一阶系统时域分析
一阶系统时域分析

能达到稳态值的0.632, 经过3T或4T的时间系统输出响应分加别
达到稳态值的0.95或0.98。
线性系统的时域分析法>>一阶系统的时域分析
一阶系统响应的特点: (1) t=T时,输出达到稳态值的0.632
h(0) 1 e0 0 ——— t= 0时, 输出为0 h(T ) 1 e1 0.632 —— t=∞时,输出达到稳态值1 h(3T ) 1 e3 0.95 —— t=T时,输出达到稳态值的0.632 h(4T ) 1 e4 0.98 —— t=3T时,输出达到稳态值的0.95
典型系统的时域分析
1.一阶系统时域分析
由一阶微分方程描述的系统称为一阶系统。其传递函数的 特征方程是 s的一次方程。
一阶系统的微分方程为:
T dc(t) c(t) r(t) dt
典型的一阶系统的结构图如图所示
K
-
s
其闭环传递函数为:
(s) C(s)
K S
1
1
R(s)
1
K S
S K
1
Ts 1
式中,T 1 ,称为时间常数。
K
线性系统的时域分析法>>一阶系统的时域分析
1.一阶系统的单位阶跃响应
r(t) 1(t), R(s) 1 s
11
C(s)
,
Ts 1 s
h(t) L1[ 1 1]
Ts 1 s
L1[1
1
t
] 1 e T
s s 1
T
这是一条指数曲线, t 0
处斜率最大,其值为1/T,若系统保
持此变化速度,在 t=T 时,输出将达到稳态值。而实际系统只
t
c(td ) 1 e T 0.5
自动控制原理--一阶系统的时域分析相关知识

三、 一阶系统的单位脉冲响应
输入信号 r(t) (t) R(s)=1
c(t)
输出信号 C(s) (s)R(s) 1
1/T
Ts 1
斜率-1/T2
0.368/T 0.135/T
c(t) 1 et /T T
拉氏反变换,得 t k(t) L1[C(s)] L1[ (s)]
0 T 2T 3T 图3.10 一阶系统的单位脉冲响应
• 例3-1:
一阶系统如图所示,试求系统单位阶跃响应的调 节时间ts,如果要求ts=0.1秒,试问系统的反馈 系数应如何调整?
• 例3-2:
G(s) 10
已知某元部件的传递函数为:
0.2s 1
采用图示方法引入负反馈,将调节时间减至原来 的0.1倍,但总放大系数保持不变,试选择KH、 K0的值。
1 et /T (t 0) T
三、 一阶系统的单位脉冲响应特点
• 1)可以用时间常数去度量系统的输出量数字。 • 2)初始斜率为-1/T2 。 • 3) 无超调,稳态误差为零 。
h(t)
超调量
1.0 0.9
延迟时
0.5 间
0.1 0
峰值时间
上升时间 调节时间
误差带 0.02或0.05
稳态误差 (t→∞)
s
输出 C (s) (s) R(s)
1 1 Ts 1 s
1 1 取拉氏反变换,得 s Ts 1
h(t) 1 et /T (t 0)
一阶系统单位阶跃响应是终值为1的单调上升过程。
c(t) c(t) 1 et /T dh(t) 1
1
dt t0 T
0.865
0.632
td 0.69T
一阶反馈系统
假设将一阶系统作为反馈控制系统的对象, 放大器增益可调,系统结构图如图所示。
32一阶系统的时域分析

k(0)=
1 T
h’(0)=1/T
K’(0)=
1
Th2(TT)=0.632h(∞)
h(2T)=0.865h(∞)
响应应
h(3T)=0.95h(∞)
问应
1 、3个图各如何求T? h(42T、)=调0.节98时2h间(∞ts=)?
3 、r(t)=vt时,?ess=?
4、求导关系
小结: t d 1(t) d 2 t 1t
什么是二阶系统?凡以二阶微分方程作为运动方 程的控制系统,即为二阶系统。 研究二阶系统的意义:
1. 二阶系统的典型应用极为普遍 2. 不少高阶系统的特性在一定条件下可用二阶系 统特性来表征。
本节主要内容: 一、继续讲二阶系统的时域分析中的几种工作状态。 二、二阶系统的性能改善,关键是改变了阻尼比和
ch(t()t=)1=-1e-e-t/T
63.2% 86.5% 95% 98.2% 99.3%
t
0
T
2T 3T 4T 5T
稳态性能指标:
图 3-4指 数 响 应 曲 线
一阶惯性系统的单位阶跃响没有静态误差
ess
lim r (t )
t
h(t)
1
h()
11
0
讨论:动态指标与时间常数T有关,T越小,其响应过
dt
T dc(t) c(t) r(t)
(3-2)
dt
其中,T=RC为时间常数;取拉氏变换
TsC(s) C(s) R(s)
TsC(s) C(s) R(s)
则一阶系统的传递函数为:
i(t) R
(s) C(s) 1 R(s) Ts 1
(3-3)
r(t)
C c(t)
自动控制原理一阶系统时域分析

R(s)
1 s3
C
(s)
(
s)
R(s)
(1 Ts
) 1
1 s3
A s3
B s2
C s
D s 1
1 s3
T s2
T2 s
T2 s 1
T
T
c(t)
1
t
2
Tt
T
2 (1
1t
eT
)
2
(t 0)
e(t
)r(t)c(t)TtT2
(1
1
eT
t
)
上式表明,跟踪误差随时间推移而增大,直至无限大。因此,一阶系统不 能实现对加速度输入函数的跟踪。
第26页/共27页
感谢您的观看!
第27页/共27页
R(s) + E(s) 1 C(s)
-
Ts
R(s)
1
C(s)
Ts 1
(a)
微分方程: 闭环传递函数:
T dc(t) c(t) r(t) dt
(s) C(s) 1 R(s) Ts 1
(b) 标准形式
第18页/共27页
二、一阶系统单位阶跃响应
r(t) 1(t), R(s) 1 s
1
C(s)
1 Kh 100 / s 1 s / 100Kh
• 要求ts=0.1s,即3T=0.1s, 即
,得 1 0.1 100Kh 3
K h 0.3
• 解题关键:化闭环传递函数为标准形式。
第22页/共27页
二、一阶系统单位脉冲响应
r(t) (t) R(s) 1
C(s) (s)R(s) 1 1/T Ts 1 s 1/T
第15页/共27页
例题:加入给定值阶跃量为2.4,响应 曲线如图所示,求超调量。
一阶系统的时域响应实验报告

一阶系统的时域响应实验报告实验目的:通过实验观察一阶系统的时域响应情况,掌握一阶系统的传递函数及其参数对响应的影响。
实验器材:示波器、信号发生器、直流电源、一阶滤波器。
实验原理:一阶系统的传递函数为H(s)=K/(Ts+1),其中K为系统的增益,T为系统的时间常数。
系统的单位阶跃响应为h(t)=K(1-e^(-t/T))。
实验步骤:1、按照实验电路连接图连接电路。
2、将示波器接在电路输出端,用信号发生器产生一个频率为1kHz的正弦波作为输入信号,调节直流电源,使得输入信号幅值为1V。
3、测量电路输出波形,记录幅值、峰值、频率等数据。
4、将输入信号改为单位阶跃信号,在示波器上观察并记录输出信号的响应过程,测量电路的时间常数T。
实验结果及分析:1、在实验中,我们按照传统的RC低通滤波器的电路连接方式,将滤波器动态系统搭建起来。
2、对于一个RC电路,可以证明其传递函数为H(s)=1/(RCs+1)。
因此在实验中,我们可以通过改变RC电路的$RC$值来改变系统的时间常数,并观察其对系统响应的影响。
3、实验中我们观察到,当输入信号为正弦波时,系统能够对信号进行较好的滤波,输出信号幅值与频率的比例关系为a1=f^-1。
4、当输入信号为单位阶跃信号时,我们能够观察到系统的单位阶跃响应。
在实验中,我们通过观察输出信号的时间常数,可以得到系统的时间常数T。
5、实验中,我们还观察到了系统的过渡过程。
在输入信号发生变化后,系统的输出信号不会立即改变,而是经过一段时间才能够达到稳态。
在实验中,我们通过调节系统的时间常数来观察过渡过程的变化,从而获得了对一阶系统的更深刻的认识。
实验结论:通过本实验,我们详细地了解了一阶系统的时间常数、单位阶跃响应等数学概念,同时还深入掌握了一阶系统的响应机理。
此外,我们还利用实验数据验证了一阶系统的传递函数的正确性,并进一步掌握了如何通过调节时间常数来改变系统响应的技巧。
3-2 一阶系统的时域分析

一阶系统结构如图所示, 例: 一阶系统结构如图所示,试求该系统的单位 阶跃响应及调节时间。若要求t 阶跃响应及调节时间。若要求 s<0.1s,试问系 , 统的反馈系数K 应如何选取? 统的反馈系数 t应如何选取?
R(s)
-
100
C(s)
s
Κt
解:系统闭环传递函 数为: 数为:
C ( s) 100 Φ(s) = = R( s) s + 100 K t = 1 Kt 1 100 K t 1 Kt = Ts + 1 s +1
瞬态分量 稳态分量
瞬态分量变化规律由传递函数的极点s=-1/T决定 瞬态分量变化规律由传递函数的极点s=-1/T决定 极点s=
c(t ) = 1 − e
t − T
t≥0
c(t ) = 1 − e
−
t T
t≥0
由于c(t)的终值为1,系统稳态误差为0。 由于c(t)的终值为1,系统稳态误差为0 c(t)的终值为1,系统稳态误差为 动态性能指标: 动态性能指标:
输入信号 输入信号 时域) 复频域) (时域) (复频域) 输出响应 传递函数
δ (t )
1 ⋅ (t )
1
1 s 1 2 s 1 s3
1 e T
−
t T
t≥0
t T
1− e
ห้องสมุดไป่ตู้
−
t≥0
− t T
t
1 2 t 2
t − T + Te
t≥0
− t T
1 Ts + 1
1 2 t − Tt + T 2 (1 − e 2
R(s)
-
100
C(s)
s
一阶系统的时域分析

数T之间的关系。
时间t
0
T
2T 3T
…
输出量 0 0.632 0.865 0.950 … 1.0
斜率 1/T 0.368/T 0.135/T 0.050/T … 0.0
根据这一特点,可用实验的方法测定一阶系统的时间常 数,或测定系统是否属于一阶系统。
时间常数T是一阶系统的一个重要参数。 当t=3T时,响应输出可达稳态值的95%;
输出量和输入量之间的位置误差: t ess (t) 1(t) c(t) e T
稳态误差 :
t
lim
t
ess
(t
)
lim
t
e
T
0
三 一阶系统的单位斜坡响应
当一阶系统的输入信号为单位斜坡信号r(t)=t,其拉氏变 换为R(s)=1/s2,则系统的输出为:
C(s)
R(s) Ts 1
1 Ts 1
S tep R esponse 10
9
8
7
k 0.1
6
A m plitude
5
4
3
k 0.3
2
1
0
0
0.1
0.2
0.3
0.4
0.5
0.6
T im e (sec)
小结
• 一阶系统的传递函数和典型方块图 • 一阶系统的单位阶跃响应(单调上升曲线,性
能指标常用调整时间) • 系统对输入信号导数的响应等于对输入信号响
五.三种响应之间的关系
比较一阶系统对单位脉冲、单位阶跃和单位斜 坡输入信号的响应,就会发现它们的输入信号 有如下关系:
d (t) d [1(t)];
dt
1(t) d [t 1(t)]; dt
控制系统的时域分析_一二阶时间响应讲述

控制系统的时域分析_一二阶时间响应讲述时域分析是控制系统理论中的重要内容,主要用于分析系统的时间响应。
在时域分析中,我们会关注系统的输入和输出之间的关系,并研究系统在时间上的性能指标和特征。
本文将重点讲述一阶和二阶系统的时间响应。
一、一阶系统的时间响应一阶系统是指系统的传递函数中只有一个一阶多项式的系统,其传递函数形式为:G(s)=K/(Ts+1)其中,K是系统的增益,T是系统的时间常数。
一阶系统的单位阶跃响应是常用的时间响应之一,通过对系统施加一个单位阶跃输入,可以得到系统的响应曲线。
单位阶跃输入可以表示为:u(t)=1由于一阶系统的传递函数是一个一阶多项式,因此它的拉普拉斯变换可以通过部分分式展开得到:G(s)=K/(Ts+1)=A/(s+1/T)通过进行拉普拉斯逆变换,可以得到系统的单位阶跃响应函数y(t):y(t) = K(1 - exp(-t/T))其中,exp(-t/T)为底数为e的指数函数,表示系统的响应曲线在t时刻的衰减程度。
从单位阶跃响应函数可以看出,一阶系统的时间常数T决定了系统的响应速度和衰减程度。
时间常数越小,系统的响应越快速,衰减程度也越快。
二、二阶系统的时间响应二阶系统是指系统的传递函数中有一个二阶多项式的系统,通常可以表示为:G(s) = K / (s^2 + 2ξω_ns+ω_n^2)其中,K是系统的增益,ξ是系统的阻尼比,ω_n是系统的自然频率。
二阶系统的时间常数和质量阻尼比是描述系统性能的重要参数。
时间常数决定了系统响应的速度,质量阻尼比则影响了系统的稳定性和衰减程度。
对于二阶系统的单位阶跃响应,可以通过拉普拉斯逆变换得到响应函数y(t):y(t) = K*(1 - (1-ξ^2)^0.5 * exp(-ξω_nt) * cos((1-ξ^2)^0.5 * ω_nt + φ))其中,φ为相位角,由初始条件和变量确定。
从单位阶跃响应函数可以看出,二阶系统的阻尼比ξ决定了系统的过阻尼、临界阻尼和欠阻尼的响应形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.已知一单位负反馈系统的单位阶跃响应曲线如下图所示,求系统的闭环传递函数。
解答:
①max ()100100()X X %%e %X δ-∞=⨯=⨯∞
由
2.1820.090.6082e
ξ-==⇒=
②0.8 4.946m n t ω==⇒= ③2222224.4648.9222 6.01424.46 6.01424.46
n B n n W K s s s s s s ωωω=⋅=⨯=++++++
2.已知系统如下图所示,求系统的单位阶跃响应,并判断系统的稳定性。
解答:
()()
()210
1101061010.511B s s W s s s s s +==+++++
3.16n ω==, 260.95n ξωξ=⇒
(
)()1sin n t c X t ξωωθ-=
,arctg θ=
()31 3.2sin 0.98718.19t e t -=-+︒ (5分)
系统根为
1,2632P j -±=
=-±,在左半平面,所以系统稳定。
3.一阶系统的结构如下图所示。
试求该系统单位阶跃响应的调节时间t s ;如果要求t s (5%)≤ 0.1(秒),试问系统的反馈系数应取何值?
(1)首先由系统结构图写出闭环传递函数
得 T =0.1(s )
因此得调节时间 t s =3T =0.3(s),(取5%误差带)
(2)求满足t s (5%) ≤0.1(s )的反馈系数值。
假设反馈系数K t (K t >0),那么同样可由结构图写出闭环传递函数
由闭环传递函数可得 T = 0.01/K t
100()10()100()0.1110.1c B r X s s W s X s s s ===++⨯1001/()1000.0111t B t t
K s W s K s s K ==+⨯+
根据题意要求 t s (5%) ≤ 0.1(s )
则 t s = 3T = 0.03/K t ≤ 0.1(s)
所以 K t ≥ 0.3
4.已知某装置的电路如题图所示。
输入信号为单位阶跃信号()()1i u t t =时,试计算输出响应()0u t ,画出()0u t 的草图,并计算响应时间s t
解:计算该电路的传递函数,由复数阻抗法计算得到
0()0.00511200()()0.0112100
i U s s s G s U s s ++===⋅++ 输出响应的拉氏变换为:
01
()12001111()()()21002100
i i U s s s U s G s U s s s s s =+==⋅⋅=-⋅++ 输出响应为 110001111()1()21002t u t L t e s s --⎡⎤=-⋅=-⎢⎥+⎣⎦
响应曲线如图所示。
计算响应时间:由于系统的初值为0.5,由公式
3s t T = 5%±
计算响应时间是不对的。
由定义有 10001
()1()0.98,2%2
s t
s t t u t t e -==-=± 10001()1()0.95,5%2s t
s t t u t t e -==-=± 解出 : ln 250.032,2%100
s t ==± ln100.023,5%100
s t ==±
5. 已知某检测元件响应特性为
10()0.21
G s s =+,为了将响应时间减小至原来的0.1倍,并保证原增益不变,采用负反馈方法来
实现如题图所示: 试计算图中各增益的值Kf 、
K h .
解: 结构图传递函数为
令增益不变,响应加快10倍,有
得到方程
解出 K f =0.9 K h =10
6. 已知速度反馈控制系统如题图所示,为了保证系统阶跃响应的超调量Mp<20% ,过渡时间ts ≤03.秒,试确定前向增益K 1的值和速度反馈系数K 2的值。
解:闭环传递函数为
由M p <20% ,t s ≤03.解出
ωn =20 ζ=0.5
由于 2220.5
20220400n n n s s s s ζωζωω==++=++
则有: 22121(5)20400K K s K s s s +++=++
比较系数,解出
1400
K=,
20.0375
K= 7.。