高考第一轮复习数学单元测试卷 圆锥曲线-数学试题
2015高考数学一轮复习单元检测: 圆锥曲线与方程(新人教A版选修1-1)

2015高考数学一轮复习单元检测: 圆锥曲线与方程一、选择题(本大题共10小题,每小题5分,共50分)1.椭圆12222=+b y a x (a >b>0)离心率为23,则双曲线12222=-by a x 的离心率为 ( )A .45B .25C .32D .452.(2014·北京东城区期末)已知抛物线y2=2px 的焦点F 与双曲线x27-y29=1的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上,且|AK|=2|AF|,则△AFK 的面积为( )A .4B .8C .16D .323.圆的方程是(x -cos θ)2+(y -sin θ)2= 12 ,当θ从0变化到2π时,动圆所扫过的面积是( )A .π22 B .π C .π)21(+ D .π2)221(+4.若过原点的直线与圆2x +2y +x 4+3=0相切,若切点在第三象限,则该直线的方程是 ( )A .x y 3=B .x y 3-=C .x y 33=D .x y 33-= 5.椭圆131222=+y x 的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1中点在y 轴上,那么|PF 1|是|PF 2|的 ( ) A .7倍 B .5倍 C .4倍 D .3倍 6.以原点为圆心,且截直线01543=++y x 所得弦长为8的圆的方程是 ( )A .522=+y xB .2522=+y xC .422=+y xD .1622=+y x 7.曲线⎩⎨⎧==θθsin cos 2y x (θ为参数)上的点到原点的最大距离为( )A . 1B .2C .2D .38.如果实数x 、y 满足等式3)2(22=+-y x ,则xy最大值 ( )A .21B .33C .23 D .39.过双曲线x 2-22y =1的右焦点F 作直线l 交双曲线于A , B 两点,若|AB |=4,则这样的直线l 有 ( ) A .1条 B .2条 C .3条 D .4条10.如图,过抛物线)(022>=p px y 的焦点F 的直线l 交抛物线于点A .B ,交其准线于点C ,若BF BC 2=,且3=AF ,则此抛物线的方程为( )A .x y 232=B .x y 32=C .x y 292=D .x y 92=二、填空题(本大题共4小题,每小题6分,共24分)11.椭圆的焦点是F 1(-3,0)F 2(3,0),P 为椭圆上一点,且|F 1F 2|是|PF 1|与|PF 2|的等差中项,则椭圆的方程为_____________________________. 12.若直线03=-+ny mx 与圆322=+y x 没有公共点,则n m ,满足的关系式为 .以(),n m 为点P 的坐标,过点P 的一条直线与椭圆13722=+y x 的公共点有个 ..13.F 1,F 2为双曲线)0,0(12222>>=-b a by a x 的焦点,过2F 作垂直于x 轴的直线交双曲线与点P 且∠P F 1F 2=300,求双曲线的渐近线方程_______________________________.14.(2014·武汉调研)已知抛物线C 的顶点在坐标原点,焦点为F(1,0),直线l 与抛物线C 相交于A ,B 两点.若AB 的中点的坐标为(2,2),则直线l 的方程为________. 三、解答题(本大题共6小题,共76分)15.P 为椭圆192522=+y x 上一点,1F 、2F 为左右焦点,若︒=∠6021PF F(1) 求△21PF F 的面积;(2) 求P 点的坐标.(12分)16.已知抛物线x y 42=,焦点为F ,顶点为O ,点P 在抛物线上移动,Q 是OP 的中点,M是FQ 的中点,求点M 的轨迹方程.(12分)17.已知焦点在x 轴上的双曲线C 的两条渐近线过坐标原点,且两条渐近线与以点)2,0(A为圆心,1为半径的圆相切,又知C 的一个焦点与A 关于直线x y =对称. (1)求双曲线C 的方程;(2)设直线1+=mx y 与双曲线C 的左支交于A ,B 两点,另一直线l 经过M (-2,0)及AB 的中点,求直线l 在y 轴上的截距b 的取值范围.(12分)yPO xA B18.如图,过抛物线)0(22>=p px y 上一定点P (x y 00,)(y 00>),作两条直线分别交抛物线于A (x y 11,),B (22,y x ). (1)求该抛物线上纵坐标为p2的点到其焦点F 的距离; (2)当PA 与PB 的斜率存在且倾斜角互补时,求021y y y +的值,并证明直线AB 的斜率是非零常数.(12分)19.如图,给出定点A(a , 0) (a >0)和直线: x = –1 . B 是直线l 上的动点,∠BOA 的角平分线交AB 于点C . 求点C 的轨迹方程,并讨论方程表示的曲线类型与a 值的关系.(14分)20.椭圆C 1:2222by a x +=1(a >b>0)的左右顶点分别为A 、B.点P 双曲线C 2:2222b y a x -=1在第一象限内的图象上一点,直线AP 、BP 与椭圆C 1分别交于C 、D 点.若△ACD 与△PCD 的面积相等.(1)求P 点的坐标;(2)能否使直线CD 过椭圆C 1的右焦点,若能,求出此时双曲线C 2的离心率,若不能,请说明理由.(14分)2015高考数学一轮复习单元检测: 圆锥曲线与方程参考答案11.127362=+y x 12.3022<+<n m , 2 13.y=x 2±. 14.y =x15.(12分)[解析]:∵a =5,b =3∴c =4 (1)设11||t PF =,22||t PF =,则1021=+t t ①2212221860cos 2=︒⋅-+t t t t ②,由①2-②得1221=t t3323122160sin 212121=⨯⨯=︒⋅=∴∆t t S PF F (2)设P ),(y x ,由||4||22121y y c S PF F ⋅=⋅⋅=∆得 433||=y 433||=∴y 433±=⇒y ,将433±=y 代入椭圆方程解得4135±=x ,)433,4135(P ∴或)433,4135(-P 或)433,4135(-P 或)433,4135(--P 16.(12分)[解析]:设M (y x ,),P (11,y x ),Q (22,y x ),易求x y 42=的焦点F 的坐标为(1,0)∵M 是FQ 的中点,∴22122y y x x =+=⇒yy x x 21222=-=,又Q 是OP 的中点∴221212y y x x ==⇒yy y x x x 422422121==-==,yPO xAB∵P 在抛物线x y 42=上,∴)24(4)4(2-=x y ,所以M 点的轨迹方程为212-=x y .17.(12分)[解析]:(1)当时,1=a ,2x y =表示焦点为)0,41(的抛物线;(2)当10<<a 时,11)1()1(22222=-+---a a y a a a a x ,表示焦点在x 轴上的椭圆;(3)当a>1时,11)1()1(2222=-----a a y a a a a x ,表示焦点在x 轴上的双曲线. (1设双曲线C 的渐近线方程为y=kx ,则kx-y=0∵该直线与圆1)2(22=-+y x 相切,∴双曲线C 的两条渐近线方程为y=±x .故设双曲线C 的方程为12222=-a y a x . 又双曲线C 的一个焦点为)0,2(,∴222=a ,12=a .∴双曲线C 的方程为:122=-y x . (2)由⎩⎨⎧=-+=1122y x mx y 得022)1(22=---mx x m .令22)1()(22---=mx x m x f∵直线与双曲线左支交于两点,等价于方程f(x)=0在)0,(-∞上有两个不等实根. 因此⎪⎩⎪⎨⎧>--<->∆012012022m m m 且,解得21<<m .又AB 中点为)11,1(22m mm --, ∴直线l 的方程为:)2(2212+++-=x m m y . 令x =0,得817)41(2222222+--=++-=m m m b . ∵)2,1(∈m ,∴)1,22(817)41(22+-∈+--m ,∴),2()22,(+∞---∞∈ b .18.(12分)[解析]:(I )当y p =2时,x p=8又抛物线y px 22=的准线方程为x p=-2由抛物线定义得,所求距离为p p p 8258--=()(2)设直线PA 的斜率为k PA ,直线PB 的斜率为k PB 由y px 1212=,y px 0202=相减得()()()y y y y p x x 1010102-+=-,故k y y x x p y y x x PA =--=+≠101010102()同理可得k p y y x x PB =+≠22020(),由PA ,PB 倾斜角互补知k k PA PB =-即221020p y y p y y +=-+,所以y y y 1202+=-, 故y y y 1202+=-设直线AB 的斜率为k AB ,由y px 2222=,y px 1212=,相减得()()()y y y y p x x 2121212-+=-所以k y y x x p y y x x AB =--=+≠212112122(), 将y y y y 120020+=->()代入得k p y y py AB =+=-2120,所以k AB 是非零常数.19.(14分)[解析]:设B (-1,b ),OA l :y=0, OB l :y=-bx,设C (x ,y ),则有x ≤0<a ,由OC 平分∠BOA ,知点C 到OA ,OB 距离相等,21b bx y y ++=∴①及C 在直线AB: ()a x ab y -+-=1②上,由①②及a x ≠得,得[]0)1(2)1(222=++--y a ax x a y 若y=0,则b=0 满足0)1(2)1(22=++--y a ax x a .20.(14分)[解析]:(1)设P(x 0,y 0)(x 0>0,y 0>0),又有点A(-a ,0),B(a ,0). ,PCD ACD S S ∆∆=).2,2(,00y a x C AP C -∴∴的中点为得点坐标代入椭圆方程将,C 4)(220220=+-b y a a x , 又122022=-b y a x 5)(220220=+-⇒a x a a x ,b y a x a x 3),(2000=∴-==∴舍去,)3,2(b a P ∴.(2),300a b ax y K K PB PD =-== :PD 直线)(3a x ab y -=代入12222=+by a x 03222=+-⇒a ax x)(2舍去a x ax D D ==∴,)23,2(),2,2(00b a C y a x C 即-∴∴CD 垂直于x 轴.若CD 过椭圆C 1的右焦点,则.27,23,22222=+=∴=∴-=a b a e a b b a a 故可使CD 过椭圆C 1的右焦点,此时C 2的离心率为27.。
高考数学一轮复习专题训练—圆锥曲线的定值问题

圆锥曲线的定值问题题型一 长度或距离为定值【例1】 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的上顶点A 与左、右焦点F 1,F 2构成一个面积为1的直角三角形. (1)求椭圆C 的标准方程;(2)若直线l 与椭圆C 相切,求证:点F 1,F 2到直线l 的距离之积为定值.(1)解 ∵椭圆C 的上顶点A 与左、右焦点F 1,F 2构成一个面积为1的直角三角形,∴⎩⎪⎨⎪⎧b =c ,bc =1, ∴b =c =1, ∴a 2=b 2+c 2=2,∴椭圆C 的方程为x 22+y 2=1.(2)证明 ①当直线l 的斜率不存在时,直线l 的方程为x =±2, 点F 1,F 2到直线l 的距离之积为(2-1)(2+1)=1. ②当直线l 的斜率存在时,设其方程为y =kx +m , 联立⎩⎪⎨⎪⎧y =kx +m ,x 22+y 2=1得(1+2k 2)x 2+4kmx +2m 2-2=0,Δ=(4km )2-4(1+2k 2)(2m 2-2)=-8(m 2-2k 2-1)=0, ∴m 2=1+2k 2,点F 1到直线l :y =kx +m 的距离d 1=|-k +m |k 2+1,点F 2到直线l :y =kx +m 的距离d 2=|k +m |k 2+1.∴d 1d 2=|-k +m |k 2+1·|k +m |k 2+1=|m 2-k 2|k 2+1=|2k 2+1-k 2|k 2+1=1.综上,可知当直线l 与椭圆C 相切时,点F 1,F 2到直线l 的距离之积为定值1.感悟升华 圆锥曲线中的定值问题通常是通过设参数或取特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.定值问题同证明问题类似,在求定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定值显现.【训练1】 在平面直角坐标系xOy 中,已知双曲线C 1:2x 2-y 2=1.设椭圆C 2:4x 2+y 2=1.若M ,N 分别是C 1,C 2上的动点,且OM ⊥ON ,求证:O 到直线MN 的距离是定值. 证明 当直线ON 垂直于x 轴时,|ON |=1,|OM |=22,则O 到直线MN 的距离为33, 当直线ON 不垂直于x 轴时,设直线ON 的方程为y =kx ⎝⎛⎭⎫显然|k |>22,则直线OM 的方程为y =-1kx ,由⎩⎪⎨⎪⎧y =kx ,4x 2+y 2=1,得⎩⎨⎧x 2=14+k 2,y 2=k24+k 2,所以|ON |2=1+k 24+k 2,同理|OM |2=1+k 22k 2-1, 设O 到直线MN 的距离为d ,因为(|OM |2+|ON |2)d 2=|OM |2|ON |2, 所以1d 2=1|OM |2+1|ON |2=3k 2+3k 2+1=3,即d =33.综上,O 到直线MN 的距离是定值. 题型二 斜率或其表达式为定值【例2】 (2020·兰州诊断)如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点A (0,-1)且离心率为22.(1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为定值.(1)解 由题设知c a =22,b =1,结合a 2=b 2+c 2,解得a =2,所以椭圆E 的方程为x 22+y 2=1.(2)证明 由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0, 由已知Δ>0,设P (x 1,y 1),Q (x 2,y 2), x 1x 2≠0,则x 1+x 2=4k (k -1)1+2k 2,x 1x 2=2k (k -2)1+2k 2, 从而直线AP ,AQ 的斜率之和为k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k +(2-k )⎝⎛⎭⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4k (k -1)2k (k -2)=2k -2(k -1)=2(即为定值).【训练2】 (2021·大同模拟)如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,已知|AB |=4,且点⎝⎛⎭⎫e ,345在椭圆上,其中e 是椭圆的离心率.(1)求椭圆C 的方程;(2)设P 是椭圆C 上异于A ,B 的点,与x 轴垂直的直线l 分别交直线AP ,BP 于点M ,N ,求证:直线AN 与直线BM 的斜率之积是定值. (1)解 ∵|AB |=4,∴2a =4,∴a =2, 又点⎝⎛⎭⎫e ,354在椭圆上,∴e 24+4516b2=1, 又b 2+c 2=a 2=4,联立方程组解得b 2=3, ∴椭圆方程为x 24+y 23=1.(2)证明 设点P 的坐标为(s ,t ),点M ,N 的横坐标为m (m ≠±2), 则直线AP 的方程为y =t s +2(x +2),故M ⎝⎛⎭⎫m ,ts +2(m +2),故直线BM 的斜率k 1=t (m +2)(s +2)(m -2),同理可得直线AN 的斜率k 2=t (m -2)(s -2)(m +2),故k 1k 2=t (m +2)(s +2)(m -2)×t (m -2)(s -2)(m +2)=t 2s 2-4,又点P 在椭圆上,∴s 24+t 23=1,∴t 2=-34(s 2-4),∴k 1k 2=-34(s 2-4)s 2-4=-34.即直线AN 与直线BM 的斜率之积为定值.题型三 几何图形面积为定值【例3】 (2021·昆明诊断)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为e ,点(1,e )在椭圆E上,点A (a,0),B (0,b ),△AOB 的面积为32,O 为坐标原点.(1)求椭圆E 的标准方程;(2)若直线l 交椭圆E 于M ,N 两点,直线OM 的斜率为k 1,直线ON 的斜率为k 2,且k 1k 2=-19,证明:△OMN 的面积是定值,并求此定值.解 (1)由⎩⎪⎨⎪⎧1a 2+e 2b 2=1,e =ca ,c 2=a 2-b 2,得b =1.又S △AOB =12ab =32,得a =3.所以椭圆E 的标准方程为x 29+y 2=1.(2)当直线l 的斜率不存在时,设直线l :x =t (-3<t <3且t ≠0), 由⎩⎪⎨⎪⎧x 29+y 2=1,x =t ,得y 2=1-t 29,则k 1k 2=1-t 29t×-1-t 29t=-1-t 29t 2=-19,解得t 2=92.所以S △OMN =12×2×1-t 29×|t |=32.当直线l 的斜率存在时,设M (x 1,y 1),N (x 2,y 2),直线l :y =kx +m (m ≠0), 由⎩⎪⎨⎪⎧y =kx +m ,x 29+y 2=1消去y 并整理,得(9k 2+1)x 2+18kmx +9m 2-9=0. Δ=(18km )2-4(9k 2+1)(9m 2-9)=36(9k 2-m 2+1)>0, x 1+x 2=-18km9k 2+1,x 1x 2=9m 2-99k 2+1,k 1k 2=y 1x 1×y 2x 2=(kx 1+m )(kx 2+m )x 1x 2=-9k 2+m 29m 2-9=-19, 化简得9k 2+1=2m 2,满足Δ>0.|MN |=1+k 2|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2=1+k 2·⎝⎛⎭⎫-18km 9k 2+12-4·9m 2-99k 2+1=61+k 2·9k 2-m 2+19k 2+1.又原点O 到直线l 的距离d =|m |1+k 2, 所以S △OMN =12×|MN |×d=31+k 2·9k 2-m 2+19k 2+1×|m |1+k 2=3|m |2m 2-m 22m 2=32.综上可知,△OMN 的面积为定值32.感悟升华 探求圆锥曲线中几何图形的面积的定值问题,一般用直接求解法,即可先利用三角形面积公式(如果是其他凸多边形,可分割成若干个三角形分别求解)把要探求的几何图形的面积表示出来,然后利用题中的条件得到几何图形的面积表达式中的相关量之间的关系式,把这个关系式代入几何图形的面积表达式中,化简即可.【训练3】 已知点F (0,2),过点P (0,-2)且与y 轴垂直的直线为l 1,l 2⊥x 轴,交l 1于点N ,直线l 垂直平分FN ,交l 2于点M . (1)求点M 的轨迹方程;(2)记点M 的轨迹为曲线E ,直线AB 与曲线E 交于不同两点A (x 1,y 1),B (x 2,y 2),且x 2-1=x 1+m 2(m 为常数),直线l ′与AB 平行,且与曲线E 相切,切点为C ,试问△ABC 的面积是否为定值.若为定值,求出△ABC 的面积;若不是定值,说明理由.解 (1)由题意得|FM |=|MN |,即动点M 到点F (0,2)的距离和到直线y =-2的距离相等,所以点M 的轨迹是以F (0,2)为焦点,直线y =-2为准线的抛物线,根据抛物线定义可知点M 的轨迹方程为x 2=8y .(2)由题意知,直线AB 的斜率存在,设其方程为y =kx +b ,由⎩⎪⎨⎪⎧y =kx +b ,x 2=8y 消去x 整理得x 2-8kx -8b =0.则x 1+x 2=8k ,x 1·x 2=-8b .设AB 的中点为Q ,则点Q 的坐标为(4k,4k 2+b ).由条件设切线方程为y =kx +t ,由⎩⎪⎨⎪⎧y =kx +t ,x 2=8y 消去y 整理得x 2-8kx -8t =0.∵直线与抛物线相切,∴Δ=64k 2+32t =0,∴t =-2k 2, ∴切点C 的横坐标为4k ,∴点C 的坐标为(4k,2k 2). ∴CQ ⊥x 轴,∵x 2-x 1=m 2+1, ∴(x 2-x 1)2=(x 1+x 2)2-4(-8b ) =64k 2+32b =(m 2+1)2,∴b =(m 2+1)2-64k 232.∴S △ABC =12|CQ |·|x 2-x 1|=12·(2k 2+b )·(x 2-x 1)=(m 2+1)364,∵m 为常数,∴△ABC 的面积为定值.1.(2021·洛阳高三统考)已知抛物线C :y 2=2px (p >0),其焦点为F ,O 为坐标原点,直线l 与抛物线C 相交于不同的两点A ,B ,M 为AB 的中点. (1)若p =2,M 的坐标为(1,1),求直线l 的方程.(2)若直线l 过焦点F ,AB 的垂直平分线交x 轴于点N ,求证:2|MN |2|FN |为定值.(1)解 由题意知直线l 的斜率存在且不为0, 故设直线l 的方程为x -1=t (y -1) 即x =ty +1-t ,设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧x =ty +1-t ,y 2=4x ,得y 2-4ty -4+4t =0, ∴Δ=16t 2+16-16t =16(t 2-t +1)>0,y 1+y 2=4t , ∴4t =2,即t =12.∴直线l 的方程为2x -y -1=0.(2)证明 ∵抛物线C :y 2=2px (p >0),∴焦点F 的坐标为⎝⎛⎭⎫p 2,0. 由题意知直线l 的斜率存在且不为0,∵直线l 过焦点F ,故设直线l 的方程为x =ty +p2(t ≠0),设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧x =ty +p 2y 2=2px,得y 2-2pty -p 2=0, ∴y 1+y 2=2pt ,Δ=4p 2t 2+4p 2>0. ∴x 1+x 2=t (y 1+y 2)+p =2pt 2+p , ∴M ⎝⎛⎭⎫pt 2+p2,pt .∴MN 的方程为y -pt =-t ⎝⎛⎭⎫x -pt 2-p2. 令y =0,解得x =pt 2+3p2,N ⎝⎛⎭⎫pt 2+3p 2,0, ∴|MN |2=p 2+p 2t 2,|FN |=pt 2+3p 2-p2=pt 2+p , ∴2|MN |2|FN |=2(p 2+p 2t 2)pt 2+p=2p ,为定值.2.(2020·新高考山东卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点A (2,1).(1)求C 的方程;(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.(1)解 由题设得4a 2+1b 2=1, a 2-b 2a 2=12,解得a 2=6,b 2=3. 所以C 的方程为x 26+y 23=1.(2)证明 设M (x 1,y 1),N (x 2,y 2). 若直线MN 与x 轴不垂直,设直线MN 的方程为y =kx +m ,代入x 26+y 23=1,得(1+2k 2)x 2+4kmx +2m 2-6=0. 于是x 1+x 2=-4km1+2k 2,x 1x 2=2m 2-61+2k 2.①由AM ⊥AN ,得AM →·AN →=0, 故(x 1-2)(x 2-2)+(y 1-1)(y 2-1)=0,整理得(k 2+1)x 1x 2+(km -k -2)(x 1+x 2)+(m -1)2+4=0. 将①代入上式,可得(k 2+1)2m 2-61+2k 2-(km -k -2)4km1+2k 2+(m -1)2+4=0, 整理得(2k +3m +1)(2k +m -1)=0. 因为A (2,1)不在直线MN 上,所以2k +m -1≠0,所以2k +3m +1=0,k ≠1. 所以直线MN 的方程为y =k ⎝⎛⎭⎫x -23-13(k ≠1). 所以直线MN 过点P ⎝⎛⎭⎫23,-13. 若直线MN 与x 轴垂直,可得N (x 1,-y 1).由AM →·AN →=0,得(x 1-2)(x 1-2)+(y 1-1)(-y 1-1)=0.又x 216+y 213=1,所以3x 21-8x 1+4=0. 解得x 1=2(舍去),或x 1=23.此时直线MN 过点P ⎝⎛⎭⎫23,-13. 令Q 为AP 的中点,即Q ⎝⎛⎭⎫43,13.若D 与P 不重合,则由题设知AP 是Rt △ADP 的斜边, 故|DQ |=12|AP |=223.若D 与P 重合,则|DQ |=12|AP |.综上,存在点Q ⎝⎛⎭⎫43,13,使得|DQ |为定值.。
直线和圆、圆锥曲线综合测试卷(新高考专用)(解析版)—2025年高考数学一轮复习

直线和圆、圆锥曲线综合测试卷专练(考试时间:120分钟;满分:150分)注意事项:1.本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
则由椭圆的中心对称性可知可知AF1BF2为平行四边形,则可得△ABF2的周长为|AF当AB位于短轴的端点时,当围成的等腰三角形底边在x轴上时,当围成的等腰三角形底边在直线l因为tanα=2tanα21―tan2α2=2,且tanα2>所以k=tanθ=tanα2=5―12,或故选:B.5.(5分)(2024·西藏拉萨的最小值为()A.1453【解题思路】先设点的坐标,结合轨迹方程求参,再根据距离和最小值为两点间距离求解即可6.(5分)(2024·湖南邵阳点B在C上且位于第一象限,B.8 A.453【解题思路】由点A―1,8由点A―1,8在抛物线y23所以抛物线C的方程为y2设B(x0,y0),则x0>0,y0>由题意知F p2,0,又OP 显然直线AB的斜率不为由y2=2pxx=ty+p2,得y2―2pty显然直线BD的斜率不为由y2=2pxλp,得y2故选:C.二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。
如图,因为K OA=∠PDA=∠ODB,所以×|PA|⋅S△PAB=12故选:ABD.11.(6分)(2024·福建龙岩|AB|=8.过焦点F的直线C的准线与坐标轴的交点,则(A.若MF=3FN,则直线C.∠MON为钝角设M(x1,y1),N(x2,y 得y2―8my―16=所以y1y2=―16,x1∴x1x2+y1y2=4⟨⟩三、填空题:本题共3小题,每小题5分,共15分。
2025高考数学一轮复习-圆锥曲线中的最值、范围问题-专项训练【含解析】

课时过关检测(五十四)圆锥曲线中的最值、范围问题【原卷版】1.在平面直角坐标系中,圆O 交x 轴于点F 1,F 2,交y 轴于点B 1,B 2.以B 1,B 2为顶点,F 1,F 2分别为左、右焦点的椭圆E (1)求椭圆E 的标准方程;(2)设经过点(-2,0)的直线l 与椭圆E 交于M ,N 两点,求△F 2MN 面积的最大值.2.已知抛物线C :y 2=4x ,点F 是C 的焦点,O 为坐标原点,过点F 的直线l 与C 相交于A ,B 两点.(1)求向量OA ―→与OB ―→的数量积;(2)设FB ―→=λAF ―→,若λ∈[9,16],求l 在y 轴上的截距的取值范围.3.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,E 的左顶点为A ,上顶点为B ,点P 在椭圆上,且△PF 1F 2的周长为4+23.(1)求椭圆E 的方程;(2)若直线l :y =kx +m (k ≠0)与椭圆交于不同的两点M ,N ,且线段MN 的垂直平分线过定点G (1,0),求k 的取值范围.4.已知椭圆E :x 2a 2+y 2b 21(a >b >0)的左、右焦点分别为F 1,F 2,椭圆E 的离心率为32,且通径长为1.(1)求E 的方程;(2)直线l 与E 交于M ,N 两点(M ,N 在x 轴的同侧),当F 1M ∥F 2N 时,求四边形F 1F 2NM 面积的最大值.课时过关检测(五十四)圆锥曲线中的最值、范围问题【解析版】1.在平面直角坐标系中,圆O 交x 轴于点F 1,F 2,交y 轴于点B 1,B 2.以B 1,B 2为顶点,F 1,F 2分别为左、右焦点的椭圆E (1)求椭圆E 的标准方程;(2)设经过点(-2,0)的直线l 与椭圆E 交于M ,N 两点,求△F 2MN 面积的最大值.解:(1)由已知可得,椭圆E 的焦点在x 轴上.设椭圆E的标准方程为x2a2+y2b2=1(a>b>0),焦距为2c,则b=c,∴a2=b2+c2=2b2,∴椭圆E的标准方程为x22b2+y2b2=1.又椭圆E,∴12b2+12b2=1,解得b2=1.∴椭圆E的标准方程为x22+y2=1.(2)由于点(-2,0)在椭圆E外,所以直线l的斜率存在.设直线l的斜率为k,则直线l:y=k(x+2),设M(x1,y1),N(x2,y2).k(x+2),y2=1,消去y得,(1+2k2)x2+8k2x+8k2-2=0.由Δ>0得0≤k2<12,从而x1+x2=-8k21+2k2,x1x2=8k2-21+2k2,∴|MN|=1+k2|x1-x2|=21+k22-4k2(1+2k2)2.∵点F2(1,0)到直线l的距离d=3|k|1+k2,∴△F2MN的面积为S=12|MN|·d=3k2(2-4k2)(1+2k2)2.令1+2k2=t,则t∈[1,2),∴S=3(t-1)(2-t)t2=3-t2+3t-2t2=3-1+3t-2t2=3当1t=34即t[1,S有最大值,S max=324,此时k=±66.∴当直线l的斜率为±66时,可使△F2MN的面积最大,其最大值324.2.已知抛物线C:y2=4x,点F是C的焦点,O为坐标原点,过点F的直线l与C相交于A,B两点.(1)求向量OA―→与OB―→的数量积;(2)设FB―→=λAF―→,若λ∈[9,16],求l在y轴上的截距的取值范围.解:(1)设A,B两点的坐标分别为(x1,y1),(x2,y2).由题意知直线l的斜率不可能为0,F(1,0),设直线l的方程为x=my+1.=my+1,2=4x,得y2-4my-4=0,Δ=16m2+16>0,1+y2=4m,1y2=-4.∴OA―→·OB―→=x1x2+y1y2=y21y2216+y1y2=1616-4=-3.∴向量OA―→与OB―→的数量积为-3.(2)由(1)1+y2=4m,1y2=-4.∵FB―→=λAF―→,∴y2=-λy1.将y2=-λy11+y2=4m,1y2=-4,1-λ)y1=4m,λy21=-4,-λ)2y21=16m2,λy21=-4,∴(1-λ)2-λ=-4m2,∴4m2=(1-λ)2λ=λ+1λ-2.令f(λ)=λ+1λ-2,易知f(λ)在[9,16]上单调递增,∴4m2∈649,22516,∴m2∈169,22564,∴m∈-158,-43∪43,158.∴l在y轴上的截距-1m的取值范围为-34,-815∪815,34.3.已知椭圆E:x2a2+y2b2=1(a>b>0)的离心率为32,E的左顶点为A,上顶点为B,点P在椭圆上,且△PF1F2的周长为4+23.(1)求椭圆E的方程;(2)若直线l:y=kx+m(k≠0)与椭圆交于不同的两点M,N,且线段MN的垂直平分线过定点G(1,0),求k的取值范围.解:(1)a+2c=4+23,=ca=32,=2,=3,则b2=a2-c2=1,∴椭圆E的方程为x24+y2=1.(2)设M(x1,y1),N(x2,y2),弦MN的中点D(x0,y0),kx+m,y2=1,消去y整理得,(1+4k2)x2+8kmx+4m2-4=0,∵直线l:y=kx+m(k≠0)与椭圆交于不同的两点,∴Δ=64k2m2-4(1+4k2)(4m2-4)>0,即m2<1+4k2,1+x2=-8km1+4k2,1·x2=4m2-41+4k2,则x0=x1+x22=-4km1+4k2,y0=kx0+m=m1+4k2,所以直线DG的斜率为k DG=y0x0-1=-m4km+1+4k2,又由直线DG和直线MN垂直可得-m4km+1+4k2·k=-1,则m=-1+4k23k,代入m2<1+4k2可得<1+4k2,即k2>15,解得k>55或k<-55.故所求k∞4.已知椭圆E:x2a2+y2b21(a>b>0)的左、右焦点分别为F1,F2,椭圆E的离心率为32,且通径长为1.(1)求E的方程;(2)直线l与E交于M,N两点(M,N在x轴的同侧),当F1M∥F2N时,求四边形F1F2NM 面积的最大值.解:(1)c2,=2,=1,=3,故椭圆的方程为x24+y2=1.(2)假设M,N两点在x轴上侧,如图所示,延长MF1交E于点M0,由F1M∥F2N知M0与N关于原点对称,从而有|F1M0|=|F2N|,由(1)可知F1(-3,0),F2(3,0),设M(x1,y1),M0(x2,y2),设MF1的方程为x=my-3,由my-3,y2=1得(m2+4)y2-23my-1=0,Δ=12m2+4(m2+4)>0,故1+y2=23mm2+4,1y2=-1m2+4.设F1M与F2N的距离为d,四边形F1F2NM的面积为S,则S=12(|F1M|+|F2N|)d=12(|F1M|+|F1M0|)d=12|MM0|d=S△MF2M0,又因为S△MF2M0=12·|F1F2|·|y1-y2|=12×23×|y1-y2|=3(y1+y2)2-4y1y2=3·12m2(m2+4)2+4m2+4=43m2+1m2+4=43m2+1+3m2+1≤4323=2,当且仅当m2+1=3m2+1,即m=±2时,等号成立,故四边形F1F2NM面积的最大值为2.。
安徽省高三数学一轮复习单元训练 圆锥曲线与方程

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知两点M (-2,0),N (2,0),点P 满足PN PM ⋅=12,则点P 的轨迹方程为( )A .11622=+y x B .1622=+y x C .822=-x y D .822=+y x 【答案】B2.若方程15222=-+-ky k x 表示双曲线,则实数k 的取值范围是( )A . 2<k<5B . k>5C . k<2或k>5D . 以上答案均不对【答案】C3.已知直线01=+-y mx 交抛物线2x y =于A 、B 两点,则△AOB ( ) A 为直角三角形 B 为锐角三角形C 为钝角三角形D 前三种形状都有可能 【答案】A4.方程(x-2)2+(y+1)2=1表示的曲线关于点T (-3,2)的对称曲线方程是( )A . (x+8)2+(y-5)2=1B .(x-7)2+(y+4)2=2C . (x+3)2+(y-2)2=1D .(x+4)2+(y+3)2=2 【答案】A5.抛物线24y x =的准线方程为( ) A . 2x = B . 2x =-C . 1x =D . 1x =-【答案】D6.若(,)P a b 是双曲线224(0)x y m m -=≠上一点,且满足20,20a b a b ->+>,则双曲线离心率为( ) A .5B .25 C .255或D .332 【答案】B7.若抛物线的准线方程为x=–7, 则抛物线的标准方程为( )A .x 2=–28yB .y 2=28x ( C)y 2=–28x D .x 2=28y 【答案】B8.已知双曲22212x y a -=1的离心串为2,则该双曲线的实轴长为( )A .2B .4C .D .【答案】B9.已知二次曲线21,[2,1]4x ym m+=∈--则当时,该曲线的离心率e 的取值范围是( )A .23[,]22B .26[,]22C .56[,]22D .36[,]22【答案】C10.若抛物线px y 22=的焦点与双曲线1322=-y x 的右焦点重合,则p 的值为( )A . -4B . 4C . -2D . 2 【答案】A11.θ是第三象限角,方程x 2+y 2sin θ=cos θ表示的曲线是( )A . 焦点在x 轴上的椭圆B . 焦点在y 轴上的椭圆C . 焦点在x 轴上的双曲线D . 焦点在y 轴上的双曲线 【答案】D12.过点(-3,2)且与4922y x +=1有相同焦点的椭圆的方程是( ) A .101522y x +=1 B .10022522y x +=1 C .151022y x +=1 D .22510022y x +=1 【答案】A第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.在平面直角坐标系xOy 中,已知焦点为F 的抛物线y 2=2x 上的点P 到坐标原点O 的距离为15,则线段PF 的长为 .【答案】7214.已知椭圆1162522=+y x 的焦点为F 1、F 2,直线CD 过焦点F 1,则∆F 2CD 的周长为_______【答案】2015.已知△FAB ,点F 的坐标为(1,0),点A ,B 分别在图中抛物线y 2=4x 及圆(x -1)2+y 2=4的实线部分上运动,且AB 总是平行于x 轴,,则△FAB 的周长的取值范围是【答案】(4,6)16.双曲线122=-y mx 的虚轴长是实轴长的2倍,则m = .【答案】4三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.已知椭圆E的长轴的一个端点是抛物线2y =(1)求椭圆E 的方程; (2)过点C (—1,0),斜率为k 的动直线与椭圆E 相交于A 、B 两点,请问x 轴上是否存在点M ,使MB MA ⋅为常数?若存在,求出点M 的坐标;若不存在,请说明理由。
中职高考数学一轮复习讲练测第八章 圆锥曲线(测)(含详解)

第八章 圆锥曲线检测题1.已知直线经过点A (0,3)和点B (-1,2),则直线AB 的斜率为( )A .-1B .1C .-12D .122.已知直线l 1:(k -3)x +(4-k )y +1=0与l 2:2(k -3)x -2y +3=0平行,则k 的值是( ) A .1或3B .1或5C .3或5D .1或23.圆x 2+y 2+x -3y -32=0的半径是( )A .1B .2C .2D .224.以(-2,1)为圆心且与直线x +y =3相切的圆的方程为( ) A .(x -2)2+(y +1)2=2 B .(x +2)2+(y -1)2=4 C .(x -2)2+(y +1)2=8D .(x +2)2+(y -1)2=85. 直线(m +2)x +my +1=0与直线(m -1)x +(m -4)y +2=0互相垂直,则m 的值为( ) A .12B .-2C .-12或2D .-2或126.椭圆x 29+y 24=1的离心率是( )A .133 B .53C .23D .597. 抛物线y 2=8x 的焦点到直线x -3y =0的距离是( ) A .23 B .2 C .3D .18. 设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的虚轴长为2,焦距为23,则双曲线的渐近线方程为( )A .y =±2xB .y =±2xC .y =±22x D .y =±12x9.在方程mx 2-my 2=n 中,若mn <0,则方程的曲线是( ) A .焦点在x 轴上的椭圆 B .焦点在x 轴上的双曲线 C .焦点在y 轴上的椭圆D .焦点在y 轴上的双曲线10.椭圆x 29+y 2k 2=1与双曲线x 2k -y 23=1有相同的焦点,则k 的值为( )A .k =3B .k =4C .k =2D .k =1二、填空题1.直线l 过点M (1,-2),倾斜角为30°.则直线l 的方程为 . 2.若抛物线y 2=2px (p >0)的准线经过双曲线x 2-y 2=1的一个焦点,则p =__ __.3.已知椭圆的焦点在y 轴上,其上任意一点到两焦点的距离和为8,焦距为215,则此椭圆的标准方程为__ __.4.双曲线的一个焦点坐标是(0,-6),经过点A (-5,6),则双曲线的标准方程为__ __. 5.方程x 2+y 2+ax +2ay +54a 2+a -1=0表示圆,则a 的取值范围是6.直线l :2x -y +2=0过椭圆左焦点F 和一个顶点B ,则该椭圆的离心率为 7.若k ∈R ,方程x 2k +3+y 2k +2=1表示焦点在x 轴上的双曲线,则k 的取值范围是__ __.8.设抛物线y 2=8x 上一点P 到y 轴的距离是6,则点P 到该抛物线焦点的距离为 三、解答题1.直线l 经过两点(2,1)、(6,3). (1)求直线l 的方程;(2)圆C 的圆心在直线l 上,并且与x 轴相切于(2,0)点,求圆C 的方程. 2.求焦点在直线x -y +2=0上的抛物线的标准方程.3.椭圆的中心在原点,焦点在坐标轴上,焦距为213.一双曲线和该椭圆有公共焦点,且双曲线的实半轴长比椭圆的长半轴长小4,双曲线离心率与椭圆离心率之比为7:3,求椭圆和双曲线的方程.4.已知椭圆C的两焦点分别为F1(-22,0)、F2(22,0),长轴长为6.(1)求椭圆C的标准方程;(2)已知过点(0,2)且斜率为1的直线交椭圆C于A、B两点,求线段AB的长.5.已知双曲线C:x2a2-y2b2=1(a>0,b>0)的离心率为3,点(3,0)是双曲线的一个顶点.(1)求双曲线的方程;(2)经过双曲线右焦点F2作倾斜角为30°的直线l,直线l与双曲线交于不同的A,B两点,求AB的长.第八章 圆锥曲线检测题1.已知直线经过点A (0,3)和点B (-1,2),则直线AB 的斜率为( B )A .-1B .1C .-12D .12[解析] 由斜率公式,得k AB =2-3-1-0=1. 2.已知直线l 1:(k -3)x +(4-k )y +1=0与l 2:2(k -3)x -2y +3=0平行,则k 的值是( C ) A .1或3B .1或5C .3或5D .1或2[解析] 当k =3时,两直线显然平行;当k ≠3时,由两直线平行,斜率相等,得-k -34-k =2(k -3)2.解得k =5,故选C .3.圆x 2+y 2+x -3y -32=0的半径是( C )A .1B .2C .2D .22[解析] 圆x 2+y 2+x -3y -32=0化为标准方程为(x +12)2+(y -32)2=4,∴r =2.4.以(-2,1)为圆心且与直线x +y =3相切的圆的方程为( D ) A .(x -2)2+(y +1)2=2 B .(x +2)2+(y -1)2=4 C .(x -2)2+(y +1)2=8D .(x +2)2+(y -1)2=8[解析] 由所求的圆与直线x +y -3=0相切,∴圆心(-2,1)到直线x +y -3=0的距离d =|-2+1-3|2=22,∴所求圆的方程为(x +2)2+(y -1)2=8.5. 直线(m +2)x +my +1=0与直线(m -1)x +(m -4)y +2=0互相垂直,则m 的值为( C )A .12B .-2C .-12或2D .-2或12[解析] 由题意,得(m +2)(m -1)+m (m -4)=0,解得m =-12或2.6.椭圆x 29+y 24=1的离心率是( B )A .133B .53C .23D .59[解析] ∵椭圆方程为x 29+y 24=1,∴a =3,c =a 2-b 2=9-4= 5. ∴e =c a =53.故选B .7. 抛物线y 2=8x 的焦点到直线x -3y =0的距离是( D ) A .23 B .2 C .3D .1[解析] 由y 2=8x 可得其焦点坐标(2,0),根据点到直线的距离公式可得d =|2-3×0|12+(-3)2=1.8. 设双曲线x 2a 2-y 2b2=1(a >0,b >0)的虚轴长为2,焦距为23,则双曲线的渐近线方程为( C )A .y =±2xB .y =±2xC .y =±22x D .y =±12x[解析] ∵2b =2,2c =23,∴b =1,c =3,∴a 2=c 2-b 2=3-1=2,∴a =2,故渐近线方程为y =±22x .9.在方程mx 2-my 2=n 中,若mn <0,则方程的曲线是( D ) A .焦点在x 轴上的椭圆 B .焦点在x 轴上的双曲线 C .焦点在y 轴上的椭圆 D .焦点在y 轴上的双曲线[解析] 方程mx 2-my 2=n可化为:y 2-n m -x 2-n m=1,∵mn <0,∴-nm>0,∴方程的曲线是焦点在y 轴上的双曲线.10.椭圆x 29+y 2k 2=1与双曲线x 2k -y 23=1有相同的焦点,则k 的值为( C )A .k =3B .k =4C .k =2D .k =1[解析] 双曲线x 2k -y 23=1的焦点(±3+k ,0),椭圆的焦点坐标(±9-k 2,0),椭圆x 29+y 2k 2=1与双曲线x 2k -y 23=1有相同的焦点,可得:3+k =9-k 2,k >0,解得k =2.故选C . 二、填空题1.直线l 过点M (1,-2),倾斜角为30°.则直线l 的方程为 . [解析] ∵直线l 的倾斜角为30°,∴直线l 的斜率k =tan30°=33,∴直线方程x -3y -23-1=02.若抛物线y 2=2px (p >0)的准线经过双曲线x 2-y 2=1的一个焦点,则p =[解析] 由题意可知,抛物线的准线方程为x =-p2,因为p >0,所以该准线过双曲线的左焦点,由双曲线的方程可知,左焦点坐标为(-2,0);故由-2=-p2可解得p =2 2.3.已知椭圆的焦点在y 轴上,其上任意一点到两焦点的距离和为8,焦距为215,则此椭圆的标准方程为__y 216+x 2=1__.[解析] 由已知,2a =8,2c =215,∴a =4,c =15, ∴b 2=a 2-c 2=16-15=1, ∴椭圆的标准方程为y 216+x 2=1.4.双曲线的一个焦点坐标是(0,-6),经过点A (-5,6),则双曲线的标准方程为__y 216-x 220=1__.[解析] 解法一:由已知得,c =6,且焦点在y 轴上,则另一焦点坐标是(0,6).因为点A (-5,6)在双曲线上,所以点A 与两焦点的距离的差的绝对值是常数2a ,即 2a =|(-5)2+(6+6)2-(-5)2+(6-6)2| =|13-5|=8,得a =4,b 2=c 2-a 2=62-42=20. 因此,所求的双曲线标准方程是y 216-x 220=1.5.方程x 2+y 2+ax +2ay +54a 2+a -1=0表示圆,则a 的取值范围是[解析] 由题意知,a 2+(2a )2-4⎝⎛⎭⎫54a 2+a -1=-4a +4>0.∴a <1.6.直线l :2x -y +2=0过椭圆左焦点F 和一个顶点B ,则该椭圆的离心率为[解析] ∵直线l :2x -y +2=0中,令x =0,得y =2;令y =0,得x =-1. 直线l :2x -y +2=0过椭圆左焦点F 1和一个顶点B , ∴椭圆左焦点F 1(-1,0),顶点B (0,2). ∴c =1,b =2,a =1+4=5, ∴该椭圆的离心率为e =c a =15=55.7.若k ∈R ,方程x 2k +3+y 2k +2=1表示焦点在x 轴上的双曲线,则k 的取值范围是__ -3<k <-2 __.[解析] 由题意可知,⎩⎪⎨⎪⎧k +3>0k +2<0,解得-3<k <-2.8.设抛物线y 2=8x 上一点P 到y 轴的距离是6,则点P 到该抛物线焦点的距离为 [解析] ∵点P 到y 轴的距离为6,∴点P 到抛物线y 2=8x 的准线x =-2的距离d =6+2=8, 根据抛物线的定义知点P 到抛物线焦点的距离为8. 三、解答题1.直线l 经过两点(2,1)、(6,3). (1)求直线l 的方程;(2)圆C 的圆心在直线l 上,并且与x 轴相切于(2,0)点,求圆C 的方程. [解析] (1)直线l 的斜率k =3-16-2=12,∴直线l 的方程为y -1=(x -2),即x -2y =0.(2)由题意可设圆心坐标为(2a ,a ),∵圆C 与x 轴相切于(2,0)点,∴圆心在直线x =2上, ∴a =1.∴圆心坐标为(2,1),半径r =1.∴圆C 的方程为(x -2)2+(y -1)2=1. 2.求焦点在直线x -y +2=0上的抛物线的标准方程. [解析] 因为是标准方程,所以其焦点应该在坐标轴上, 所以其焦点坐标即为直线x -y +2=0与坐标轴的交点, 所以其焦点坐标为(-2,0)和(0,2)当焦点为(-2,0)时,可知其方程中的p =4,所以其方程为y 2=-8x , 当焦点为(0,2)时,可知其方程中的p =4, 所以其方程为x 2=8y ,故所求方程为y 2=-8x 或x 2=8y .3.椭圆的中心在原点,焦点在坐标轴上,焦距为213.一双曲线和该椭圆有公共焦点,且双曲线的实半轴长比椭圆的长半轴长小4,双曲线离心率与椭圆离心率之比为7:3,求椭圆和双曲线的方程.[解析] ①焦点在x 轴上,设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),且c =13.设双曲线为x 2m 2-y 2n 2=1(m >0,n >0),m =a -4.因为e 双e 椭=73,所以a m =73,解得a =7,m =3.因为椭圆和双曲线的半焦距为13, 所以b 2=36,n 2=4. 所以椭圆方程为x 249+y 236=1,双曲线方程为x 29-y 24=1.②焦点在y 轴上,椭圆方程为x 236+y 249=1,双曲线方程为y 29-x 24=1.4. 已知椭圆C 的两焦点分别为F 1(-22,0)、F 2(22,0),长轴长为6.(1)求椭圆C 的标准方程;(2)已知过点(0,2)且斜率为1的直线交椭圆C 于A 、B 两点,求线段AB 的长.[解析] (1)由F 1(-22,0)、F 2(22,0),长轴长为6,得:c =22,a =3,所以b =1. ∴椭圆方程为x 29+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2), 由(1)可知椭圆方程为x 29+y 2=1①,∵直线AB 的方程为y =x +2②把②代入①得化简并整理得10x 2+36x +27=0 ∴x 1+x 2=-185,x 1x 2=2710,又|AB |=(1+12)(18252-4×2710)=635. 5.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,点(3,0)是双曲线的一个顶点.(1)求双曲线的方程;(2)经过双曲线右焦点F 2作倾斜角为30°的直线l ,直线l 与双曲线交于不同的A ,B 两点,求AB 的长. [解析] (1)∵双曲线C :x 2a 2-y 2b 2=1的离心率为3,点(3,0)是双曲线的一个顶点,∴ca =3,a =3,解得c =3,又c 2=a 2+b 2,b =6, ∴双曲线的方程为x 23-y 26=1.(2)双曲线x 23-y 26=1的右焦点为F 2(3,0),∴直线l 的方程为y =33(x -3), 联立⎩⎨⎧x 23-y 26=1,y =33(x -3),得5x 2+6x -27=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-65,x 1x 2=-275,所以|AB |=1+13·(-65)2-4×(-275)=1635.。
高考数学第一轮复习圆锥曲线单元测试题试题

卜人入州八九几市潮王学校高考数学第一轮复习圆锥曲线单元测试题说明:本套试卷分第一卷〔选择题〕和第二卷〔非选择题〕,总分值是150分,考试时间是是120分钟。
第一卷〔选择题,一共60分〕一、 选择题〔本大题一一共12小题,每一小题5分,一共60分〕1、 过原点的直线13422-=-y x l 与双曲线交于两点,那么直线l 的斜率的取值范围是 2、 假设常数m>0,椭圆02222=+-y m mx x 的长轴是短轴的2倍,那么m 等于 3、 设抛物线有两个交点与直线)0()0(2≠+=>=k b kx y a ax y ,其横坐标分别是1x 、2x ,而直线y=kx+b 与x 轴交点的横坐标是3x ,那么1x ,2x ,3x 的关系是A 、3x =1x +2xB 、213111x x x +=C 、231111x x x +=D 、1x =2x +3x4、 把椭圆192522=+y x 绕它的左焦点按顺时针方向旋转2π,那么所得新椭圆的准线方程是 A 、44149-==y y ,B 、44149-==x x , C 、44149=-=y y ,D 、44149=-=x x , 5、 以焦点的椭圆方程为的焦点为顶点,顶点为112422-=-y x C 、1121622=+y x D 、1161222=+y x 6、 抛物线顶点在原点,焦点在y 轴上,其上一点P(m ,1)到焦点间隔为5,那么抛物线方程为A 、y x 82=B 、y x 82-=C 、y x 162=D 、y x 162-=7、 过点(1,2)且与曲线0683689422=-+--y x y x 只有一个公一共点的直线A 、不存在B 、有两条C 、有三条D 、有四条8、“c b a 2>+〞的一个充分条件是A 、c b c a >>或B 、c b c a <>且C 、c b c a >>且D 、c b c a <>或9、假设双曲线12222=-by a x 的实轴长、虚轴长、焦距成等差数列,那么双曲线的离心率是 A 、2B 、3 C 、34D 、35 10、假设椭圆13422=+y x 内有一点P(-1,1),F 为右焦点,椭圆上的点M 使得│MP │+2│MF │的值最小,那么点M 为11、双曲线14922=-y x 中,被点P(2,1)平分的弦所在的直线方程是 A 、8x-9y=7B 、8x+9y=25 C 、4x-9y=6D 、不存在12、抛物线2ax y =上存在关于直线x+y=0对称的两点,那么a 的取值范围是 A 、43>a B 、43≥a C 、0>a D 、0≥a 第二卷〔非选择题,一共90分〕二、 填空题〔本大题一一共4小题,每一小题4分,一共16分〕13、抛物线C :y=2x 2+1向右平移21个单位得一曲线C ’,再把曲线C ’绕其焦点逆时针方向旋转900,那么所得曲线方程是__________________________________。
高考数学一轮复习《圆锥曲线》练习题(含答案)

高考数学一轮复习《圆锥曲线》练习题(含答案)一、单选题1.双曲线2228x y -=的渐近线方程是( ) A .12y x =±B .2y x =±C .2y x =±D .22y x =±2.已知双曲线()2222100x y a b a b-=>>,的左右焦点分别为()()1200F c F c -,,,,若直线2y x =与双曲线的一个交点P 的横坐标恰好为c ,则双曲线的离心率为( ) A .5B .2C .21+D .21-3.如图,在体积为3的三棱锥P-ABC 中,P A ,PB ,PC 两两垂直,1AP =,若点M 是侧面CBP 内一动点,且满足AM BC ⊥,则点M 的轨迹长度的最大值为( )A .3B .6C .23D .324.抛物线22y x =的焦点坐标为( ).A .1,02⎛⎫⎪⎝⎭B .1,02⎛⎫- ⎪⎝⎭C .10,8⎛⎫ ⎪⎝⎭D .10,8⎛⎫- ⎪⎝⎭5.设抛物线y 2=4x 的焦点为F ,过点F 的直线l 与抛物线相交于A ,B ,点A 在第一象限,且|AF |﹣|BF |32=,则AF BF =( ) A .32B .2C .3D .46.已知抛物线M :24y x =的焦点为F ,O 是坐标原点,斜率为()0k k >的直线l 交抛物线M 于A ,B 两点,且点A ,B 分别位于第一、四象限,交抛物线的准线l '于点C .若2ACFABFSS=,2BF =,则AOBS=( )A .33-B .33+C .2D .231+7.若双曲线的中心为坐标原点,焦点在y 轴上,其离心率为2,则该双曲线的渐近线方程为( ) A .3y x =±B .33y x =±C .4y x =±D .14y x =±8.已知双曲线E 的左、右焦点分别为12,F F ,O 为坐标原点.若点P 在E 上,2OP OQ =-,22PF OF =,1132QF OF =,则E 的离心率为A .2B .2C .5D .31+9.设1F ,2F 是离心率为5的双曲线222124x y a -=的两个焦点,P 是双曲线上的一点,且1234PF PF =,则12PF F △的面积等于A .42B .83C .24D .4810.已知抛物线C :y 2=4x 的焦点为F ,准线为l ,直线20l :x y '-+=,动点M 在C 上运动,记点M 到直线l 与l ′的距离分别为d 1,d 2,O 为坐标原点,则当d 1+d 2最小时,cos ∠MFO =( ) A .22B .23C .24D .2611.如图,已知正方体1111ABCD A B C D -的棱长为1,,M N 分别是棱1,AA BC 上的动点,若2MN =,则线段MN 的中点P 的轨迹是( )A .一条线段B .一段圆弧C .一部分球面D .两条平行线段12.已知拋物线21:2(0)C y px p =>的焦点F 为椭圆22222:1(0)x y C a b a b+=>>的右焦点,且1C与2C 的公共弦经过F ,则椭圆的离心率为( )A 1B C D二、填空题13.已知点(3,2)在椭圆221(0,0)x y m n m n+=>>上,则点(-3,3)与椭圆的位置关系是__________.14.过点且渐近线与双曲线22:12x C y -=的渐近线相同的双曲线方程为______.15.焦点在y 轴上的双曲线221y mx -=,则m 的值为___________.16.已知过抛物线C :y 2=8x 焦点的直线交抛物线于A ,B 两点,过点A 作抛物线准线的垂线,垂足为M ,AB BM =,则A 点的横坐标为___.三、解答题17.求经过点(3,1)A -,并且对称轴都在坐标轴上的等轴双曲线的标准方程.18.已知椭圆C :22143x y +=,过椭圆右焦点的直线l 与椭圆交于M ,N 两点,求MN 的取值范围.19.已知椭圆()2222:10x y C a b a b+=>>的离心率12e =,且椭圆C 经过点31,2P ⎛⎫-- ⎪⎝⎭.(1)求椭圆C 的方程.(2)不过点P 的直线:2l y kx =+与椭圆C 交于A ,B 两点,记直线P A ,PB 的斜率分别为1k ,2k ,试判断12k k +是否为定值.若是,求出该定值;若不是,请说明理由.20.在平面直角坐标系xOy 中,已知椭圆221:195x y C +=与()222206:136x y b C b =<<+的离心率相等.椭圆1C 的右焦点为F ,过点F 的直线与椭圆1C 交于A ,B 两点,射线OB 与椭圆2C 交于点C ,椭圆2C 的右顶点为D .(1)求椭圆2C 的标准方程;(2)若ABO 10,求直线AB 的方程; (3)若2AF BF =,求证:四边形AOCD 是平行四边形.21.已知(0,2),(3,1)A B 是椭圆2222:1(0)x y G a b a b+=>>上的两点.(1)求椭圆G 的离心率;(2)已知直线l 过点B ,且与椭圆G 交于另一点C (不同于点A ),若以BC 为直径的圆经过点A ,求直线l 的方程.22.已知椭圆C 的离心率2e =()10,1B -,()20,1B . (1)求椭圆C 的方程;(2)设动直线:l y kx m =+与椭圆C 有且只有一个公共点P ,且与直线2x =相交于点Q .问在x 轴上是否存在定点N ,使得以PQ 为直径的圆恒过定点N ,若存在,求出N 点坐标;若不存在,说明理由.23.已知点P 在圆22:4O x y +=上运动,PQ x ⊥轴,垂足为Q ,点A 满足12AQ PQ =. (1)求点A 的轨迹E 的方程;(2)过点30,2⎛⎫⎪⎝⎭的直线l 与曲线E 交于,M N 两点,记OMN ∆的面积为S ,求S 的最大值.24.已知抛物线1C :()220x py p =>的焦点为F ,圆2C :()()22284x y +++=,过y 轴上点G 且与y 轴不垂直的直线l 与抛物线1C 交于A 、B 两点,B 关于y 轴的对称点为D ,O 为坐标原点,连接2GC 交x 轴于点E ,且点E 、F 分别是2GC 、OG 的中点. (1)求抛物线1C 的方程; (2)证明:直线AD 与圆2C 相交参考答案1.C2.C3.A4.C5.B6.B7.B8.D9.C10.A11.B12.A 13.点在椭圆外 14.22163x y -=15.4 16.417.设所求的等轴双曲线的方程为:()220x y λλ-=≠,将(3,1)A -代入得:()2231λ--=,即=8λ, 所以等轴双曲线的标准方程:22188x y -=18.解:由椭圆C :22143x y +=知,2a =,b =1c =,所以椭圆C 的右焦点为()1,0F .当直线l 的斜率不存在时,223b MN a==. 当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-,将其代入椭圆C 的方程得()22223484120kxk x k +-+-=.设()11,M x y ,()22,N x y ,则2122834k x x k +=+,212241234k x x k -=+, 所以=MN ()222121333434+==+++k k k因为20k ≥,所以(]3,4MN ∈. 综上,MN 的取值范围是[]3,4. 19.(1)因为12c e a ==,所以2a c =,所以222234b a c a =-=.因为椭圆C 过31,2P ⎛⎫-- ⎪⎝⎭,所以221914a b +=,所以24a =,23b =,故椭圆C 的标准方程为22143x y +=. (2)因为直线l 不过31,2P ⎛⎫-- ⎪⎝⎭,且直线P A ,PB 的斜率存在,所以72k ≠且12k ≠.设()11,A x y ,()22,B x y ,联立方程组222143y kx x y =+⎧⎪⎨+=⎪⎩,得()22341640k x kx +++=, 则1221634k x x k +=-+,122434x x k =+. 由()()221616340k k ∆=-+>,得214k >且72k ≠.因为()()12121212121212121273377272222211111kx x k x x y y kx kx k k x x x x x x x x ⎛⎫++++++++ ⎪⎝⎭+=+=+=+++++++, 所以2221222271682712482134343416416713434k k k k k k k k k k k k k k ⎛⎫+ ⎪⎝⎭-+-++++===-+-+++, 即12k k +为定值,且123k k +=.20.(1)由题意知,椭圆1C 的长轴长126a =,短轴长12b =124c ==, 椭圆2C 的长轴长2212a =,短轴长2b ,焦距22c =.因为椭圆1C 与2C 的离心相等,所以1212c c a a =,即23= 因为06b <<,所以220b =,所以椭圆2C 的标准方程为2213620x y +=.(2)因为椭圆1C 右焦点为()2,0F ,且A ,O ,B 三点不共线, 设直线AB 的方程为2x my =+,联立22195x y +=,消x 得()225920250m y my ++-=.设()11,A x y ,()22,B x y ,()22(20)100590m m ∆=++>,所以1,2y ==, 即1212222025,5959m y y y y m m -+=-=++. 因为121212111||||||222ABOAOFBOFSS SOF y OFy O y y y F y =+=+=-=-==, 化简得4259m=,所以m =, 所以直线AB 的方程为2x y =+,即5100x ±-=. (3)因为2AF BF =,所以2AF FB =.因为()()1122,,,,(2,0)A x y B x y F ,所以()()11222,22,x y x y --=-,所以121262,2.x x y y =-⎧⎨=-⎩ 因为()()1122,,,A x y B x y 在椭圆22195x y +=上, 所以221122221,951,95x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,所以()222222226241,951,95x y x y ⎧-+=⎪⎪⎨⎪+=⎪⎩消2y ,得2218x =. 代入2222195x y +=,由对称性不妨设120,0y y ><,所以2y =从而得,113,4x y ==即321,,48A B ⎛⎛ ⎝⎭⎝⎭.所以OC k =,直线OC的方程为y x =, 联立2213620x y +=,得244116x =.由题知0x >,所以21,4x y ==21,4C ⎛ ⎝⎭.又(6,0)D,所以OA CD k k ==又因为,OA CD 不共线,所以//OA CD ,又AD OC k k ==,且,OC AD 不共线,所以//OC AD . 所以四边形AOCD 是平行四边形. 21.解:(1)由已知2b =, 由点(3,1)B 在椭圆G 上可得29114a +=,解得212,a a ==所以2228,c a b c =-== 所以椭圆G的离心率是c e a ==; (2)当直线l 过点B 且斜率不存在时,可得点(3,1)C -,不满足条件; 设直线BC 的方程为1(3)y k x -=-),点(),C C C x y ,由22131124y kx kx y =+-⎧⎪⎨+=⎪⎩可得()222316(13)3(13)120k x k k x k ++-+--=,显然0∆>,此方程两个根是点B 和点C 的横坐标, 所以223(13)12331C k x k --=+,即22(13)431C k x k --=+,所以2236131C k k y k --+=+,因为以BC 为直径的圆经过点A , 所以AB AC ⊥,即0AB AC ⋅=,2222963961(3,1),3131k k k k AB AC k k ⎛⎫-----⋅=-⋅ ⎪++⎝⎭2236128031k k k --==+, 即(32)(31)0k k -+=, 123k ,213k =-, 当213k =-时,即直线AB ,与已知点C 不同于点A 矛盾,所以123BC k k ==, 所以直线BC 的方程为213y x =-. 22.(1)由题意可设椭圆为22221x y a b+=由题意可得c e a ==1b =,可得a =所以椭圆的方程为:2212x y +=.(2)联立2222y kx m x y =+⎧⎨+=⎩,整理可得:()222124220k x kmx m +++-=, 由题意可得()()222216412220k m k m ∆=-+-=,可得2212m k =+;可得()242212P km k x m k -==-+,1P P y kx m m =+=,即21,k P m m ⎛⎫- ⎪⎝⎭. 联立2y kx mx =+⎧⎨=⎩,可得2Q x =,2Q y k m =+,即()2,2Q k m +,设在x 轴上存在()0,0N x .由0PN QN ⋅=,可得()0021,2,20k x x k m m m ⎛⎫+-⋅---= ⎪⎝⎭,可得200242210k k k x x m m m ⎛⎫+--++= ⎪⎝⎭, 即()200022110kx x x m-++-=, 可得20002101x x x ⎧-+=⎨=⎩,可得01x =,即定点()1,0N .23.(1)设(,)A x y ,11(,)P x y , ∵12AQ PQ =,∴A 为PQ 的中点, ∴11,2,x x y y =⎧⎨=⎩∴22(2)4x y +=,即2214x y +=.∴点A 的轨迹E 的方程2214x y +=.(2)显然直线l 的斜率存在,设直线l 的方程为32y kx =+,将直线方程代入椭圆方程中得22(14)1250k x kx +++=, ∴222251444(14)56420016k k k k ∆=-⨯+=->⇒>. 设1122(,),(,)M x y N x y ,∴12133||224OMN POM PON S S S x x ∆∆∆=-=⨯⨯-=令2914()4t k t =+>,则214k t -=,∴3344OMN S S ∆====∵914049t t >⇒<<,∴129t =时,34143OMN S ∆≤⨯=,∴S 的最大值1.24.(1)设点()0,0E x ,()00,G y ,因为圆2C :()()22284x y +++=,所以圆心()22,8C --,因为点E 是2GC 的中点,所以00202820x y -+=⎧⎨-+=⨯⎩,解得0018x y =-⎧⎨=⎩,则点()0,8G ,因为点F 是OG 的中点, 所以()0,4F ,则42p=,解得8p =, 故抛物线的方程为216x y =.(2)因为B 关于y 轴的对称点为D , 所以设()11,B x y ,()22,A x y ,()11,D x y -,设直线AB 的方程为8y kx -=,即80kx y -+=,联立28016kx y x y-+=⎧⎨=⎩,消去x 得()22161640y k y -++=,则1264y y =, 设直线AD 的方程为y mx n =+,联立216y mx n x y=+⎧⎨=⎩,消去x 得()2221620y m n y n -++=,则212y y n =, 故264n =,易知0n <,则8n =-,直线AD 的方程为8y mx =-,必过定点()0,8-, 而圆2C :()()22284x y +++=正好与y 轴交于定点()0,8-, 且过点()0,8-的所有直线中,只有与y 轴重合的直线才能与圆2C :()()22284x y +++=相切,直线AD 显然不可能是y 轴,因此,直线AD 与圆2C 相交.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考第一轮复习数学单元测试卷圆锥曲线-数学试题
说明:本试卷分第Ⅰ卷(选择题)和第Ⅰ卷(非选择题),满分150分,考试时间120分钟。
第Ⅰ卷(选择题,共60分)
一、
选择题(本大题共12小题,每小题5分,共60分)
1、过原点的直线交于两点,则直线的斜率的取值范围是
2、若常数m>0,椭圆的长轴是短轴的2倍,则m等于
3、设抛物线,其横坐标分别是、,而直线y=kx+b与x轴交点的横坐标是,那么,,的关系是
A、=+
B、
C、
D、=+
4、把椭圆绕它的左焦点按顺时针方向旋转,则所得新椭圆的准线方程是
A、
B、
C、
D、
5、以
C、
D、
6、抛物线顶点在原点,焦点在y轴上,其上一点P(m,1)到焦点距离为5,则抛物线方程为
A、B、C、D、
7、过点(1,2)且与曲线只有一个公共点的直线
A、不存在
B、有两条
C、有三条
D、有四条
8、“”的一个充分条件是
A、B、C、D、
9、若双曲线的实轴长、虚轴长、焦距成等差数列,则双曲线的离心率是
A、2
B、3
C、
D、
10、若椭圆内有一点P(-1,1),F为右焦点,椭圆上的点M使得│MP│+2│MF│的值最小,则点M为
11、双曲线中,被点P(2,1)平分的弦所在的直线方程是
A、8x-9y=7
B、8x+9y=25
C、4x-9y=6
D、不存在
12、抛物线上存在关于直线x+y=0对称的两点,则的取值范围是
A、B、C、D、
第Ⅰ卷(非选择题,共90分)
二、
填空题(本大题共4小题,每小题4分,共16分)
13、抛物线C:y=2x2+1向右平移个单位得一曲线C’,再把曲线C’绕其焦点逆时针方向旋转900,则所得曲线方程是__________________________________。
14、椭圆_______________。
15、椭圆和连接A(1,1)、B(2,3)两点的线段有公共点,那么。