电路原理-一阶电路和二阶电路.共50页
合集下载
一阶电路和二阶电路的动态响应.

1、一阶电路的动态响应
电路的全响应:u c (t=U 0e -t/RC +U s (1-e -t/RC (t>=0 (1零输入响应u c (t=U 0e -t/RC (t>=0
输出波形单调下降。当t=τ=RC时, u c (τ=U 0/e=0.368U 0,τ成为该电路的时间常数。(2零状态响应u c (t=U s (1-e -t/RC u(t
u L
t m
U 0
① C
L
R 2>,响应是非振荡性的,称为过阻尼情况。
响应曲线如图所示②C
L R 2
= ,响应临界振荡,称为临界阻尼情况。响应曲线如
③C
L R 2<,响应是振荡性的,称为欠阻尼情况。响应曲线如图
U 0
二阶电路的欠阻尼过程
④当R =0时,响应是等幅振荡性的,称为无阻尼情况。响应曲线如图
随着输入信号的频率升高,输出信号稳定所需时间越来越短,输出信号的幅度值越来越小。一阶RC电路的时间常数越大传输速率越小。
2、用Multisim研究二阶电路的动态特性
(1实验电路
(2初始条件、电感及电容的值如图所示,t=0电路闭合。计算临界阻尼时的R值。并分别仿真R1=R/3、R和3R三种情况下电容上的电压,在同一张图上画出输入及三种情况的输出响应曲线。说明各属于什么响应(欠阻尼、临界及过阻尼。
经计算得临界阻尼R=632.46欧
R/3欠阻尼状态R临界阻尼状态3R过阻尼状态
(3从(2的仿真曲线上分别测量出电容上的电压相对误差小于1%所需要的时间。定性说明哪种响应输出最先稳定?哪种响应输出稳定最慢?
由图知所需时间为460.1266微秒
由54.0146微秒临界阻尼状态响应最先稳定过阻尼状态响应的最后稳定(4)输入频率为500Hz、占空比为50%、振幅为10V的时钟信号,仿真电阻R1=R/3、R和3R三种情况下电容上的输出电压波形(3个周期),在同一张图中画出输入信号和输出信号三条曲线,根据仿真曲线,说明在同样的误差范围,哪种电路传输的信号速率最高?哪种电路传输的信号速率最低?
电路的全响应:u c (t=U 0e -t/RC +U s (1-e -t/RC (t>=0 (1零输入响应u c (t=U 0e -t/RC (t>=0
输出波形单调下降。当t=τ=RC时, u c (τ=U 0/e=0.368U 0,τ成为该电路的时间常数。(2零状态响应u c (t=U s (1-e -t/RC u(t
u L
t m
U 0
① C
L
R 2>,响应是非振荡性的,称为过阻尼情况。
响应曲线如图所示②C
L R 2
= ,响应临界振荡,称为临界阻尼情况。响应曲线如
③C
L R 2<,响应是振荡性的,称为欠阻尼情况。响应曲线如图
U 0
二阶电路的欠阻尼过程
④当R =0时,响应是等幅振荡性的,称为无阻尼情况。响应曲线如图
随着输入信号的频率升高,输出信号稳定所需时间越来越短,输出信号的幅度值越来越小。一阶RC电路的时间常数越大传输速率越小。
2、用Multisim研究二阶电路的动态特性
(1实验电路
(2初始条件、电感及电容的值如图所示,t=0电路闭合。计算临界阻尼时的R值。并分别仿真R1=R/3、R和3R三种情况下电容上的电压,在同一张图上画出输入及三种情况的输出响应曲线。说明各属于什么响应(欠阻尼、临界及过阻尼。
经计算得临界阻尼R=632.46欧
R/3欠阻尼状态R临界阻尼状态3R过阻尼状态
(3从(2的仿真曲线上分别测量出电容上的电压相对误差小于1%所需要的时间。定性说明哪种响应输出最先稳定?哪种响应输出稳定最慢?
由图知所需时间为460.1266微秒
由54.0146微秒临界阻尼状态响应最先稳定过阻尼状态响应的最后稳定(4)输入频率为500Hz、占空比为50%、振幅为10V的时钟信号,仿真电阻R1=R/3、R和3R三种情况下电容上的输出电压波形(3个周期),在同一张图中画出输入信号和输出信号三条曲线,根据仿真曲线,说明在同样的误差范围,哪种电路传输的信号速率最高?哪种电路传输的信号速率最低?
电路原理课件 二阶电路的冲激响应讲解

冲激响应电流为
i(t) ?
C duC (t) ? dt
s1
I0 ? s2
( s1e s1t
?
s2e s2t )ε(t )
s1 ? ? α ?
uc(t) ? 2C
I0
( e s1t ? e s2t ) ε ( t )
α2
?
ω
2 0
s2 ? ? α ?
α 2 ? ω02 α 2 ? ω02
i (t ) ? C du C ? dt 2
解:将R、L、C的值代入计算出固有频率
R s1,2 ? ? 2L ?
则
??
R
2
?? ?
1
? ?3?
? 2L ? LC
32 ? 52 ? ? 3 ? j4
uC(t) ? e?3t[ K1 cos(4t) ? K2 sin(4t)]
(t ? 0? )
uC (t )
?
e? 3t [
K1 cos4t
?
K2 sin(4t) ]
初始条件为
uC (0? ) ? uC (0? ) ? 0
uC?(0? ) ?
i(0? ) ? C
I0 C
A1 ? 0
? ?
? αA1 ?
A2
?
I0 ? C ??
A1 ? 0
A2 ?
I0 C
uC (t ) ?
I0t e?? t?(t)
C
i(t) ?
C
du dt
?
(1 ?
?
t)I0e?? t?(t)
非振荡放电(临界阻尼放电)
R s1,2 ? ? 2L ?
?
R
2
?
?? 2L ??
一阶电路

② 固有响应,微分方程通解中的齐次方程的解,因其随时间的 增长而衰减到零,又称为暂态响应分量; ③ 强制响应,微分方程通解中的特解,其形式一般与输入形式 相同. 如强制响应为常量或周期函数,又可称为稳态响应; ④ RC、RL电路,输入DC,贮能从无到有,逐步增长。所以, uC , iL 从零向某一稳态值增长,且为指数规律增长; ⑤ 零状态比例性,若外施激励增大 倍,则零状态响应也增 大 倍,如果有多个独立电源作用于电路,可以运用叠加定理求
从而得到所求变量(电流或电压)的方法。 用经典法求解常微分方程时,必须根据电路的初始条件确定解
答中的积分常数。
电路独立初始条件:uC(0+)和 iL(0+)
二. 电路的初始条件 1. 电容的电荷和电压
q (t ) q (t ) t i ( )d C C 0 t0 C t uC (t ) uC (t0 ) 1 iC ( )d C t0
K RIS t t uC (t ) RIS e RC RIS RIS (1- e RC )
其中 uC (0) K RIS 0
t 0
① ucp 为稳定分量,与外施激励的变化规律有关,又称强制分量
② uch (齐次方程的通解) 取决于特征根,与外施激励无关,也称为 自由分量 ,自由分量按指数规律衰减, 最终趋于零, 又称为瞬态分量。
iL(0+) = I0 ,故换路瞬间,电感相当于电流值为 I0 的电流源;
② 若 t = 0- 时, L(0-) = 0 ,iL(0-) = 0 ,则应有 L(0+) = 0 ,
iL(0+) = 0, 则换路瞬间,电感相当于开路。 3. 独立初始条件uC(0+)和 iL(0+) 由 t = 0- 时的 uC(0-)和 iL(0-) 确定。非独立初始条件(电阻电压或电流、电容电流、 电感电压)需要通过已知的独立初始条件求得。 例7-1
电路课件 电路07 一阶电路和二阶电路的时域分析

第7章一阶电路和二阶电路的时域分析 7-1动态电路方程及初始条件
2019年3月29日星期五
经典法
5
• 线性电容在任意时刻t,其电荷、电压与电流关系:
q(t ) q(t0 ) iC ( )d
t0 t
线性电容换路瞬间情况
uC (t ) uC (t0 )
• q、uc和ic分别为电容电荷、电压和电流。令t0=0-, t=0+得: 0 0
第7章一阶电路和二阶电路的时域分析
2019年3月29日星期五
3
• 动态电路:含动态元件电容和电感电路。 • 动态电路方程:以电流和电压为变量的微分方程或微 分-积分方程。 • 一阶电路:电路仅一个动态元件,可把动态元件以外 电阻电路用戴维宁或诺顿定理置换,建立一阶常微分 方程。 • 含2或n个动态元件,方程为2或n阶微分方程。 • 动态电路一个特征是当电路结构或元件参数发生变化 时(如电路中电源或无源元件断开或接入,信号突然 注入等),可能使电路改变原来工作状态,转变到另 一工作状态,需经历一个过程,工程上称过渡过程。 • 电路结构或参数变化统称“换路”,t=0时刻进行。 • 换路前最终时刻记为t=0-,换路后最初时刻记为t=0+, 换路经历时间为0-到0+。
第7章一阶电路和二阶电路的时域分析 7-2一阶电路的零输入响应
2019年3月29日星期五
RC电路零输入响应-1
12
• 电路中电流 • 电阻上电压
RC电路零输入响应-2
1
t t duC U 0 RC t d 1 RC RC i C C (U 0e ) C ( )U 0e e dt dt 1 RC R
R
13
RC电路零输入响应-3
2019年3月29日星期五
经典法
5
• 线性电容在任意时刻t,其电荷、电压与电流关系:
q(t ) q(t0 ) iC ( )d
t0 t
线性电容换路瞬间情况
uC (t ) uC (t0 )
• q、uc和ic分别为电容电荷、电压和电流。令t0=0-, t=0+得: 0 0
第7章一阶电路和二阶电路的时域分析
2019年3月29日星期五
3
• 动态电路:含动态元件电容和电感电路。 • 动态电路方程:以电流和电压为变量的微分方程或微 分-积分方程。 • 一阶电路:电路仅一个动态元件,可把动态元件以外 电阻电路用戴维宁或诺顿定理置换,建立一阶常微分 方程。 • 含2或n个动态元件,方程为2或n阶微分方程。 • 动态电路一个特征是当电路结构或元件参数发生变化 时(如电路中电源或无源元件断开或接入,信号突然 注入等),可能使电路改变原来工作状态,转变到另 一工作状态,需经历一个过程,工程上称过渡过程。 • 电路结构或参数变化统称“换路”,t=0时刻进行。 • 换路前最终时刻记为t=0-,换路后最初时刻记为t=0+, 换路经历时间为0-到0+。
第7章一阶电路和二阶电路的时域分析 7-2一阶电路的零输入响应
2019年3月29日星期五
RC电路零输入响应-1
12
• 电路中电流 • 电阻上电压
RC电路零输入响应-2
1
t t duC U 0 RC t d 1 RC RC i C C (U 0e ) C ( )U 0e e dt dt 1 RC R
R
13
RC电路零输入响应-3
第7章 二阶电路

§2-1 R、L、C串联电路的数学分析—零输入响应
7-8
R
i
L
已知:
+
+ uR
S
-
+ uL
u
+
C
us=0, uc( 0 )、 iL(0)
u (t)
-
-
求解: uc( t )
根据两类约束建立电路的微分方程,得
d 2uC R duC 1 uC 0 2 dt L dt LC
称为齐次方程
(7 12)
1 1 WC (1.4) 2 0.1225 W 2 8
电阻耗能 0.49 0.1225 0.6125W
t 0
习题课
习题2 上题若R改为5Ω,试求i(t),t≥0。
i
R
7-22
+ 1 —F 8
9Ω
( K1 cos dt K 2 sin dt )
4)
Ke t cos( dt ) R 0 无阻尼情况: s1、 j 0 2 uc (t ) K1 cos 0t K 2 sin 0t
(2)解答的完成
利用初始条件,确定常数K1、K2,求得解答。 设已知解答uc的形式为 K1e s t K 2 e s t,
(c) 解答形式 uC uCp uCh
0.4 e 3t ( K1 cos 4t K 2 sin 4t )
(2) 解答的完成
零状态即
uC (0) 0, iL (0) 0
uC (0) 0.4 K1 0 K1 0.4 duC duC i L (0) C iL C 0 dt dt
i
R
+ 1 —F 8
二阶电路.ppt

p2e p2t )
华中科技大学出版社
5
湖北工业大学
可以看出电容电压是衰减的指数函数,且因为 p1 , 所p2以随
着时间的增长,uc中第一项比第二项衰减慢, uc一直为正。图 9-2画出了电容电压、电流和电感电压随时间变化规律的波形。
图9-2 变化波形
动画演示:二阶电路的零 输入响应(RLC串联) 1
duc iL (0 ) I0
dt t0
C
C
对于线性常系数的二阶齐次微分方程,解为二阶电路的零输
入响应,令 uc ,A得e p特t 征方程为
LCp2 RCp 1 0
特征方程的根为
p1,2
R 2L
R
2
1
2L LC
2 2
方程的通解为 uc A1e p1t A2e p2t p1 p2
RLC电路在单位冲激信号作用下的零状态响应叫做冲激响应。 串联电路的冲激响应的求解方法:
方法一 直接利用描述电路的二阶常系数线性非齐次微分方程 求解,即从冲激信号的定义出发,直接计算冲激响应。 t=0瞬 间冲激施加于电路,在t=0+时建立了初始值,而冲激信号消失, 求零状态响应转换为求零输入响应。
图9-7 二阶阶跃响应电路
根据波形可知,电容电压从单调地衰减为零,说明电容一直 处于放电状态。故这种情况下为非振荡放电过程,或过阻尼情 况。
华中科技大学出版社
6
湖北工业大学
i在变化的过程中具有一个极大值imax,设出现在t=tm,时刻, 令
di dt
0,即uL
0
p1e p1tm
p e p2tm 2
0
tm
ln( p2 / p1 ) p1 p2
解 (1) 换路前电路已达稳态,则有
一阶电路和二阶电路

【二】 RC电路零状态响应:充电
1、列方程:Ri uC U S
RC
duC dt
uC
US
非齐次线性常微分方程
2、解方程:
uc
=
uc ( 特解
)+
uc( 通解
)
uC :通解(自由分量,暂态分量)
齐次方程的通解
t
RC
duC dt
uC
0
uC Ae RC 变化规律由电路参数和结构决定
§7-2 一阶电路的零输入响应
【三】 RL电路零输入响应
R1
Ri
i (0+) =
i (0-) =
US R1
R
I0
+
di
US
K(t=0) L uL
L Ri 0 t 0 dt
–
i(t ) Ae pt
特征方程 Lp+R=0
特征根 p = R L
由初始值 i(0+)= I0 定积分常数A
Rc
duc dt
uc
0
uc (0 ) U 0
2.解方程:通解
uc = Ae pt
P的求解:由特征方程: RCP 1 0
P 1 RC
A的求解:由初值: uc (0 ) A e p0 U 0 A = U0
uc
=
U0e-
t RC
(t
0)
i
=
-c
du0 dt
=
U0 R
Li
若t 0时iL (0 ) 0则iL (0 ) 0
iL (0 ) iL (0 )成立条件时 u为有限值
一阶电路和二阶电路

iL Is
t
iL Ae L R
iL
=
I (1 S
e-
R L
t
)
A由初值: A Is
uL
=
L diL dt
=
IS Re- RLt
佛山科§学7技-术3学院 一阶电路的零状态响应
现代制造装备工程技术开发中心
佛山科§学技7术-学2院 一阶电路的零输入响应
现代制造装备工程技术开发中心
t=0时 , 打开开关K,求uv。
电压表量程:50V 现象 :电压表坏了
分析
iL (0+) = iL(0-) 1 A
iL e t /
L 4 4104 s
R RV 10000
uV RV i L 10000e 2500t t 0
uV (0+)= - 10000V 造成 V 损坏。
佛山科§学7技-术2学院 一阶电路的零输入响应
现代制造装备工程技术开发中心
四、小结 <一阶电路零输入响应的求解>
+
P
C Uc
P
iL
-
u(0 ) uc (0 ) U0
iL (0 ) iL (0 ) I0
分析:戴维南定理化简
佛山科§学技7术-学2院 一阶电路的零输入响应
3)作 0 等效电路
L 用一电流为 iL (0 )的电流源代替 C 用一电压为 uc (0 )的电压源代替
4) 求解0电路。求出其它 f (0 )
佛山科§学技7术-学1院动态电路的方程及其初始条件
现代制造装备工程技术开发中心
(1) 由0-电路求 uC(0-) 或 iL(0-) uC(0-)=8V