高分子化学6-离子聚合-阴离子聚合
高分子化学-离子聚合

第六章离子聚合论述题1. 丁基锂和萘钠是阴离子聚合的常用引发剂,试说明两者引发机理和溶剂的选择有何差别。
2. 甲基丙烯酸甲酯分别在苯、四氢呋喃、硝基苯中用萘钠引发聚合。
试问在哪一种溶剂中的聚合速率最大?3. 应用活性阴离子聚合来制备下列嵌段共聚物,试提出加料次序方案。
a.(苯乙烯)x—(甲基丙烯腈)yb.(甲基苯乙烯)x—(异戊二烯)y—(苯乙烯)zc.(苯乙烯)x—(甲基丙烯酸甲酯)y—(苯乙烯)x4. 试从单体、引发剂、聚合方法及反应的特点等方面对自由基、阴离子和阳离子聚合反应进行比较。
5. 将下列单体和引发剂进行匹配。
说明聚合反应类型并写出引发反应式。
单体:(1)CH2=CHC6H5(2)CH2=C(CN)2(3)CH2=C(CH3)2(4)CH2=CHO(n-C4H9)(5)CH2=CHCl(6)CH2=C(CH3)COOCH3引发剂:(1)(C6H5CO2)2(2)(CH3)3COOH+Fe2+(3)萘-Na(4)BF3+H2O6. 在离子聚合反应过程中,能否出现自动加速效应?为什么?7. 何为活性聚合物?为什么阴离子聚合可以实现活性聚合?计算题1. 用n-丁基锂引发100 g苯乙烯聚合,丁基锂加入量恰好是500分子,如无终止,苯乙烯和丁基锂都耗尽,计算活性聚苯乙烯链的数均分子量。
2. 将1.0×10-3 mol萘钠溶于四氢呋喃中,然后迅速加入2.0 mol苯乙烯,溶液的总体积为1 L。
假如单体立即混合均匀,发现2000 s内已有一半单体聚合。
计算聚合2000 s和4000 s时的聚合度。
3. 将苯乙烯加到萘钠的四氢呋喃溶液中,苯乙烯和萘钠的浓度分别为0.2 mol⋅L-1和1×10-3 mol⋅L-1。
在25℃下聚合5 s,测得苯乙烯的浓度为1.73×10-3 mol⋅L-1。
试计算:a.增长速率常数b.10s的聚合速率c.10s的数均聚合度4. 在搅拌下依次向装有四氢呋喃的反应器中加入0.2 mol n-BuLi和20 kg苯乙烯。
高分子化学 第6章 离子聚合

3. 其它能产生 阳离子的物质
碘、氧鎓离子、高氯酸盐、六氯化铅盐等 引发活性较低,只能引发活性较高的单体。 高能辐射也能产生阳离子引发聚合,
CH3
异丁烯:
异丁烯是唯一能进行阳离子聚合的α —烯烃,且它 只能进行阳离子聚合。根据这一特性,常用异丁烯 来鉴别引发机理。
更高级的α —烯烃:由于位阻效应,只能形成二聚体(Dimer) 。
烷基乙烯基醚: 诱导效应:烷氧基使双键电子云密度降低; 共轭效应:氧上未共用电子对与碳碳双键形成P~π共轭, 使双键电子云密度增加。
阳离子聚合机 理的特点
讨论:阳离子聚合有
无自动加速现象 单基终止 ,无? 自动加速现 快引发、快增长、易转移、难终止。 象 終止方式是单基終止。
在阳离子聚合中,真正的动力学链终止较难实 现,但与阴离子聚合相比,却不易生成活性聚合 物,主要原因是反应体系中水是引发剂,又是終 止剂。另外,阳离子聚合易链转移。 但现在也可以作到活性聚合。
烯烃双键对质子的亲和力,可以从单体和质子 加成的的热焓判断。
增长反应比其他副反应快,即生成的碳
阳离子有适当的稳定性。
如:α —烯烃 乙烯(ethylene): 无侧基,C=C电子云密度低,且不易极化,对质 子亲和力小,难以阳离子聚合。
丙烯(propylene)、丁烯(butylene):
烷基供电性弱,生成的二级碳阳离子较活泼,易 发生重排(rearrangement)等副反应,生成更稳 定的三级碳阳离子。
+ CH2 C (BF3OH)
高分子化学中聚合度的计算

高分子化学中聚合度的计算1、自由基聚合2、自由基共聚3、乳液聚合4、阳离子聚合5、阴离子聚合6、线形缩聚(一)线型缩聚动力学:(1)不可逆条件下a 、自催化聚合(无外加酸)积分得: p t 22p R k 2]M [k =ντν]M [k p =Xn 1=k P k t [M]+C M +C S [M][S]]C []M [n n ]M []M [n X ==-NN X 0n =大分子数结构单元数目=3kC dt dC =-t k 2C 1C 1202=-由C = Co (1-P),代入上式b 、外加酸催化积分得:将 C = Co (1-P ) 代入上式(2)平衡条件下a 、水未排出时(密闭体系)根据反应程度关系式0N N 1P -=2C `k dt dC =-t `k C 1C 10=-1t C `k P 110+=-1t C `k X 0n +=()2121C 1k C k dtdC ----=1C 1C C C N N N P 0000---===P1C -=∴所以正、逆反应达到平衡时,总聚合速率为零,则解得b 、水部分排出时(非密闭体系)根据反应程度关系式所以平衡时()[]K P P 1k dt dP 221--=()0K P P 122=--()0K KP 2P 1K 2=+--1K K 1K K K P +==--1K 1K K 11P 11X n +===+--()W 121n C 1k C k dt dC ----=1C 1C C C N N N P 0000---===P 1C -=∴()[]K n P P 1k dt dP w 21--=()K n P P 1W 2=-当 P 趋近于1 ( > 0.99)时(二)线形缩聚物聚合度的控制(端基封锁)(1)单体aAa 和bBb 反应,其中bBb 稍过量a 、当原料单体官能团等摩尔比时,即 r = 1 或 q = 0b 、当P =1时,即官能团a 完全反应(其中 ,称为摩尔系数; ,称为bBb 单体的分子过量分率, )(2)aAa 、bBb 等摩尔比,另加少量单官能团物质CbW n P K P 11Xn =-= ∴)P 1(2q 2q P r 2r 1r 12/)P N 2N N (2/)N N (X a b a b a n -++-++-++===()P 11P 122X n --==q 21q 2r 1r 1X n ≈=+=+-()()P N N N 2N N 2P N N N N N X a c a c a a c a c a n -++-++==()()rP2r 1r 1P N 2N 2N N N 2N N a c a a c a a -++-++++==1<=b a N N r r r 1N N N 2/N 2/)N N (q a a b a a b ---===1q 1r += ∴(其中, )(3)aRb 加少量单官能团物质Cb(分子数为Nc )反应(其中, )7、体型缩聚Carothers 理论c a a N N N r 2+=a c a c N N 22N N q ==1q 1r +=()()P r r r P N N N N N P N N N N N X a c a c a a c a c a n 21122-++===-++-++c a a 'N N N r 2+=1q 1r +=)(=nX 11f 2P -f P 22X n -=。
潘祖仁《高分子化学》课后习题及详解(离子聚合)【圣才出品】

第6章离子聚合(一)思考题1.试从单体结构来解释丙烯腈和异丁烯离子聚合行为的差异,选用何种引发剂?丙烯酸、烯丙醇、丙烯酰胺、氯乙烯能否进行离子聚合?为什么?答:(1)丙烯腈中氰基为吸电子基团,可以与双键形成π-π共轭,使双键上的电子云密度减弱,有利于阴离子的进攻,并使所形成的碳阴离子的电子云密度分散而稳定,因此丙烯腈能够进行阴离子聚合。
进行阴离子聚合时,可选用碱金属、碱金属化合物、碱金属烷基化合物、碱金属烷氧化合物等作为引发剂。
异丁烯中两个甲基为推电子基团,能使双键上的电子云密度增加,有利于阳离子的进攻,并使所形成的碳阳离子的电子云密度分散而稳定,因此异丁烯能够进行阳离子聚合。
进行阳离子聚合时,通常采用质子酸、Lewis酸及其相应的共引发剂进行引发。
(2)丙烯酸、烯丙醇、丙烯酰胺不能进行离子聚合,因为没有强烈的推电子基团和吸电子基团。
氯乙烯中氯原子的诱导效应为吸电性,而共轭效应却有供电性,两者相抵消后,电子效应微弱,因此氯乙烯不能离子聚合。
2.下列单体选用哪一引发剂才能聚合?指出聚合机理类型。
表6-1答:(1)苯乙烯三种机理均可,可以选用表6-1中任何一种引发剂。
(2)偏二腈乙烯,阴离子聚合,选用Na+萘或n-C4H9Li引发。
(3)异丁烯,阳离子聚合,选用SnC14+H2O或BF3+H2O。
(4)丁基乙烯基醚,阳离子聚合,选用SnC14+H2O或BF3+H2O。
(5)甲基丙烯酸甲酯,阴离子聚合和自由基聚合。
阴离子聚合,选用Na+萘或n-C4H9Li 引发,自由基聚合选用(C6H5CO)2O2作引发剂。
3.下列引发剂可以引发哪些单体聚合?选择一种单体,写出引发反应式。
a.KNH2b.AlCl3+HClc.SnCl4+C2H5Cld.CH3ONa答:a.KNH2是阴离子聚合引发剂,可以引发大多阴离子单体聚合,如引发苯乙烯进行聚合,反应式为b.AlCl3活性高,和微量的水作共引发剂即可,和HCl配合时,氯离子的亲和性过强,容易同阳离子共价终止,所以很少采用。
第六章离子聚合

20
实验证据 萘钠在THF中引发苯乙烯聚合,碳阴
离子增长链为红色,直到单体100%转 化,红色仍不消失
重新加入单体,仍可继续链增长 (放热),红色消退非常缓慢,几天~ 几周
21
Na +
[ THF
[2
] THF Na +2CH2 CH
] Na (绿色)
+ Na CH CH2 CH2 CH Na
(红色)
2 CO2
X
O A O C CH CH2
X
O
CH2 CH C O A
H+
X
O HO C CH CH2
X
CH2
36
O CH C OH X
(4)制备嵌段共聚物 利用活性聚合,先制得一种单体的活性链,
然后加入另一种单体,可得到希望链段长度的 嵌段共聚物。
工业上已经用这种方法合成了St-B、 St-B-St两嵌段和三嵌段共聚物,这种聚合物 在室温具有橡胶的弹性,在高温又具有塑料的 热塑性,称热塑弹性体。
26
(3) 链转移反应
负离子聚合链转移反应发生的比 较少,特别是在低温下进行,链转 移反应就更少了。
27
聚合速率 可简单地用增长速率来表示:
上式适用条件: (1) 无杂质的活性聚合;
M-——阴离子增长 活性中心的总浓度
(2) 且引发快于增长反应,即在开始聚合前,
引发剂已定量地离解成活性中心,则阴离
引发剂活性
高
K,Na
引发剂
萘-Na复合物 KNH2 ,RLi
较高 RMgX t-BuOLi
中 ROK RONa ROLi
低 吡啶 R3N H2O
单体 单体活性
苯乙烯
高分子化学导论第6章 阴离离子聚合与阳离子聚合

不同机理的聚合反应中分子量与转化率的关系
分
分
子
子
量
量
转化率/%
转化率/%
自由基聚合 逐步聚合
分 子 量
转化率/% 活性阴离子聚合
活性聚合物的分子量分布:
由萘钠-THF引发得的聚苯乙烯,接近 单分散性,这种聚苯乙烯可用作分子 量及其分布测定的标样。
6.5 阴离子聚合的分子设计
♣ 制备遥爪聚合物:指分子链两端都带 有活性官能团的聚合物,两个官能团遥 遥位居于分子链的两端,象两个爪子。
pKa=-logKa,Ka:电离平衡常数
pKa值:St 40-42 ; MMA 24
6.6 工业生产
理论上:对分子链结构有较强的控 制能力,可获得“活性聚合物”,可进 行分子设计,合成预定结构和性能的聚 合物;
工业生产中:可生产许多性能优良的 聚合物,如丁苯橡胶、异戊橡胶、SBS 热塑性橡胶等。
制备方法:聚合末期在活性链上加入如 CO2、环氧乙烷、二异氰酸酯等添加剂, 使末端带羧基、羟基、异氰酸根等基团 的聚合物,合成遥爪聚合物。
端羧基化反应 端羟基化反应
♣ 制备嵌段共聚物(Block copolymer)
先制成一种单体的“活的聚合物”,再 加另一单体共聚,制得任意链段长度的 嵌段共聚物。如合成SBS热塑性橡胶。
碱金属将最外层的一价电子直接转移给单体, 生成自由基-阴离子,自由基阴离子末端很 双阴离子 快偶合终止,生成双阴离子,两端阴离子同 时引发单体聚合。如丁钠橡胶的生产。
♣ b 电子间接转移引发
碱金属—芳烃复合引发剂 碱金属(如钠)将最外层的一个价电子转移给中间 体(如萘),使中间体变为自由基阴离子(如萘钠 络合物),再引发单体聚合,同样形成双阴离子。
高分子化学-高化第四章答案

第四章离子聚合习题参考答案1.与自由基聚合相比,离子聚合活性中心有些什么特点?解答:离子聚合和自由基聚合的根本不同就是生长链末端所带活性中心不同。
离子聚合活性中心的特征在于:离子聚合生长链的活性中心带电荷,为了抵消其电荷,在活性中心近旁就要有一个带相反电荷的离子存在,称之为反离子,当活性中心与反离子之间得距离小于某一个临界值时被称作离子对。
活性中心和反离子的结合,可以是极性共价键、离子键、乃至自由离子等多种形式,彼此处于平衡状态:BA B+A B+A B AⅠ为极性共价物种,它通常是非活性的,一般可以忽略。
Ⅱ和Ⅲ为离子对,引发剂绝大多数以这种形式存在。
其中,Ⅱ称作紧密离子对,即反离子在整个时间里紧靠着活性中心。
Ⅲ称作松散离子对,即活性中心与反离子之间被溶剂分子隔开,或者说是被溶剂化。
Ⅳ为自由离子。
通常在一个聚合体系中,增长物种包括以上两种或两种以上的形式,它们彼此之间处于热力学平衡状态。
反离子及离子对的存在对整个链增长都有影响。
不仅影响单体的的聚合速度,聚合物的立体构型有时也受影响,条件适当时可以得到立体规整的聚合物。
2.适合阴离子聚合的单体主要有哪些,与适合自由基聚合的单体相比的些什么特点?解答:对能进行阴离子聚合的单体有一个基本要求:①适合阴离子聚合的单体主要有:(1)有较强吸电子取代基的烯类化合物主要有丙烯酸酯类、丙烯腈、偏二腈基乙烯、硝基乙烯等。
(2)有π-π共轭结构的化合物主要有苯乙烯、丁二烯、异戊二烯等。
这类单体由于共轭作用而使活性中心稳定。
(3)杂环化合物②与适合自由基聚合的单体相比的特点:(1)有足够的亲电结构,可以为亲核的引发剂引发形成活性中心,即要求有较强吸电子取代基的化合物。
如V Ac,由于电效应弱,不利于阴离子聚合。
(2)形成的阴离子活性中心应有足够的活性,以进行增长反应。
如二乙烯基苯,由于空间位阻大,可形成阴离子活性中心,但无法增长。
(3)不含易受阴离子进攻的结构,如甲基丙烯酸,其活泼氢可使活性中心失活。
高分子化学第四章(离子聚合)

(2)Lewis酸
这类引发剂包括AlCl3、BF3、SnCl4、SnCl5、ZnCl2和TiCl4 等金属卤化物,以及 RAlCl2,R2AlCl 等有机金属化合物,其中 以铝、硼 、钛、锡的卤化物应用最广。
Lewis 酸引发阳离子聚合时,可在高收率下获得较高分子量 的聚合物,因此从工业上看,它们是阳离子聚合的主要引发剂。
(5)聚合方法
自由基聚合可以在水介质中进行,但水对离子聚合的引发剂和 链增长活性中心有失活作用,因此离子聚合一般采用溶液聚合, 偶有本体聚合,而不能进行乳液聚合和悬浮聚合。
4.2 阳 离 子 聚 合
4.2.1 阳离子聚合单体
阳离子聚合单体必须是有利形成阳离子的亲核性烯类单体,包 括以下三大类:
(1)带给电子取代基的烯烃如:
Lewis 酸引发时常需要在质子给体(又称质子源)或正碳离 子给体(又称正碳离子源)的存在下才能有效。
质子给体或正碳离子给体是引发剂,而 Lewis 酸是助引发剂 (或称活化剂),二者一起称为引发体系。
质子给体 一类在 Lewis 酸存在下能析出质子的物质,如水、卤 化氢、醇、有机酸等;以 BF3 和 H2O引发体系为例:
阳离子聚合反应过程中的异构化反应
碳阳离子可进行重排形成更稳定的碳阳离子,在阳离子聚合 中也存在这种重排反应,如 β-蒎烯的阳离子聚合:
4.2.2.3 链转移和链终止 链转移反应 链转移反应是阳离子聚合中常见的副反应,有以下几种形式:
(1)向单体链转移: 增长链碳阳离子以 H+ 形式脱去 β-氢给单体,这是阳离子聚
(Ph)3C+ClO4- + OR
Ph Ph
Ph
CH2 CH ClO4OR
(4)卤素 卤素 I2 也可引发乙烯基醚、苯乙烯等的聚合,其引发反应被认
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、阴离子聚合引发剂
对于吸电子取代基的烯类单体,按其反应能力, 可以排为四组:
CN A 组 CH2 C(CN)2 > CH2 C COOC2H5 > CH2 CHNO2 >>
B 组 CH2 CHCN > CH2 C(CH3)CN > CH2 CHCCH3 >>
CH3
O
C 组 CH2 CH
> CH2 C
Na + CH2 CH
CH2 CH
CH2 CH Na+
自由基末端偶合二聚后形成双阴离子:
2 CH2 CH
CH2 CH Na+
Na+
CH CH2 CH2 CH Na+
双向引发聚合
1.链引发(3)碱金属络合引发--电子间接转移引发
钠—萘体系:利用碱金属在某些溶剂中能够生成 有机络合物并降低其电子转移活化能的特点。
>>
COOCH3 D 组 CH2 CHCH CH2
COOCH3 > CH2 CH
CH3 > CH2 C
C6H5
C6H5
二、阴离子聚合引发剂
表 常见阴离子聚合单体和引发剂的反应活性
单体活性类别
单体
高活性A 次高活性B 中活性C 低活性D
硝基乙烯 偏二氰基乙烯
丙烯腈 甲基丙烯腈
丙烯酸甲酯 甲基丙烯酸甲酯
A
苯乙烯
非极性共轭烯烃
丁二烯
B
甲基丙烯酸甲酯 丙烯酸甲酯
丙烯腈
C 甲基丙烯腈
极性单体
活 性
甲基乙烯酮
硝基乙烯
高活性单体
亚甲基丙二酸二乙酯 D - 氰基丙烯酸乙酯
- 氰基-2,4-己二烯酸乙酯
偏二氰基乙烯
二、阴离子聚合引发剂
☺ 在这些引发剂中: 碱金属悬浮体系是熔融的碱金属微珠分散
在惰性有机溶剂中; 有机锂试剂是金属锂和卤代烷在有机溶剂
高分子化学
Polymer Chemistry
第六章 离子聚合
第六章 离子聚合
第六章 离子聚合
6.1 阴离子聚合
6.1 阴离子聚合
阴离子聚合反应通式:
A+ B + M
B M A+ M
M Mn
B- 表示阴离子活性中心,一般为自由离 子、离子对等。
A+表示反离子,一般为金属离子。
6.1 阴离子聚合
① 引发反应:
(A)萘自由基阴离子的生成:
Na +
Na+
Na把最外层一个电子转移到萘分子的最 低空轨道,生成自由基阴离子。
1.链引发(3)碱金属络合引发--电子间接转移引发
萘钠必须在醚类溶剂中用钠和萘反应制备。 深绿色溶液的形成表明自由基阴离子引发 剂的生成。
水或湿气必须严格除去,否则会破坏引发 剂,使其失活。
1.链引发(3)碱金属络合引发---电子间接转移引发 钠—萘体系: ① 引发反应:
二、阴离子聚合引发剂
常见的阴离子聚合反应的引发剂包括三种类型: (1)碱金属烷基化合物(如BuLi等) (2)碱金属(如Li、Na、K等) (3)碱金属络合物(如萘钠等)
二、阴离子聚合引发剂
确定阴离子聚合的单体---引发剂组合时, 必须考虑它们之间的活性匹配:即强碱性引 发剂能够引发各种活性的单体;弱碱性引发 剂只能引发高活性单体。
三、阴离子聚合反应机理
e 值愈大单体参加阴离子聚合反应活性的愈 大; 活泼单体形成的阴(阳)离子不活泼,而 不活泼的单体形成的阴(阳)离子活泼。
离子聚合中,聚合速率和单体活性一致。
三、阴离子聚合反应机理
1. 链引发
(1)烷基金属化合物引发:
要求金属键必须是离子键。金属和碳原子之 间的电负性差大的易形成离子键。
苯乙烯 丁二烯
引发剂活性类别 引发剂
低活性 中活性 次高活性 高活性
吡啶 NR3
ROK NaOH
RMgX t-BuOLi
Li、Na、K Li-R
引发剂
SrR2 , CaR2
Na , NaR
a
Li , LiR
RMgX
b
活 t-ROLi
性
ROX ROLi
cLeabharlann 强碱吡啶NR3弱碱
d
ROR
H2O
单体
-甲基苯乙烯
VC、VAc等单体,p-π共轭效应与诱导效应相 反,减弱了双键电子云密度下降的程度,不利于 阴离子聚合。
6.1 阴离子聚合
二、阴离子聚合引发剂(电子给体,亲核试剂
1. 电子转移类引发剂
2. 阴离子加成类引发剂 3. 其他亲核试剂
——R3P、R3N、ROH、H2O等 中性亲核试剂
二、阴离子聚合引发剂
1.电子转移类引发剂
(1)电子直接转移引发 —— 碱金属(如Na、K等)
(2)电子间接转移引发 ——碱金属络合物(如萘钠等)
二、阴离子聚合引发剂
2. 阴离子加成类引发剂(有机金属化合物)
采用多种碱性化合物(离解产生阴离子)
(1)碱金属烷基化合物(BuLi等) (2)格氏试剂 (3)醇盐、酚盐(如醇钠 CH3ONa ) (4)金属氨基化合物(如 KNH2 )
一、阴离子聚合单体
能够进行阴离子聚合反应的单体包括三种类型:
(1)带吸电子取代基的烯烃
(2)带共轭取代基的-烯烃(苯乙烯、丁二烯、异戊
二烯等);
CH2 CH
取代基:
(具有-共轭体系)
X
X :-NO2,-CN,COOR,-Ph,-CH=CH2
(3)某些含杂原子(如O、N杂环)的化合物(如甲醛、 环氧乙烷、环氧丙烷、硫化乙烯、己内酰胺等):阴 离子开环聚合
★ 碳阴离子(carbanion)的生成
1. 链引发 (1)烷基金属化合物引发:
★ 引发反应(initiation):
1. 链引发 (1)烷基金属化合物引发:
★ 链增长(propagation)反应:
1.链引发 (2)碱金属引发--电子直接转移引发
碱金属直接加到单体(如苯乙烯)中。
Na原子把外层电子转移给单体形成单体的 自由基阴离子:
中反应制备的; 格氏试剂是金属镁和卤代烷反应而得。
二、阴离子聚合引发剂
烷基铝在大气中容易燃烧。 烷基锂和格氏试剂除去溶剂后形成的固
体容易爆炸。
☺ 因此这些阴离子聚合引发剂都是以溶液形 式使用,使用惰性有机溶剂进行聚合反应。
6.1 阴离子聚合
三、阴离子聚合反应机理
Q-e概念 取代基的极性即 e 值大小是决定单体参 加阴离子聚合反应活性的决定因素;取代 基的共轭程度即 Q 值的大小是决定单体 参加自由基聚合反应活性的决定因素。
一般选择比Mg电负性(1.2—1.3)小的金属 有机化合物。如 烷基锂。( C电负性为 2.5 )
1. 链引发
(1)烷基金属化合物引发(阴离子加成类):
例1:乙基锂引发苯乙烯:
C2H5Li + CH2 CH
C2H5CH2 CHLi+
1. 链引发 (1)烷基金属化合物引发:
例2:丁基锂引发烯类单体的反应历程: