第六章 离子聚合
第六章 离子型聚合

以阴离子或阳离子作为活性中心的 聚合反应叫离子型聚合。
离子型聚合与自由基聚合比较,有如下特点: 1、对单体的选择性高; 2、 RP 比较快; 3、聚合 T ; 4、介质影响显著。
第一节
阳离子聚合
反应通式
阳离子活性中心,通常为碳阳离子 (Carbo-cation)或氧翁离子 紧靠中心离子的引发剂碎片,称反 离子(Counterion) 阳离子活性中心难以孤立存在,在聚合过 程中,往往与反离子形成离子对。
形成单阴离子形式
金属烷基化合物引发剂活性与金属电负性有关, 电负性小,Mt-C的极性强,引发活性大。
(4)其他亲核试剂
这些试剂都有未共用的电子对,但其活性 较弱,只能引发很活泼的单体聚合 例如:
α-氰基丙烯酸乙酯
三、单体与引发剂的匹配(Match of initiators and monomers)
六、阳离子聚合的ห้องสมุดไป่ตู้响因素
1)溶剂极性
活性中心离子与反离子的结合形式:
共价键 化合物
紧离子对
松离子对
自由离子
大部分活性种处于平衡离子对或自由离子
自由离子的增长速率常数比离子对大1~3个 数量级,对总聚合速率的贡献比离子对大得多。
表6-1 溶剂对苯乙烯阳离子聚合速率的影响
溶剂 CCl4 CCl4/C2H4Cl4(40:60) 介电常数 2.3 5.16
快引发!
(2)链增长
a. 插入式增长
Ep=8.4~21kJ/mol
快增长!
活性中心以离子对形式存在 活性中心与单体电荷作用
离子对的存在形式多种多样 离子对的存在形式决定聚合速率和聚合物 的立体结构 影响离子对存在形式的因素(溶剂、反离 子、温度)
离子聚合

第六章 离子聚合 6.1 引言(Introduction)
连锁聚合
(Chain polymerization)
离子聚合的特点 单体选择性高; 聚合条件苛刻; 聚合速率快,需在低温下进行; 引发体系为非均相; 反应介质对聚合有很大影响。
一些重要的聚合物,如丁基橡胶、异戊橡胶、 聚甲醛、聚氯醚等只能通过离子聚合得到。
Rtr,S=ktr,S[HM (CR) ][S]
Rp 对引发剂和共引发剂浓度
Rp
Kk i k p [C ][ RH ][ M ] kt
2
均呈一级反应,说明终止方式是 单基终止。而对单体浓度呈二级 反应,说明引发与[M]有关。
kt 1 [S ] CM CS [M ] X n k p [M ]
自由基聚合 离子聚合
离子聚合活性中心——离子(Ion)或离子对(Ionpair) 离子聚合
根据活性中心 的电荷性质
阳离子聚合 阴离子聚合
反应机理及动力学与自由基聚合相比不成熟
6.2 阳离子聚合( Cationic Polymerization)
离子聚合的应用: 理论上,有较强的控制大分子链结构 的能力,通过离子聚合可获得“活性聚合 物”(Living Polymer),可以有目的的 分子设计,合成具有预想结构和性能的聚 合物; 工业生产中,利用离子聚合生产了许 多性能优良的聚合物,如丁基橡胶、异戊 橡胶、SBS塑性橡胶等。 反应通式:
引发:
H
(CR)
+ M
ki
HM
(CR)
Ri= ki[H (CR) ] [M] =Kki[C][RH][M]
HMn (CR) + M kp
第六章 离子型聚合

CN
CN
CN
CN
(3)辐射诱导引发
四氢呋喃
γ射线 MTHF(四氢呋喃)
MTHF + e 阳离子
e + CH2 CH (NE)
CH 2
CH
NO 2
NO 2
阴离子自由基
2 CH2
CH NO 2
HC
H2C
NO 2
H2C CH NO 2
2、部分阴离子聚合引发剂与单体的匹配
(1)还原电位
还原电位越大,吸电子能力越大。任何一个给 定的单体或多环芳香烃形成的负离子,能很快引发 大于它本身的还原电位的所有单体
RA
RA
RA
R+A
共价键 紧离子对
松离子对
自由离子 (阴离子引发剂)
链增长反应可能以紧离子对或离松子对和自由离子 两种方式同时进行
如果离子对以共价键状态存在,则没有引发能力。
以自由离子进行链增长时,聚合速率大,但易得到 无规立构体。
4、阴离子聚合的链终止和链转移反应
阴离子聚合中,由于活性链离子间相互电荷的静 电排斥作用,不能发生类似自由基聚合那样的双基 终止。活性链离子对中碳金属键的离解度大,也不 可能发生碳阴离子与反离子间的化合反应,而反离 子一般是金属阳离子,不是离子团,无法从中夺取
(1)引发剂的引发 常用的引发方式有: Ⅰ、碱的引发
KOH + H2C
CN C
CN
HOCH 2
Ⅱ、碱金属烷基化合物引发
CN CK CN
C4H9
Li + H2C CH
C4H9CH 2 CH
Li
能进行引发聚合的烷基金属化合物中的金属—碳 键必须具有离子性质,即金属的电负性要小。同时 金属—碳键可随所用溶剂不同而异,在极性溶剂中, 会发生极化,离子性增加
高分子化学:第6章 离子聚合

3
具有腈基、羰基等强吸电子基单体进行阴离子聚合;
含1,1-二烷基、烷氧基等推电子基单体才能进行阳 离子聚合;
羰基化合物、杂环化合物,大多属离子聚合. 聚合机理和动力学研究不够成熟(理由)
1. 聚合条件苛刻,微量杂质影响极大,聚合重现性差; 2. 聚合速率快,需低温聚合,给研究工作造成困难; 3. 反应介质性质对反应也有极大影响,影响因素复杂.
11
萘钠在极性溶剂中是均相体系,碱金属的利用率高
12
(2)有机金属化合物——阴离子引发
碱金属氨基化合物 是研究得最早的一类引发剂 主要有 NaNH2-液氨、KNH2 -液氨 体系
13
金属烷基化合物 引发活性与金属的电负性有关:金属的电负性如下
如丁基锂以离子 对方式引发
制成格氏试剂,引发 活泼单体
第6章 离子聚合
1
问题
1、什么是离子聚合?根据离子电荷性质 的不同,可以分为哪两类?
2、离子聚合的单体有哪几类?
6.1 引言
● 离子聚合是又一类连锁聚合。它的活性中心为
离子。根据活性中心的电荷性质(碳阴离子和碳阳离 子),可分为阴离子聚合和阳离子聚合。
● 离子聚合的理论研究始于50年代:1953年, Ziegler在常温低压下制得PE; 1956年,Szwarc发 现了“活性聚合物”。
35
36
溶剂能导致活性种的形态结构及活性发生变化,
溶剂的性质可用两个物理量表示(见表6-5): 介电常数:表示溶剂极性的大小,溶剂极性越大,
活性链离子与反离子的离解程度越大,自由离子多。
电子给予指数:是表征溶剂化能力的辅助参数,溶 剂的给电子能力强,对阳离子的溶剂化作用越强,离 子对也越分开。
高分子化学第六章离子聚合

6.2 阴离子聚合
阴离子聚合反应的通式可表示如下:
A B M BM A M M n
其中B-为阴离子活性中心,A+为反离子,一般为金属离子。 与阳离子聚合不同,阴离子聚合中,活性中心可以是自由离 子、离子对,甚至是处于缔合状态的阴离子。
6.2.5链转移和链终止 链转移:阴离子聚合从增长链上脱去氢阴离子H-发生链转移的 活化能相当高,一般难以进行:
H H C C H X Mt+ + CH2=CHX 活化能高 H H C C + H3C C H X X
链终止:在阴离子聚合反应中,由于其链增长活性中心为阴离 子,不能进行双基终止;抗衡阳离子为金属离子,链增长碳阴离子 难以与其形成共价键而终止。 因此,对于理想的阴离子聚合体系(一般是非极性单体)如果不 外加链终止剂或链转移剂,一般不存在链转移反应与链终止反应。
CH3O-Na+ + H2C CH X H3CO CH2 CH Na+ X
b.金属胺氨基化合物
2K + NH3 KNH2 NH2- + H2C CH X
以KNH2为例
2KNH2 + H2 K+ + NH2H2N CH2 CH X -
c.中性分子亲核加成引发
有些中性分子如R3P、R3N、ROH、H2O等都有未共用电子对 ,可以通过亲核加成机理引发阴离子聚合,但只能用于活泼单体的 聚合,如α-氰基丙烯酸乙酯遇水可以被引发聚合:
6.2.1阴离子聚合单体
阴离子聚合单体主要是带吸电子取代基的α-烯烃和共轭烯烃, 根据它们的聚合活性分为四组:
CN CN H2C C COOC2H5 H H2C C NO2
六章节离子聚合

第六章 离子聚合
3. 其他引发剂 其它阳离子引发剂有碘、高氯酸盐、六氯化铅盐
等。如碘分子歧化成离子对,再引发聚合:
I2 I2
I+(I3)-
形成的碘阳离子可引发活性较大的单体,如对甲 氧基苯乙烯、烷基乙烯基醚等。
19
第六章 离子聚合
阳离子聚合也能通过高能辐射引发,形成自由
基阳离子,自由基进一步偶合,形成双阳离子活性
但当烷基换成芳基后,由于氧上未共有电子对也 能与芳环形成共轭,分散了双键上的电子云密度, 从而使其进行阳离子聚合的活性大大降低。
8
第六章 离子聚合
(3)共轭单体 苯乙烯,丁二烯等含有共轭体系的单体,由于
其π电子云的流动性强,易诱导极化,因此能进行 阳离子、阴离子或自由基聚合。但聚合活性较低, 远不及异丁烯和烷基乙烯基醚,故往往只作为共聚 单体应用。
6
第六章 离子聚合
更高级的α- 烯烃,由于空间位阻效应较大,一 般不能通过阳离子聚合得到高分子量聚合物。
异丁烯:唯一一个具有实际工业价值的 能进行阳离子聚合的α- 烯烃单体
7
第六章 离子聚合
(2)烷基乙烯基醚 烷氧基的诱导效应使双键电子云密度降低,但
是氧原子上的未共有电子对与双键形成 p -π共轭效 应,双键电子云增加。与诱导效应相比,共轭效应 对电子云偏移的影响程度更大。事实上,烷氧基乙 烯基醚只能进行阳离子聚合。
共引发剂过量可能生成氧鎓离子,其活性低于络 合的质子酸,使聚合速率降低。
BF3 H2O
H+(BF3OH)- H2O (H3O)+(BF3OH)-
17
第六章 离子聚合
在工业上,一般采用反应速率较为适中的AlCl3 —H2O引发体系。
第六章 离子聚合

第六章离子聚合一、名词解释活性聚合(Living Polymerization):当单体转化率达到100%时,聚合仍不终止,形成具有反应活性聚合物(活性聚合物)的聚合叫活性聚合。
阴离子聚合:活性中心为阴离子的聚合方法。
阳离子聚合:活性中心为阳离子的聚合方法。
二、问答题1.试从单体,引发剂,聚合方法及反应的特点等方面对自由基,阴离子和阳离子聚合反应进行比较。
2.在离子聚合反应过程中,能否出现自动加速效应?为什么?解:在离子聚合反应过程中不会出现自动加速现象。
自由基聚合反应过程中出现自动加速现象的原因是:随着聚合反应的进行,体系的粘度不断增大。
当体系粘度增大到一定程度时,双基终止受阻碍,因而k t 明显变小,链终止速度下降;但单体扩散速度几乎不受影响,K p 下降很小,链增长速度变化不大,因此相对提高了聚合反应速度,出现了自动加速现象。
在离子聚合反应过程中由于相同电贺互相排斥不存在双基终止,因此不会出现自动加速效应。
3.在离子聚合反应过程中,活性中心离子和反离子之间的结合有几种形式?其存在形式受哪些因素的影响?不同存在形式和单体的反应能力如何?解:在离子聚合中,活性中心正离子和反离子之间有以下几种结合方式: A A +A +A ++B -共价键接触离子对(紧对)溶剂分开的离子对(松对)自由离子以上各种形式之间处于平衡状态。
结合形式和活性种的数量受溶剂性质,温度,及反离子等因素的影响。
溶剂的溶剂化能力越大,越有利于形成松对甚至自由离子;随着温度的降低,离解平衡常数(K 值)变大,因此温度越低越有利于形成松对甚至自由离子;反离子的半径越大,越不易被溶剂化,所以一般在具有溶剂化能力的溶剂中随反离子半径的增大,形成松对和自由离子的可能性减小;在无溶剂化作用的溶剂中,随反离子半径的增大,A +与B -之间的库仑引力减小,A +与B -之间的距离增大。
活性中心离子与反离子的不同结合形式和单体的反应能力顺序如下: A ++B ->A +//B ->A + B -共价键连接的A-B 一般无引发能力。
第六章离子聚合

22
活性阴离子聚合只有引发和增长两步基元反应 阴离子聚合需在高真空或惰性气氛中,试 剂和玻璃仪器非常洁净的情况下进行。
阴离子聚合须加入水、醇、胺等终
止剂人为终止。
23
阴离子聚合反应机理
阴离子型聚合仍属链式聚合反应,
由: 链引发 链增长 基元反应组成。
24
(1)链引发反应
引发剂与单体双键加成生成负离子单体活性中 心,这就是引发反应:
Y CH2 C H + R M R CH2 Y C H M
上式中 M 代表金属,Y 基是吸电子基团, 有利于引发剂中碳负离子的进攻
25
(2)链增长反应
单体能连续地插入在离子对中间,与链 末端碳负离子加成,这就是链增长反应,这 反应一直连续地进行,直到单体全部消耗完 或链终止反应发生,链增长反应就停止了。
子活性中心的浓度等于引发剂的浓度。
28
聚合度
据活性阴离子聚合的特点: 1)引发剂全部很快地转变成阴离子活性中心; 聚合物的平均聚合度等于每个阴离子活性链所 加上的单体量, 即单体浓度与活性链浓度之比:
2)所有链增长同时开始且无链转移和链终止反应。
双阴离子,n=2; 单阴离子, n=1,[C]为引发剂浓度 29
这种单体完全耗尽仍可保持聚合活性的 聚合物链阴离子称为“ 活性高分子”。 形成“活”性聚合物的原因: 1)离子聚合无双基终止(活性中心带同种电 荷)。
18
2)反离子为金属离子,不能与碳阴离子 形成共价键导致链终止;
3)阴离子聚合,从活性链上脱除负氢离子非
常困难,需能量较高,不易发生链转移(主
要原因)。
(2)与吸电子能力有关 单体的极性越大,吸电子能力越强, 易进行阴离子聚合,如:硝基乙烯。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 离子聚合
重点、难点指导
一、重要术语和概念
离子聚合单体、离子聚合的引发剂和共引发剂、离子聚合中活性中心形态与溶剂、离子聚合的机理特征、活性阴离子聚合、嵌段共聚物制备
二、重要公式
活性阴离子聚合速率:
]][[][M B k dt M d R p p -=-= 活性阴离子聚合物的聚合度:
][])
[]([0C M M n Xn -= 三、难点
阴离子聚合反应的影响因素、活性阴离子聚合
1、阴离子聚合
(1) 阴离子聚合单体
能进行阴离子聚合的单体包括三种类型,即:(1)带吸电子取代基的。
α-烯烃;(2)带共轭取代基的α-烯烃;(3)某些含杂原子的化合物(如O 、N 杂环)。
(2) 阴离子聚合的引发剂
阴离子聚合的引发剂主要有三类:即:(1)碱金属烷基化合物如正丁基锂( LiBu)等;(2)碱金属如Li 、Na 、K 等;(3)碱金属络合物如萘钠、苯基锂等。
(3) 阴离子聚合反应机理
阴离子聚合届连锁聚合反应的一种类型、其反应也包括链引发、链增长和链终止三个基元反应。
机理特征是慢引发、快增长、无终止、无转移、成为典型的活性聚合,可用来合成分子量窄分布的聚合物和嵌段共聚物。
合成嵌段共聚物时,应使pKa 值较大的单体先聚合,再加pKa 值较小的单体后继聚合。
(4) 阴离子聚合反应的影响因素
在阴离子聚合反应中.活性中心离子的存在形态是影响聚合反应速率和聚合物结构的最重要因素.分析如下:
①溶剂的影响
溶剂对明离子聚合引发剂、单体及活性离子对具有“溶剂化作用”。
极性溶剂的溶剂化作用使阴离子聚合的活性中心成为松离子对甚至自由离子,因此在极性溶剂中进行的阴离子聚合反应速率快.但聚合物的结构规整性差;非极性溶剂的溶剂化作用较弱,活性中心多为紧离对、聚合反应速率较馒而聚合物的结构规整性较好。
②反离子的影响 ‘
在非极性溶剂中.阴离子聚合链增长速率常数随反离子半径增加而增加.聚合产物的规整性下降;在极性溶剂中。
链增长速率常数随反离子半径增加而降低,聚合物的规整性提高。
③温度的影响
温度对阴离子聚合反应的影响包括对聚合反应本身的影响和对镕转移副反应的影响。
首先温度升高使聚合反应速率升高,同时使聚合物结构规整性降低;其次活性明离子容易与质子性物质发生链转移反应而终止,且链转移反应的话化能又高于链增长活化能,所以升高温度往往使链转移反应加剧。
另外,除活性中心为紧离子对外,阴离子聚合的活化能稍低于自
由基聚合的活化能,因此一般阴离子聚合反应湿度选择低于自由基聚合反应温度。
④烷基铿的缔合作用
研究发现,烷基锂在非极性溶剂(如苯、甲苯等)中存在不同程度缔合作用,缔合态烷基锂不具有引发活性,只有处于单分子状态的烷基锂才具有引发作用。
2、阳离子聚合
到目前为止,阳离子聚合反应研究远没荷阴离子聚合反应深入,实际应用也没有阴离子聚合广泛,唯一实现大规模工业生产的阳离子聚合只有聚异丁烯和丁基橡胶两例。
(1)阳离子聚合的单体:(1)带推(供)电子取代基的。
一烯烃;(2)带共轭取代基的。
α-烯烃和共轭二烯烃;(3)某些含杂原子的化合物。
其中异丁烯和烷基乙烯基醚最容易进行阳离子聚合。
(2)阳离子聚合引发剂:属亲电试剂,常见的有质子酸、Lewis的破和高能辐射引发等三类。
(3)阳离子聚合反应机理
阳离子聚合反应也属于连锁聚合的范畴,聚合反应过程可分为链引发、链增长和链终止个基元反应。
(4)阳离子聚合动力学
阳离子聚合反应的特点是快引发、快增长、易重排、易转移、难终止。
阳离子聚合反应动力学研究比自由基聚合和阴离子聚合困难得多.因为阳离子聚合体系多为非均相体系;链引发增长速率快;微量杂质的存在对聚合反应速率影响都很大;稳态假定在阳离子聚合反应中难于建立。
因此,阳离子聚合反应理论研究并不十分成熟。
(5)阳离子聚合的影响因素
阳离子聚合的主要影响因素有溶剂的极性和反离子的种类,是通过影响活性中心离子对
的存在形态而对聚合反应速率以及聚合物立体规整性产生影响。
①溶剂极性的影响
与阴离子聚合相似,阳离子聚合反应活性中心也可能存在共阶键、紧离子对、松离子对和自由离子等四种形态,且在大多数阳离子聚合体系中活性中心都以一种以上的离子对形态同时存在。
介电常数(溶剂的极性指标)大的溶剂能使阳离子聚合活性中心离子对变得更松甚至交成自由离子,聚合速率将增加,聚合物的立体结构格变差。
而介电常数较小的溶剂中阳离子活性中心离子对将以紧离子对的形式与单体进行链增长反应,聚合反应速率较侵而聚合物的立体结构规整性较好。
②反离子的影响
在阳离子聚合中反离子的亲核性大小对聚合反应能否进行具有很大影响。
若反离子的亲核性太强则链增长反应无法进行。
反离子的体积大小对聚合反应速率的影响表现为体积大的反离子与正碳离子之间的库仑力较弱,反离子的亲核性较差,离子对变松,聚合速率较快。
③温度的影响
根据ΔG=ΔHf—TΔS,因烯类单体在多种连锁聚合反应中都是π键转变成σ键的过程。
所以无论自由基聚合还是离子型聚合其聚合焓ΔH和聚合熵ΔS大体都相等。
但各种不同机理连锁聚合反应的活化能却有差别。
阳离子聚合链引发反应活化能很小.且多数情况下链引发话化能、链终止活化能和链转移活化能都大于铭增长活化能.所以大多数阳离子聚合综合活化能量均为负值,即温度降低聚合反应速率加快,聚合度增加。
所以具有负温效应是阳离子聚合反应的重要特点,阳离子聚合反应往往在很低的温度下进行。