动量矩定理

合集下载

第十三章动量矩定理_理论力学

第十三章动量矩定理_理论力学

式中
分别为作用于质点上的内力和外力。求 n 个方程的矢量和有
式中

于 点的主矩。交换左端求和及求导的次序,有
为作用于系统上的外力系对
令 (13-3)
为质系中各质点的动量对 点之矩的矢量和,或质系动量对于 点的主矩,称为质系对 点的动量矩。由此得
(13-4) 式(13-4)为质系动量矩定理,即:质系对固定点 的动量矩对于时间的一阶导数等于外力 系对同一点的主矩。
设 Q 为体积流量, 为密度, 和 分别为水流进口处和出口处的绝对速度, 和 分别为涡轮外圆和内圆的半径, 为 与涡轮外圆切线的夹角, 为 与涡轮内圆切线的
夹角,则
由动量矩定理 得
为叶片作用于水流上的力矩。若水涡轮共有 个叶片,则水流作用于涡轮的转动力矩为
方向与图示方向相反。 §13-2 刚体绕定轴转动微分方程
解:取两叶片间的水流为研究对象(图 13-4 中的兰色部分)。作用于质系上的的外力有 重力和叶片的约束力,重力平行于 z 轴,对转动轴之矩为零。所以外力主矩为叶片对水流
的约束力对 z 轴之矩 。
计算 时间间隔内动量矩的增量 。设 t 瞬时占据 ABCD 的水流,经过 时间间隔
后,运动至占据
,设流动是稳定的,则

式中

(13-8)

(13-9)
此式称为刚体绕定轴转动的微分方程。
为刚体绕定轴转动的角加速度,所以上式
可写为
(13-10)
1.由于约束力对 z 轴的力矩为零,所以方程中只需考虑主动力的矩。 2.比较刚体绕定轴转动微分方程与刚体平动微分方程,即

形式相似,求解问题的方法和步骤也相似。 转动惯量与质量都是刚体惯性的度量,转动惯量在刚体转动时起作用,质量在刚体平动

动量矩定理

动量矩定理

第十一章动量矩定理§11-1 引言建立质点或质点系的动量对于某固定点(或固定轴)的矩的变化与作用在该质点或质点系上的力系对同一点(或轴)的主矩之间的关系。

Pr ωε§11-2 动量矩一、质点动量矩Vm r V m M L o o r r r r r ×==)(的动量矩为则质点对固定点的速度为时作空间曲线运动,在瞬的作用下在力的质点设质量为O V t F M m ,r r 方向:右手螺旋法则大小:OAB o S d mV L ∆==2)(1、动量对点之矩V m r L o r r r ×=2、动量对轴之矩)(V m M L z z r =正负:右手规则是标量z L 质点对O 点的动量矩矢在通过O 点的任意轴上的投影,等于质点对该轴的动量矩。

zz O L L =)(r OabS ∆±=2d v m ′′±=)(二、质点系动量矩各质点动量对某点O 的矩的矢量和(即质点系动量对O 点的主矩)称为该质点系对点的动量矩。

n n n o V m r V m r V m r L r r L r r r r r ×++×+×=222111各质点动量对某轴的矩的代数和称为该质点系对该轴的动量矩。

)()()(2211n n z z z z V m M V m M V m M L r L r r +++=∑=)(i i O V m M r r ∑×=i i i V m r r r ∑=)(i i z V m M rV m r L o r r r ×=由§11-3 质点的动量矩定理V m dt r d dt V m d r dt V m r d r r r r r r ×+×=×)()(得:V dt r d r r =∴dt V m r d )(r r ×∴O 点为固定点V m dt r d r r ×∴一、矢量形式0=V m V r r ×=F r r r ×=dt V m d r )(r r ×=oM F)()(F M dt L d F r dt V m r d o o r r r r r r r =×=×或质点的动量对任一固定点的矩对时间的导数等于作用于该质点的力对同一点的矩。

动量矩定理

动量矩定理

mO (F ) mAgr mB gr 0
LO const 0,
即:质点系对轴 O 的动量矩守恒, 且等于零。 vA mAvAar mBvBar 0
O
RO
vB
mAg mBg
见后续
v Aa vBa
即: 二猴的绝对速度永远相等,比赛不分胜负!
二猴爬绳比赛分析 因为二猴的体力有差异,所以
所以得
n d (e) d M M ( m v ) ( 交换求导数与求和的次序 ) ( m ) oi v i ) i i M o ( Fi o dt dt i 1 i 1 i 1 n
n
质点系对定点的动量矩定理
(e) d M o (mi vi ) M o (Fi ) dt i 1 i 1 n n
动量对固定轴z的矩:
[Mo(mv)]z= M z(mv) =±2S△OA'B'
指向:按右手螺旋规则定。
结论:
• 质点的动量对点O的矩称为质点对于O的动量矩。
Mo(mv)= r×mv
矢量
• 质点的动量mv 在Oxy平面内的投影(mv)xy对于点O 的矩定义为质点对于z轴的动量矩。
• 质点对点O的动量矩矢在z轴上的投影,等于质点对z轴的动量矩,即
质点对某轴的动量矩对时间的一 阶导数,等于作用力对于同一轴的矩。
d M ( mv ) M ( F ) x dt x d M ( mv ) M ( F ) y y dt d M ( mv ) M ( F ) z z dt
关于质点动量矩守 恒
• 当MO( F ) = 0 时,有MO( mv ) = 常矢量。
正确解法
Mf
O2 R2

11)动量矩定理

11)动量矩定理

动量矩定理
质点对某定点的动量矩对时间的一阶导数
等于作用力对同一点的矩
第十一章 动量矩定理
2、质点系的动量矩定理
根据质点动量矩定理:
e i d M O mi vi M O Fi M O Fi dt e i d 对于质点系: M O mi vi M O Fi M O Fi dt i 内力总是成对出现: M O Fi 0
时圆盘和人静止,求圆盘的角速度和角加速度
z
v
B
R
O
r

第十一章 动量矩定理

§11-3 刚体绕定轴的转动微分方程
z
F1
O1
定轴转动刚体的动量矩: L J z z
Fn
d 根据动量矩定理: J z M z Fi dt d d 2 Jz J z J z 2 M z F dt dt
第十一章 动量矩定理
将 mi vi mvC 和 vi vC vir 代入: rC mi vi ri mi vi rC mvC ri mi vC vir rC mvC mi ri vC ri mi vir
C
A

e
r
P
第十一章 动量矩定理
3、相对于质心的动量矩定理
dLO d e ri rC ri rC mvC LC ri Fi dt dt e e 右边 rC Fi ri Fi drC dLC d 左边 mvC rC mvC dt dt dt e dLC vC mvC rC maC maC Fi dt e dLC rC Fi dt

第11章 动量矩定理

第11章 动量矩定理
指向按右手规则确定; 瞬时量
O点为矩心
M O (F ) r (F )
描述:质点相对某点“转动”运动强度。
§11-1 动量矩计算
质点对轴的动量矩
Lz M z (mv ) [MO (mv )]z
M z (F ) M O (F )
一般规定:
与轴的正向一致(逆时针转动)取“+”, 与轴的正向相反(顺时针转动)取“-”。
n dLx M x (Fi ( e ) ) dt i 1 n dLy M y (Fi ( e ) ) dt i 1
§11-2 动量矩定理
3. 质点动量矩定理(固定点、动点)
A为动点 L A (mv ) r rA mv d d d L A (mv ) r rA mv r rA (mv ) dt dt dt
n (e) dLO MO ( Fi ) dt i 1
其中: LO M O (mi vi ) ri mi vi
i 1 i 1 n n
§11-2 动量矩定理
2. 质点系动量矩定理
B. 对固定轴
n (e) dLz M z ( Fi ) dt i 1
1 4 1 J z r dm r 2rdr 2 R MR2 4 2 0
2 2
R
2 z R 2
要求记住!
§11-1 动量矩计算
D. 匀质薄圆板对于径向轴的转动惯量
圆板对于x与y轴的转动惯量相等: Jx J y
J z mr i m( xi yi ) mx i my i
§11-2 动量矩定理
4. 质点系动量矩定理
任意质点对动点A动量矩定理:

第11章 动量矩定理

第11章 动量矩定理

M z Q(v1r1 cos1 v2r2 cos2 )
例 3 (书上例 11-7,动量矩守恒。)
质量为 m1 = 5kg,半径 r = 30cm 的均质圆盘,可绕铅直轴 z 转
动,在圆盘中心用铰链 D 连接一质量 m2 = 4kg 的均质细杆
AB,AB = 2r,可绕 D 转动。当 AB 杆在铅直位置时,圆盘的
三、 刚体 1. 平动刚体
11-1
LO r MvC
2. 转动刚体(对定轴或平面上定点)
Lz I z
LO IO
3. 平面运动刚体
对质心 C: LC IC
对定点 O: LO mO (MvC ) IC
对瞬心 C': LC IC
11.2 动量矩定理
一、 质点动量矩定理
由牛顿第二定律: ma F
l 3g
而 aC
2
4

W 3g W
NA W g
4
4
IV. 绳子剪断前后 A 反力的变化:
WW W ΔN A N A N A0
42 4
例 2 例 11-5 (较典型题目)
作业:11-18
11.4 质点系相对动点的动量矩定理(*)
此部分较难,特别是公式推导不易理解。主要掌握两种:①对质心的动量矩定理;②平
m2 g
转速为 n = 90rpm。试求杆转到水平位置,碰到销钉 C 而相对
静止时,圆盘的转速。
解:系统对 z 轴动量矩守恒。
初时系统动量矩: Lz I z盘 1 m1r 2 4
末时系统动量矩: Lz Iz盘 Iz杆 1 m1r2 1 m2 (2r)2
4
12
Lz Lz
11-4
1 4
m1r 2

第十二章 动量矩定理

第十二章 动量矩定理

Lz=Jzω
§2 动量矩定理
一、质点的动量矩定理
设质点质量为m, 受力F, MO(mv) 动量mv,定坐标系Oxyz , 根据质点的动量定理 z
F
B
mv
r
o A y
MO(F)
d (mv ) F dt
等式两边同时与矢径r作矢量积, 即 x
d (mv ) r F r dt
MO(F)
?
d (mv ) r F 为求等式 r 左边项,先来看 dt d (r mv ) dr mv r d (mv ) dt dt dt v ( r d ( v mv∵O为定点!)mv ) dt MO(mv) =0
第十二章
动量矩定理
z
§1 动量矩的概念
一、质点的动量矩
F r
o
B A m
y
回顾: 力对点的矩 Mo(F)= r×F 若 r=xi+yj+zk F=Fxi+Fyj+Fzk
则 i M o (F ) x Fx
j y Fy k z Fz
MO(F)
x
大小:│Mo(F) │ =2S△OAB
方向:按右手螺旋规则定。
[Mo(mv)]z= M z(mv)
代数量
• 动量矩的量刚为 ML2T-1 (kg· 2/S) m
二、质点系的动量矩
质点系对固定点O的动量矩等于各质点对同 一点O的动量矩的矢量和(即质点系动量对点O 的主矩):
对定点
Lo M o (mi vi )
i 1
n
矢量
质点系对固定轴z的动量矩等于各质点对同一 轴z的动量矩的代数和,即
vC
C
Lo = M o(Mvc)

第七讲动量矩定理

第七讲动量矩定理
Friday, May 24, 2019
Theoretical Mechanics
(二) 动量矩定理
Kinetics 13-3-2
一、动量矩定理
1、质点的动量矩定理:
d(r mv) r F dt
dlO M O(F ) dt
------质点动量矩定理
2、质点系相对于固定点O的动量矩定理:
z
A
u
r
ω
O
Friday, May 24, 2019
B
theoretical mechanics
解:1、研究对象:人和圆盘 2、受力分析(如图) 仅受轴承反力,重力的作用
z
A
XA
r
Kinetics 13-3-12
u Yω A
3、运动分析: 圆盘: 定轴转动,w 、a 人: 圆盘为动系,则
ve vr
vir
vi
Mi
ห้องสมุดไป่ตู้ r
LC
ri ' mi vir
z′
ri
vC
O
C
ri yy′
x′ rC
x
d LC M C ----式中,所有的点用绝对速度,绝对动量对
dt
点C的矩,而C在空间不断变化。
r
d LC M C ----式中,所有的点用相对速度,相对动量对
dt
点C的矩,而C在空间不断变化。
Friday, May 24, 2019
y
B
aw q
Kinetics 13-3-19
N
A

mg
1 2
m l(w2
cos q

a sinq)
开始时:
C
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、刚体平面运动概述和运动分解
1.1 刚体平面运动的概念 1.2 刚体平面运动方程 1.3 刚体平面运动的分解 1.4 基点的选择对刚体平面 运动分解结果的影响
1.1 刚体平面运动的概念
在运动中,刚体上的任意一点与某一固定平面 始终保持相等的距离,这种运动称为平面运动。
刚体平移不一定是平面运动;刚体绕固定轴 的转动一定是平面运动。
A
念,位矢叉乘某一矢量 得到的新矢量,即为该 MO(mv) 矢量的矩。不同的物理
Mz(mv)
mv
量的矩有不同的物理意
q
Q
M 义O ( 。p ) M O ( m v ) r p r m v O
r
y
A
x
Q
2. 平面力系的研究思路
仍然遵循从简单到复杂,从特殊到一般的认识 规律。
共线力系
平面力偶系
动量矩定理
§11-0 概述 §11-1 质点和质点系的动量矩 §11-2 动量矩定理 §11-3 刚体绕定轴转动的微分方程 §11-4 刚体对轴的转动惯量 §11-5 质点系相对于质心的动量矩
定理 §11-6 刚体的平面运动微分方程
§11-0 概述矩,Fra bibliotek一个数学概z
念。某矢量 p 的位矢
r OQ叉乘该矢量得到 的新矢量,即为该矢量
累了吗?休息一下!
二、求平面图形内各点速度的基点法
2.1 电阻应变片实物图 2.2 电阻应变片的基本结构 2.3 电阻应变片的使用 2.4 电阻应变效应 2.5 温度的影响
三、求平面图形内各点速度的瞬心法
3.1 使用电桥电路的原因 3.2 惠斯通电桥 3.3 电桥的加减特性 3.4 温度的补偿 3.5 工作片与温度补偿片 3.6 常用的组桥方式
平面汇交力系
平面平行力系
平面任意力系
2. 平面力系的研究思路
仍然遵循从简单到复杂,从特殊到一般的认识 规律。
共线力系
平面力偶系
平面汇交力系
平面平行力系
平面任意力系
一、刚体平面运动概述和运动分解 二、求平面图形内各点速度的基点法 三、求平面图形内各点速度的瞬心法 四、用基点法求平面图形内各点的加
速度 五、运动学综合应用举例
刚体的平面运动可简化为平面图形在其自身 平面内的运动。
1.2 刚体平面运动方程
y
S
M
O' φ
O
x
基点
O'的位值
xO yO
f f
1 2
( (
t t
) )
f3 (t )
绕O'转动的 角位移
1.3 刚体平面运动的分解
平面运动可看成为随同基点的平移和绕基点转 动这两部分运动的合成。基点成为平移动参考系的 坐标原点。
MO(mv)
Mz(mv)
的矩。不同的物理量的
矩有不同的物理意义。
q
O
r
A mv Q
y
A
x
Q
§11-1 质点和质点系的动量矩
1. 质点的动量矩 2. 质点系的动量矩
1. 质点的动量矩
矩,是一个数学概念,位矢叉乘某一矢量得到的新
矢量,即为该矢量的矩。不同的物理量的矩有不同的物
理意义。
z
矩,是一个数学概
刚体平移不一定是平面运动;刚体绕固定轴 的转动一定是平面运动。
刚体的平面运动可简化为平面图形在其自身 平面内的运动。
一、刚体平面运动概述和运动分解
电桥:将电阻应变片输出的电信号进行处理,使 之适合于电阻应变仪记录和显示,起到测 量电路的作用。
电阻应变仪:将电桥输出的电信号进行处理,使 最终记录和显示的数字等于电阻应 变片感受到的应变,起到测录设备 的作用。
四、用基点法求平面图形内 各点的加速度
4.1 电阻应变仪的作用与功能 4.2 电阻应变仪实物 4.3 应变仪读数与输出电压的关系 4.4 各种电桥的应变仪读数
五、运动学综合应用举例
1、关键词
电阻应变片;电桥;电阻应变仪;电阻应变效应 应变片的温度误差;电桥补偿法;电桥的加减特性 工作片;温度补偿片;单臂半桥;双臂半桥; 对臂全桥;四臂全桥;应变仪读数
相关文档
最新文档