,都是集合,确切地说我们不知道究竟是在那种意义前提限制下的集合。
子集合中存在悖论,或与别的集合之间存在悖论,子母集合之间也还存在悖论,因为在每种具体的子集合中都有属于它自身的规定规则,只在自身范围有效。
超越范围则失效,这是永远不可避免或取消的。
除非取消类的集合层次之间的区别,那么又不符合对待具体事物的态度,无法满足实际应用要求。
另外集合的本义与引申义常混合使用,有时与元素意义混同,集合在低层次相当于元素,当上升时为集合,当再次上升时又相当于元素,是累积式的。
罗素悖论在当它们还没有进行相互联系时是有效的,当它们进行相互联系时即它们已经成为一个类或一个整体,那么一个类或一个整体中是不允许或无法执行两种衡量标准或规定的,自我否定是和没说一个样,或等于没有规定一样。
哥德尔关于一阶逻辑完全性定理与不完全性定理的本身就是悖论,已经暴露出逻辑导致发生的问题。
哥德尔不完全性定理是缺乏评判,以决定的主导方面为衡量标准,或衡量标准过多而引起的悖论。
所谓的标准也是一种规定。
失效以后还可以根据实际需要再次进行新的规则规定,反正原来的规则也是规定,为什么出现发生悖论以后不可以再次重新进行规定规则,以满足实际应用的目的的需要呢?明明是自己的规定,可是自己又制造新的规定来破坏原来的规定,如果这样来干活,那么将永远有活干了,永远有干不完的活。
类是人为区分出来的,但类是根据需要人为任意性制造的,若分类,故类有所不同。
在整体上却不存在类同与不同,由于类不同,故数也有所不同,有些不同相悖是很正常必然的。
然而人们又想进行类与数之间变换,那么又不得不重新再作新的规定。
证明也只是按照预先所设置和认为的规定去操作,必然会符合规定,我们只管按规定操作执行好了,证明又有什么作用或意义呢?类的悖论问题不是通过进行证明就所能解决得了的。
悖论是属于领域广阔、定义严格的数学分支的一个组成部分,这一分支以“趣味数学”知名于世。
这就是说它带有强烈的游戏色彩。
然而,切莫以为大数学家都看不起“趣味数学”问题。
欧拉就是通过对bridge-crossing之谜的分析打下了拓扑学的基础。
莱布尼茨也写到过他在独自玩插棍游戏(一种在小方格中插小木条的游戏)时分析问题的乐趣。
希尔伯特证明了切割几何图形中的许多重要定理。
冯·纽曼奠基了博弈论。
最受大众欢迎的计算机游戏—生命是英国著名数学家康威发明的。
爱因斯坦也收藏了整整一书架关于数学游戏和数学谜的书。
悖论(paradox)来自希腊语“para+dokein”,意思是“多想一想”。
这个词的意义比较丰富,它包括一切与人的直觉和日常经验相矛盾的数学结论,那些结论会使我们惊异无比。
悖论是自相矛盾的命题。
即如果承认这个命题成立,就可推出它的否定命题成立;反之,如果承认这个命题的否定命题成立,又可推出这个命题成立如果承认它是真的,经过一系列正确的推理,却又得出它是假的;如果承认它是假的,经过一系列正确的推理,却又得出它是真的。
古今中外有不少著名的悖论,它们震撼了逻辑和数学的基础,激发了人们求知和精密的思考,吸引了古往今来许多思想家和爱好者的注意力。
解决悖论难题需要创造性的思考,悖论的解决又往往可以给人带来全新的观念。
最早的悖论被认为是古希腊的"说谎者悖论".哥德尔不完全性定理哥德尔是德国著名数学家,不完备性定理是他在1931年提出来的.这一理论使数学基础研究发生了划时代的变化,更是现代逻辑史上很重要的一座里程碑.该定理与塔斯基的形式语言的真理论,图灵机和判定问题,被赞誉为现代逻辑科学在哲学方面的三大成果.哥德尔证明了任何一个形式体系,只要包括了简单的初等数论描述,而且是一致的,它必定包含某些体系内所允许的方法既不能证明也不能正伪的命题.歌德尔第一不完全定理:设系统S包含有一阶谓词逻辑与初等数论,如果S是一致的,则下文的T与非T在S中均不可证.设下述公式的编码为q,歌德尔第二不完全定理:如果系统S含有初等数论,当S无矛盾时,它的无矛盾性不可能在S内证明。
(第一不完备性定理:任意一个包含算术系统在内的形式系统中,都存在一个命题,它在这个系统中既不能被证明也不能被否定。
第二不完备性定理:任意一个包含算术系统的形式系统自身不能证明它本身的无矛盾性。
)[编辑本段]从悖论开始悖论就是逻辑上的自相矛盾,似是而非,似非而是。
注意,必须是逻辑上不同才是悖论。
“先有鸡还是先有蛋这”句话就不是悖论,因为这个问题的关键在于如何定义鸡和蛋,和逻辑和悖论没一点关系。
最古老的悖论是两千多年前克里特岛的“说谎者悖论”,若你说它是假命题的话.就可推出它是真命题,反之亦然。
其最简形式就是:本命题是不可证明的。
这种悖论属于语义悖论,悖论还有循环悖论等。
此处从略。
[编辑本段]哥德尔不完全性定理的由来虽然与悖论打了几千年交道,可数学家们不觉得他们可怕,因为他们与数学无关。
直到20世纪,一小撮聪明人才隐约觉察到,在悖论中有着一些深刻的数学理论。
事情要从崇尚理性的文艺复兴时期谈起,当时的学者如笛卡儿、莱布尼茨等都想创造一个理论解决一切问题。
莱布尼茨甚至设想把逻辑学用数学符号表示,以后每逢争论,拿支笔一算就见分晓了。
事实证明,莱布尼茨的对符号逻辑的建立起了很大作用。
莱布尼茨太超前了,没能完成他的夙愿。
又过了200年,著名学者康托尔提出集合论,为统一数学提供了一线希望。
集合论的出现,标志着数学的诞生。
有了集合论,人们就没必要(也不能)发明更广层次的理论了。
就在数学家踌躇满志的时候,集合论中出现了悖论。
康托尔自己就发现了一个(包含一切集合的集合是否存在?),更严重的是罗素悖论,其中也出现了以自己为元素的集合。
两个悖论搅得数学王国不得安宁,史称“第三次数学危机”。
后来这种定义被公理排斥掉了,数学王国又恢复了平静。
不过很快,人们就意识到,这不过是“虚假的繁荣”。
不识庐山真面目,只缘身在此山中。
这两句话深刻地说明,只有站在更高的层次,才能看到更多的“风景”。
那么,我们有望看到整个数学的风景吗?20世纪20年代,在集合论不断发展的基础上,大数学家希尔伯特向全世界的数学家抛出了个宏伟计划,其大意是建立一组公理体系,使一切数学命题原则上都可由此劲有限步推定真伪,这叫做公理体系的“完备性”;希尔伯特还要求公理体系保持“独立性”(即所有公理都是互相独立的,以保持公理系统最简洁)和“无矛盾性”(即相容性,公理和公理之间不能是自相矛盾的)。
值得指出的是,希尔伯特所说的公理不是我们通常认为的公理,而是经过了彻底的形式化。
他们存在与一们叫做元数学的分支中。
元数学与一般数学理论的关系有点像计算机中应用程序和普通文件的关系。
希尔伯特是个乐观主义者,他的计划也确实有一定的进展,几乎全世界的数学家都乐观地看着数学大厦即将竣工。
正当一切都越来越明朗之际,突然一声晴天霹雳。
1931年,在希尔伯特提出计划不到3年,年轻的哥德尔就使希尔伯特的梦想变成了令人沮丧的噩梦。
哥德尔证明:任何无矛盾的公理体系,只要包含初等算术的陈述,则必定存在一个不可判定命题,用这组公理不能在有限步内判定其真假。
也就是说,“无矛盾”和“完备”是不能同时满足的!这便是闻名于世的哥德尔不完全性定理。
[编辑本段]哥德尔不完全性定理的影响哥德尔不完全性定理一举粉碎了数学家两千年来的信念。
他告诉我们,真与可证是两个概念。
可证的一定是真的,但真的不一定可证。
某种意义上,悖论的阴影将永远伴随着我们。
无怪乎大数学家外尔发出这样的感叹:“上帝是存在的,因为数学无疑是相容的;魔鬼也是存在的,因为我们不能证明这种相容性。
”但是哥德尔不完全性定理的影响远远超出了数学的范围。
它不仅使数学、逻辑学发生革命性的变化,引发了许多富有挑战性的问题,而且还涉及哲学、语言学和计算机科学,甚至宇宙学。
2002年8月17日,著名宇宙学家霍金在北京举行的国际弦理论会议上发表了题为《哥德尔与M理论》的报告,认为建立一个单一的描述宇宙的大统一理论是不太可能的,这一推测也正是基于哥德尔不完全性定理。
有意思的是,在现在十分热门的人工智能领域,哥德尔不完全性定理是否适用也成为了人们议论的焦点。
1961年,牛津大学的哲学家卢卡斯提出,根据哥德尔不完全性定理,机器不可能具有人的心智。
他的观点激起了很多人反对。
他们认为,哥德尔不完全性定理与机器有无心智其实没有关系,但哥德尔不完全性定理对人的限制,同样也适用于机器倒是事实。
哥德尔不完全性定理的影响如此之广泛,难怪哥德尔会被看作当代最有影响力的智慧巨人之一,受到人们的永恒怀念。
美国《时代》杂志曾评选出20世纪100个最伟大的人物,在数学家中,排在第一的就是哥德尔。