阴-阳离子表面活性剂复配研究与应用
两性离子表面活性剂

两性离子表面活性剂两性离子表面活性剂具有特殊的分子结构,在一个分子中同时带有两种电性的亲水基团,既具有正电荷的基团(如季铵盐),又具有负电荷的基团(如羧基或磺酸基),将阴阳离子集于一身,两者在水溶液中均能起到表面活性作用。
当然,阴阳离子本身是对立的,两性离子表面活性剂虽然同时带有两种离子,但不可能同时表现出阴阳离子表面活性剂的性质,要视使用环境条件而定。
两性离子表面活性剂在水溶液中发生电离,电离后所带的电性与溶液的pH值密切相关。
在等电点的pH值溶液中阴阳离子相互作用形成内盐,正负电性抵消后呈现非离子性,此时表面活性较差;在等电点以下的pH值溶液中呈阳离子性,显示阳离子表面活性剂的作用;在等电点以上的pH值溶液中呈阴离子性,显示阴离子表面活性剂的作用。
因此两性表面活性剂在酸性、碱性和中性溶液中均可使用,而且能够分别与阳离子或阴离子表面活性剂配伍使用,相容性好。
两性离子表面活性剂还有耐硬水、发泡力强、毒性低、对皮肤刺激性小等特点。
近年来,化妆品产品更加强调安全性和调理性,对表面活性剂的选择有所改变,在配方里更多地使用这类性质温和的两性离子表面活性剂。
下面介绍几种化妆品中常用的两性离子表面活性剂。
1 咪唑啉型两性表面活性剂两性咪唑啉是两性表面活性剂中应用最广的一类化合物。
一般的咪唑啉化合物是用乙二胺衍生物和脂肪酸缩合而成的一类环状叔胺化合物。
用咪唑啉衍生物与卤代羧酸进一步反应可以制得两性离子咪唑啉:这类化合物的疏水基团是连接在2位的长链烷基,亲水基团是羧乙基和羟乙基等。
由于在中性溶液中呈现内盐的结构,所以能够溶解或者分散在热水中。
在偏酸性环境中会表现出季铵盐化合物的性质,在水中的溶解度增加。
在碱性环境下相当于大分子量羧酸金属盐,水溶解性较差。
咪唑啉化合物在较高浓度的无机酸和电解质溶液中稳定,但可被过氧化氢和次氯酸盐氧化。
在偏酸性环境中由于活性基团带正电荷,能吸附在带负电荷的表面。
这种吸附作用在很大程度上决定了它的应用领域。
三次采油表面活性剂的研究与应用进展(一)

目前主要存在的问题是液相 氧化工艺还未完全成熟,合成产品 收率较低.产品稳定性差.与碱、聚 合物的配伍性还有待改善。
【垒j墨丛蕉墼垒竺
加快表面活性剂的国产化步伐。我国三 采研究人员陆续合成出一类结构与国外
ORS类似的产品——重烷基苯磺酸盐
以上。并于2001年5月在大庆采油四厂 杏二中油区进行了强碱/烷基苯磺酸盐, 部分水解聚丙烯酰胺三元复合驱现场试 验,初步结果表明,烷基苯磺酸盐的降水
增油效果良好。
l墨l丕渔整堕垒竺
与原油能形成超低界面张力的产品。而 石蜡基原油中的芳烃含量少。石油磺酸 盐生产中副产品高达60%以上。生产成 本高.在经济方面及副产品的处理方面
经过国内中国石油勘探院、大庆油 田、北京化工大学、江南大学等单位的联 合攻关,烷基苯磺酸盐的研究取得了突 破性进展.吨级产品能与大庆不同采油
0RS一41就是磺酸盐类表面活性剂的混
化度;(2)易被粘土表面吸附,即吸附损
厂的原油达到超低界面张力(10-hnN/m),
合物.研究表明。这两种表面活性剂性能
耗大;(3)由于原料组成复杂,不同批次
司生产的表面活性剂有两大系列:’I稻
系列(主要用于单独的表面活性剂驱)和 PETROSTEP EOR系列:STEPAN公司生 产的B系列:OCT公司生产的ORS系
列。其中B系列的B一100和ORS系列
的0RS-4l都曾用到大庆油田的三元复 合驱现场试验当中。
国外的产品基本上都属于磺酸盐类 阴离子表面活性剂。下面主要介绍石油 磺酸盐、烷基苯磺酸盐、石油羧酸盐、天 然羧酸盐等类型的驱油表面活性剂。
表面活性剂的复配

五、阳离子-非离子表面活性剂复配体系
在阳离子表面活性剂溶液中加入非离子表面 活性剂,可以使临界胶束浓度显著降低。 是阳离子表面活性剂的离子基团与非离子 表面活性剂的极性聚氧乙烯基相互作用的 结果。
六、非离子-非离子表面活性剂复配体系
多数聚氧乙烯非离子表面活性剂本身便是混合物, 其性质与单一物质有较大差别,通常疏水基相同、 环氧乙烷加成数相近的两种非离子表面活性剂混 合时,近乎理想溶液,容易形成混合胶束,其混 合物的亲水性相当于这两种物质的平均值,当两 种表面活性剂的环氧乙烷加成数和亲水性相差较 大时,混合物的亲水性高于二者的平均值,油溶 性的品种有可能增溶于水溶性表面活性剂的胶束 中。
ห้องสมุดไป่ตู้
由此可以看出,引入分子间相互作用参数 后,可以定性地了解两种表面活性剂分子 间的作用情况,是相互吸引还是相互排斥, 作用力的强弱如何。并可通过相关公式计 算并判断出两种表面活性剂混合后是否产 生复配效应,并可进一步求出产生最大加 和效应时复配体系的组成,即两种表面活 性剂的复配比例,这为表面活性剂复配的 应用提供了理论指导。
二、形成混合胶束
当复配体系水溶液形成混合胶束的临界胶束 浓度低于其中任何一种单一表面活性剂的 临界胶束浓度时,即称为产生正加和增效 作用;如果混合物的临界胶束浓度比任何 一种单一组分的高,则称产生负加和增效 作用。
三、综合考虑
将降低表面张力和形成混合胶束综合起来看, 正加和增效是指两种表面活性剂的复配体 系在混合胶束的临界胶束浓度时的表面张 力低于其中任何一种表面活性剂在其临界 胶束浓度时的表面张力,相反则产生负加 和增效作用。
二、影响分子间相互作用参数的因素
大部分混合体系的β值为负值,即两种表面活 性剂分子间是相互吸引的作用。这种吸引 力主要来源于分子间的静电引力,与表面 活性剂分子结构密切相关,并受温度及电 解质等外界因素的影响。
阴-阳离子表面活性剂混配的思路与效果

长期以来认为阴一阳离子表面活性剂在水中容易相互作用会产生沉淀或絮状络合物.从而产生负效应甚至使表面活性剂失去表面活性.然而实验表明在一定条件下阴一阳离子表面活性剂复配体系具有很高的表面活性。
显出较大的增效作用。
并且两者复配体系在一起会产生强烈的电性作用。
因而使表面活性大大提高。
增效作用的表现:①降低表面张力的效能②降低表面张力的效率③降低体系的cmc④增加表面吸附。
增效效应的利用:①去污性能②增溶效能③泡沫性能④润湿性能⑤乳化性能现在关键是怎样不让两者相互作用而发生沉淀,经过研究和实验。
主要有以下3种可行的方法:①非等摩尔复配。
以阴离子表面活性剂为主,加少量阳离子表面活性剂。
②在阳离子表面活性剂分子中引入聚氧乙烯基。
这样有利于降低分子的电荷密度从而减弱离子头基间的强静电作用,同时由于聚氧乙烯链的亲水性和位阻效应减弱了阴一阳离子表面活性剂之问的相互作用,从而对沉淀和凝聚起到明显的抑制作用。
③在复配体系中加人溶解度较大的非离子表面活性剂。
阳离子表面活性剂的定义阳离子表面活性剂溶于水发生离解,形成的阳离子具有表面活性,其亲水基可以含氮、磷或硫,但目前工业上具有实际意义的主要是含氮的。
在含氮的阳离子表面活性剂中,按氮原子在分子结构中的位置又可分为胺盐、季铵盐、氮苯(环状的吡啶型)和咪唑啉型等四类,其中以季铵盐类用途最广,其次是胺盐类。
阳离子表面活性剂具有许多优越性能,除可作纤维用柔软剂、抗静电剂、防水剂和染色助剂外,还可用作矿物浮选剂以及杀菌剂、防锈剂和特殊乳化剂等。
阳离子表面活性剂的种类和结构特征1.胺盐型阳离子表面活性剂按氮原子上的有机取代基数,胺盐可分为伯胺盐、仲胺盐和叔胺盐3种,它们在性质上非常接近,且往往混合在一起,所以统称胺盐型阳离子表面活性荆。
这类表面活性剂的憎水基碳数为12-18。
其主要用途是作纤维助剂、矿物浮选剂、分散剂、乳化剂和防锈剂。
胺盐型阳离子表面活性剂按化学结构可分为烷基胺盐型、氨基醇脂肪酸衍生物型、多胺脂肪酸衍生物型和咪唑啉型4种。
表面活性剂的复配原理

表面活性剂的复配原理表面活性剂的复配原理是指将不同种类的表面活性剂按一定的比例和方式组合使用,以达到更好的表面张力调节、乳化稳定以及分散悬浮等效果。
表面活性剂由亲水基和疏水基组成,亲水基具有亲水性,疏水基具有疏水性。
在液体中,亲水基会向水相靠近,而疏水基会向空气相靠近。
当表面活性剂溶解在液体中时,由于其分子有两个相对独立的界面,即表面活性剂分子的水溶液界面和水/空气界面。
在这两个界面上,亲水基和疏水基具有不同的定位,形成了所谓的吸附层,这种吸附行为也决定了表面活性剂的表面活性。
通过复配不同种类的表面活性剂可以调节表面张力和稳定乳液、分散悬浮体系。
具体原理如下:1. 鸟嘌呤类表面活性剂与短链烷基硫酸盐类表面活性剂的复配:鸟嘌呤类表面活性剂具有良好的乳化性能,但其乳化稳定性较差。
而短链烷基硫酸盐类表面活性剂具有良好的乳化稳定性。
因此,将两者复配使用可以提高乳化体系的稳定性,同时实现良好的乳化效果。
2. 非离子型表面活性剂与阳离子型表面活性剂的复配:非离子型表面活性剂在水性体系中具有较好的乳化性能,但其稳定性相对较差。
而阳离子型表面活性剂则具有良好的稳定性。
将两者复配使用可以同时实现较好的乳化效果和乳化稳定性。
3. 阴离子型表面活性剂与非离子型表面活性剂的复配:阴离子型表面活性剂在水性体系中具有较好的分散悬浮性能,但其分散稳定性较差。
而非离子型表面活性剂具有较好的分散稳定性。
将两者复配使用可以提高分散悬浮体系的稳定性,同时实现良好的分散效果。
通过合理复配不同种类的表面活性剂,可以充分利用各种表面活性剂的特性,实现更好的表面张力调节、乳化稳定以及分散悬浮等效果。
两性表面活性剂

6、2、5 甜菜碱型两性表面活性剂得临界 胶束浓度与碳链长度得关系
对于甜菜碱两性表面活性剂,其临界胶束浓度 与烷基R碳链长度得关系可用下式表示:
lgcmc=A-Bn 式中,n为烷基长碳链中碳原子得个数;
常数A=1、5-2;B=29。 此类表面活性剂得临界胶束浓度可由上式计 算外,也可以由实验测得。 随着烷基链碳数得增加,cmc明显降低。
氧化胺得化学性质与两性表面活性剂 相似,既与阴离子表面活性剂相容,也 与阳离子表面活性剂、非离子表面活性 剂相容;
在中性和碱性溶液中显示非离子特 性,在酸性溶液中显示弱阳离子特性。
6、2 两性表面活性剂得性质
6、2、1 两性表面活性剂得等 电点
pH < 4 阳离子表面活性剂
pH = 4
pH > 4 阴离子表面活性剂
在非离子表面活性剂中影响不十分 明显,会使活性剂得溶解度略有降低, Krafft点略有提高。
在两性表面活性剂溶液中,加入电 解质使溶解度提高,Krafft点降低。
6、2、7 表面活性剂结构对钙皂分散力得影响
钙皂分散力 (lime soap disporsing rate , LSDR) 钙皂分散分散指数
1 具有等电点
2 可以和所有其他类型的表面活性剂复配
3 毒性低、对皮肤眼睛刺激性小
4 耐水硬性和耐高浓度电解质性
特性
5 对织物优异的柔软平滑性和抗静电性
6 具有良好的乳化性和分散性
7 好的润湿性和发泡性
8 有一定的杀菌性和抑霉性
9 良好的生物降解性
1、两性表面活性剂具有等电点 两性表面活性剂通常总含有酸性基团和碱
两性表面活性剂
阳离子表面活性剂的应用

阳离子表面活性剂的其他应用一、工业循环水用杀菌剂工业用水的水质中含有多种菌类和藻类微生物,这些微生物的滋长,给换热器等设备的正常使用带来很大威胁,它使设备效能大大下降,严重时甚至使设备堵塞;腐蚀穿孔。
在强调节省能源,节省水资源的今天,这一问题已引起人们的高度重视。
理想的工业水杀菌灭藻剂应具有广谱、高效、低毒、易生物降解,对水质要求低,投料方便以及对其他水处理剂无相互干扰等特点。
但是,常用的氯气,次氯酸盐等氧化性杀菌灭藻剂,以及氯酚,二硫氰甲烷等非氧化性杀菌灭藻剂都不能达到这些要求。
因而使它们的应用范围受到很大限制,有的已被淘汰。
近年来,在为数不多的工业水杀菌灭藻剂中,季铵盐却由于它的独特优点而得到越来越广泛的应用。
国内在20世纪70年代开展了对季铵盐在工业用水的杀菌灭藻方面的应用研究。
对包括季铵盐在内的47种化合物对控制炼油厂循环冷却水中菌藻危害的效果进行了研究。
以异养菌、铁细菌和硫酸盐还原菌为对象,测量杀菌率达99%以上所需各种化合物的最低浓度为准,筛选出十二烷基二甲馑苄基氯化铵(洁而灭及1227)、十六烷基三甲基溴化铵(1631)、十六烷基氯化吡啶和洗必泰等季铵盐为较理想的杀菌灭藻剂。
其中,洗必泰因价格昂贵,实际应用还有困难。
此外,季铵盐还在各种大型循环冷却水系统中用作冲击剥离剂。
这是因为它除了可以像一般杀菌灭藻剂那样杀灭表层的菌藻外,还是一种表面活性剂,它还可以渗透到菌垢层的内部,将吸附在设备器壁上的菌藻杀死,使之在水流冲刷下从壁上脱落下来。
这一特性是其他杀菌灭藻剂所不及的,生产中菌藻形成的污垢覆盖在热交换器管壁上,是引起热交换效率下降,乃至管道堵塞,腐蚀穿孔的主要因素。
工业节能上具有很大意义。
季铵盐作冲击剥离荆,其用量为一般动态用量的2~10倍。
不同工作者对五种非氧化性杀菌灭藻剂对比评定的数据略有上下,一般都显示出洁而灭的效果最好,其次是l227、Nalc07326、1231又次于前四种。
表面活性剂的应用

Author:Tong Lv Yue Author:Tianyou
3.烷基磺酸钠(As) .烷基磺酸钠
烷基磺酸钠(ALkyl Sulfonate).国外称Mersolate(I.G),国内称601洗涤 剂,其化学通式为R—SO3Na(R:C14—C18).工业合成反应为:
AS以直链为佳,碳链15-16最适宜,它在硬水中有良好的润湿、乳化 、分散、起泡和去污力,易被生物降解,价廉,但去污和携污力较肥 皂差。印染中常作棉布煮练助剂和印染后清洗剂。
ROH
+
CH2CH2 NaOH O
ROCH2CH2OH
NaOH ROCH2CH2OH + n CH2CH2 O RO(CH2CH2O)nH
分子中环氧乙烷数达10—15、疏水基碳12—18时,具有良好的去污力, 其浊点随n增加而提高,随疏水基中碳原子增加而降低。 这类表面活性剂具有良好的增溶、乳化和去污能力,印染工业中主要 用于毛织物和腈纶织物的浴洗和前处理.
Author:Tong Lv Yue Author:Tianyou
五、助洗剂
在洗涤剂商品中,除作为洗涤用的主要成分表面活性剂外 ,还有各种添加剂以提高洗涤效果,改善使用性能,提高 商品价值。这些添加剂称之为助洗剂。 助洗剂分为无机助剂和有机助剂。一般洗涤剂中含表面 活性剂约10%—30%,助洗剂约30%—80%。由于助洗剂 作用不一,因而采用的助洗剂品种也有较大差异。 从实际情况看,助洗剂的主要作用有:增强表面活性作用 ,防止污垢沉积;硬水软化作用;缓冲作用;改善袍沫性 能;增加溶解度;提高粘度;改善刺激性,柔软、抗静电 、增白、抑菌、杀菌等;增加透明度,改善外观等。
Author:Tong Lv Yue Author:Tianyou
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阴-阳离子表面活性剂复配研究与应用摘要:综合介绍了阴-阳离子表面活性剂复配体系在各种物化性能的增效效应,例如降低表面张力的效能、表面张力的效率、降低临界胶束浓度的能力、改善表面吸附的能力,以及这些增效效应在去污、增溶、泡沫、润湿、乳化等方面的应用。
讨论了提高阴-阳离子表面活性剂之间的可配伍性之对策,诸如采用非等摩尔比复配、在离子型表面活性剂中引入聚氧乙烯链及加入非离子或两性表面活性剂进行调节等手段以优化配方性能和提高综合经济效益。
总结了阴—阳离子表面活性剂复配体系用于洗涤用品的可行性配方技术,即采取无机助剂、水溶性有机高聚物或非离子表面活性剂包裹阳离子表面活性剂的措施。
关键词:阴离子表面活性剂;阳离子表面活性剂;复配体系;增效效应;研究;应用目前,表面活性剂复配体系的研究与应用已形成热点,如表面活性剂与无机物、高聚物或表面活性剂之间复配等,其目的是提高含表面活性剂配方的性能,优化使用并提高经济效益。
长期以来,在表面活性剂复配应用过程中把阳离子型表面活性剂与阴离子型表面活性剂的复配视为禁忌,一般认为两者在水溶液中相互作用会产生沉淀或絮状络合物,从而产生负效应甚至使表面活性剂失去表面活性。
研究发现,在一定条件下阴-阳离子表面活性剂复配体系具有很高的表面活性,显示出极大的增效作用,这样的复配体系已成功地用于实际。
由于阴-阳离子表面活性剂复配在一起相互之间必然产生强烈的电性作用,因而使表面活性大大提高。
有人认为阳离子型表面活性剂与阴离子型表面活性剂混合之后形成了“新的络合物”,并会表现出优异的表面活性和各方面的增效效应。
1阴-阳离子表面活性剂复配的增效效应1.1降低表面张力的效能复配溶液所能达到的最低表面张力,即在cmc时的表面张力γcmc比单一组分的最低表面张力低。
阳离子表面活性剂C8H17N(CH3)3Br(以下用C8N表示)与阴离子表面活性剂C8H17SO4Na(以下用C8S表示)等摩尔复配体系的γcmc比两纯组分各自的γcmc低得多,尤其在正庚烷/水溶液界面的界面张力的降低表现更为突出,等摩尔复配体系的界面张力可以低至0.2mN/m,而两种纯表面活性剂溶液相应的界面张力则高得多(分别为14mN/m和11mN/m)。
事实上,在单组分的碳氢链表面活性剂中尚未见报道能达到如此低的表面张力和界面张力。
1.2降低表面张力的效率达到指定的表面张力γ时,复配体系所需表面活性剂总浓度比单一表面活性剂溶液所需浓度低。
十二醇聚氧乙烯醚硫酸铵(AESA)与阳离子表面活性剂十二烷基三甲基溴化铵(DTAB)以9/1(mol)复配,当达到相同的表面张力38mN/m时,体系的总浓度为5×10-6mol/L,远比单一组分AESA(4×10-4mol/L及DTAB(1×10-2mol/L)的浓度低得多。
1.3降低cmc复配体系的cmc小于每一单纯组分表面活性剂的cmc,甚至呈现几个数量级的降低。
如等摩尔C12H25N(C2H4OH)3CL与C12H25SO4Na复配体系的cmc分别为上述两种单一表面活性剂的1/208和1/240。
再如以等摩尔C12H25N(C2H4OH)3Cl与C8H17SO4Na复配,体系的cmc分别为单一表面活性剂的1/13和1/189。
由此可见阴-阳离子表面活性剂复配体系有形成胶团能力的增效作用。
1.4表面吸附阴阳离子表面活性剂复配后会导致每一组分吸附量增加,这是由于阴、阳离子表面活性剂间存在强烈相互作用,这种相互作用包括异性离子间的静电吸引作用以及烃基间的憎水相互作用。
阴阳离子表面活性剂在吸咐层呈等比组成时达到最大电性吸引,表面吸附层分子排列更加紧密而使表面吸附增加。
如C8NC8S的等摩尔复配溶液的饱和吸附量达到 5.6×10-10mol/cm2,相应的每个吸附分子平均所占面积Am约为0 3nm2,比单一表面活性剂溶液表面吸附层的最小分子面积(均大于0 4nm2)小得多。
2增效效应的应用2.1去污性能阳离子表面活性剂可少量添加在以阴离子表面活性剂为主的洗涤剂中作为增效剂,提高去污能力。
过去一般认为阳离子表面活性剂对织物的洗涤作用是不利的,因为一般纤维和固体表面在水溶液中,特别是在碱性水溶液中,通常带有负电荷,而阳离子表面活性剂在水溶液中,特别是碱性水溶液中的表面活性由表面活性阳离子来体现,在静电作用下,阳离子表面活性剂在织物(或固体)表面形成了亲水基朝向内、非极性基朝向外的排列,使织物疏水性增大而不利于洗涤,甚至有反洗涤作用。
正因为如此,阳离子表面活性剂很容易吸附在固体表面形成一层表面膜,依据阳离子表面活性剂的种类及吸附表面的性质,这一吸附恰好起到了特殊作用。
通常认为残留或附着于固体表面或织物表面上的无机细颗粒有很多面,其中有一些面带负电;而阳离子表面活性剂含有一带正电端头,在静电作用下阳离子表面活性剂与这些带负电的面相互吸引,形成疏水性颗粒。
大量的阴离子表面活性剂则通过疏水作用以疏水基与阳离子表面活性剂吸附层的疏水基相互作用,将亲水头向外排列形成亲水型的带电的表面活性吸附双层包围颗粒,从而将残留或附着于固体表面或织物表面的无机细颗粒(或称为污物、污点)“吊起来”,最终在洗涤过程中形成“可溶性颗粒”而除去[9]。
如,双烷氧基化季铵盐(Bis-AQA)表面活性剂作为增效剂加入洗衣粉中,洗衣粉清洗日常油污能力大大提高;与此同时发现含有Bis-AQA和铝硅酸盐添加剂的洗衣粉同仅仅含有其一的产品相比,前者有更高的清洗与增白功能,特别是可提高无机的、不溶于或微溶于水的添加剂在配方中比例,在提高洗涤性能的同时不会增加其在清洗物上的残留[9]。
再如用脂肪醇硫酸钠洗涤羊毛时加入少量十二烷基吡啶氯化物,由于吸附在阴离子表面活性剂单分子膜上的阳离子表面活性剂与阴离子表面活性剂相互渗透,降低了阴离子头基间的斥力,形成更紧密的聚合膜,提高了表面活性和去污力。
2.2增溶性能许多研究表明,阴-阳离子表面活性剂混合胶团对非极性或微极性有机物的增溶显示出正的增效作用。
在阴-阳离子表面活性剂复配体系中,随着一种表面活性剂加入到另一种带相反电荷的表面活性剂中,混合胶团的聚合数会急剧增加,同时胶团过渡到棒状结构,这种棒状胶团对增溶于胶团内核的被增溶物具有较大的增溶能力。
例如正庚烷在AESA/DTAB复配体系中的最大添加增溶物:表面活性剂(M/M)在阴离子和阳离子过量区分别为2.25和4.70,比单—阴离子或阳离子表面活性剂的最大添加比例(分别为1.30和1.49)大得多。
2 3泡沫性能阴-阳离子表面活性剂间存在电性吸引,并且吸附层的等比组成是实现最大电性吸引所必需的。
电荷作用减弱了吸附层和胶团中表面活性离子之间的电性斥力,从而使表面吸附增加。
上述作用使得复配溶液具有很低的表面和界面张力,这样势必引起起泡力增加。
与此同时,由于吸附层中分子排列紧密以及分子之间较强的相互作用还使得表面黏度增大、表面膜机械强度增加,使之受外力作用时不易破裂、泡沫内液体流失速度变慢、气体透过性降低,延长了泡沫的寿命。
表1给出各溶液浓度都为7.5×10-3mol/L时气泡和液滴的“寿命”,可以看出等摩尔复配溶液的气泡及正庚烷液滴的寿命大约是单一表面活性剂溶液的1400倍及70倍。
再如烷基链较短的C8N与C8S混合,相互作用十分强烈,具有很好的表面活性,表面膜强度极高,泡沫性能非常好。
2 4润湿性能由于阴-阳离子表面活性剂复配体系表面吸附增强,体系表面张力较低,这样复配体系将具有较强的润湿能力。
图①是几种溶液在石蜡表面上的接触角,单一表面活性剂溶液与等摩尔复配溶液的润湿能力有明显差别。
在同一浓度(1×10-2mol/L)时,后者在石蜡上的接触角为16°,而前者约为100°。
2 5乳化性能表面活性剂的乳化能力取决于本身的亲水亲油平衡、油相的亲水亲油值以及表面活性剂在油、水界面形成膜的牢固程度等。
在阴离子表面活性剂中加入少量阳离子表面活性剂,或反之,由于电荷作用之故,复配表面活性剂的表面活性增加,在油/水界面形成的膜致密性增加,故乳化能力增强。
辛基酚聚氧乙烯醚硫酸钠和十二烷基溴化铵以9∶1(mol)复配时,乳化能力显著提高(复配体系的乳化稳定时间为43min,单一组分则分别为38min和6min)。
此外,复配体系还可同时具两组分的优点。
阳离子表活剂是较好的抗静电剂、杀菌防霉剂,但洗涤效果不佳,与阴离子表活剂复配后可得到化纤产品的优良洗涤剂,同时兼有抗静电、柔软、防尘等作用。
近年来在国内外市场上出现的“防尘柔软洗衣粉”就是应用阴-阳离子表面活性剂复配原理开发的产品。
3提高可配伍性的对策尽管阴-阳离子表面活性剂复配体系有强烈的增效效应,其表面活性比单一组分高,然而阴-阳离子表面活性剂混合体系的一个主要缺点是由于强电性作用易于形成沉淀或絮状悬浮,混合体系的水溶液因此不太稳定。
一旦浓度超过cmc以后溶液就容易发生分层析出或凝聚等现象,甚至出现沉淀(特别是等摩尔混合体系),产生负效应甚至使表面活性剂失去表面活性,从而给实际应用带来不利影响。
经过多年的研究和实际应用,人们已经尝试了多种方法。
3 1非等摩尔比复配阴-阳离子表面活性剂配合使用时,要使其不发生沉淀或絮状悬浮,达到最大增效作用,两者配用比是很重要的。
不等比例(其中一种只占总量少部分)配合依然会产生很高的表面活性与增效作用。
一种表面活性剂组分过量很多的复配物较等摩尔的复配物的溶解度大得多,溶液因此不易出现混浊,这样就可采用价格较低的阴离子表面活性剂为主,配以少量的阳离子表面活性剂得到表面活性极高的复合表面活性剂。
国外有关报道提出以阴离子表面活性剂为主时,阴/阳离子表面活性剂的摩尔比一般为4∶1~50∶1。
3 2含有聚氧乙烯链的离子型表面活性剂分子中引入聚氧乙烯基有利于降低分子的电荷密度从而减弱离子头基间的强静电相互作用。
同时,由于聚氧乙烯链兼有弱的亲水性和弱的亲油性,它不仅使表面活性剂的极性增大,同时也增长了疏水基的长度。
聚氧乙烯链的亲水性和位阻效应减弱了阴-阳离子表面活性剂之间的相互作用,从而对沉淀或凝聚作用有明显的抑制作用。
3 3加入两性表面活性剂两性表面活性剂其表面活性不如阴、阳离子型表面活性剂强。
将其加入阴-阳离子表面活性剂复配体系,结果表明有利于改善复配体系的溶解性能。
对混合溶液表面层和胶团相中的分子相互作用参数βs和βm的计算表明,阴-阳离子表面活性剂与两性表面活性剂混合体系在表面层中可能形成双分子或多分子层结构。
其缺点是加入比例较大时,阴-阳离子表面活性剂之表面活性会有较大的降低,同时成本太高。
3 4加入非离子表面活性剂加入溶解度较大的非离子表面活性剂,阴-阳离子表面活性剂在水中溶解度明显增加。