高分子化学课件:第六章:离子聚合-1_5

第六章 离子聚合 重点、难点指导

第六章 离子聚合 重点、难点指导 一、重要术语和概念 离子聚合单体、离子聚合的引发剂和共引发剂、离子聚合中活性中心形态与溶剂、离子聚合的机理特征、活性阴离子聚合、嵌段共聚物制备 二、重要公式 活性阴离子聚合速率: ]][[][M B k dt M d R p p ?=?= 活性阴离子聚合物的聚合度:][])[]([0C M M n Xn ?= 三、难点 阴离子聚合反应的影响因素、活性阴离子聚合 1、阴离子聚合 (1) 阴离子聚合单体 能进行阴离子聚合的单体包括三种类型,即:(1)带吸电子取代基的。α-烯烃;(2)带共轭取代基的α-烯烃;(3)某些含杂原子的化合物(如O 、N 杂环)。 (2) 阴离子聚合的引发剂 阴离子聚合的引发剂主要有三类:即:(1)碱金属烷基化合物如正丁基锂( LiBu)等;(2)碱金属如Li 、Na 、K 等;(3)碱金属络合物如萘钠、苯基锂等。 (3) 阴离子聚合反应机理 阴离子聚合届连锁聚合反应的一种类型、其反应也包括链引发、链增长和链终止三个基元反应。机理特征是慢引发、快增长、无终止、无转移、成为典型的活性聚合,可用来合成分子量窄分布的聚合物和嵌段共聚物。合成嵌段共聚物时,应使pKa 值较大的单体先聚合,再加pKa 值较小的单体后继聚合。 (4) 阴离子聚合反应的影响因素 在阴离子聚合反应中.活性中心离子的存在形态是影响聚合反应速率和聚合物结构的最重要因素.分析如下: ①溶剂的影响 溶剂对明离子聚合引发剂、单体及活性离子对具有“溶剂化作用”。极性溶剂的溶剂化作用使阴离子聚合的活性中心成为松离子对甚至自由离子,因此在极性溶剂中进行的阴离子聚合反应速率快.但聚合物的结构规整性差;非极性溶剂的溶剂化作用较弱,活性中心多为紧离对、聚合反应速率较馒而聚合物的结构规整性较好。 ②反离子的影响 ‘ 在非极性溶剂中.阴离子聚合链增长速率常数随反离子半径增加而增加.聚合产物的规整性下降;在极性溶剂中。链增长速率常数随反离子半径增加而降低,聚合物的规整性提高。 ③温度的影响 温度对阴离子聚合反应的影响包括对聚合反应本身的影响和对镕转移副反应的影响。首先温度升高使聚合反应速率升高,同时使聚合物结构规整性降低;其次活性明离子容易与质子性物质发生链转移反应而终止,且链转移反应的话化能又高于链增长活化能,所以升高温度往往使链转移反应加剧。另外,除活性中心为紧离子对外,阴离子聚合的活化能稍低于自

第六章离子聚合

第六章离子聚合 一、名称解释 1. 阳离子聚合:增长活性中心为带正电荷的阳离子的连锁聚合。 2. 活性聚合:当单体转化率达到100%时,聚合仍不终止,形成具有反应活性聚合物(活性聚合物)的聚合叫活性聚合。 3. 化学计量聚合:阴离子的活性聚合由于其聚合度可由单体和引发剂的浓度定量计算确定,因此也称为化学计量聚合。 4. 开环聚合:环状单体在引发剂作用下开环,形成线形聚合物的聚合反应。 5. Ziegler-Natta引发剂:Zigler-Natta引发剂是一大类引发体系的统称,通常有两个组份构成:主 引发剂是Ⅳ~Ⅷ族过渡金属化合物。共引发剂是Ⅰ~Ⅲ族的金属有机化合物。 6. 配位聚合:单体与引发剂经过配位方式进行的聚合反应。具体的说,采用具有配位(或络合)能力的引发剂、链增长(有时包括引发)都是单体先在活性种的空位上配位(络合)并活化,然手插入烷基—金属键中。配位聚合又有络合引发聚合或插入聚合之称。 7. 定向聚合:任何聚合过程(包括自由基、阳离子、阴离子、配位聚合)或任何聚合方法(如本体、悬浮、乳液和溶液等),只要它是经形成有规立构聚合物为主,都是定向聚合。定向聚 合等同于立构规整聚合。 二、选择题 1. 下列单体中哪一种最容易进行阳离子聚合反应---------------------------------------------( B ) A.CH2=CH2B.CH2=CHOCH3C.CH2=CHCl D.CH2=CHNO2 2. 下列哪种物质不能作为阳离子聚合的引发剂------------------------------------------------(B ) A.正碳离子盐B.有机碱金属C.质子酸D.Lewis酸 3. 四氢呋喃可以进行下列哪种聚合---------------------------------------------------------( C ) A.自由基聚合B.阴离子聚合C.阳离子聚合D.配位聚合 4. 在无终止的阴离子聚合中,阴离子无终止的原因是(C ) A 阴离子本身比较稳定 B 阴离子无双基终止而是单基终止 C 从活性链上脱出负氢离子困难 D 活化能低,在低温下聚合 5. 合成聚合物的几种方法中,能获得最窄相对分子质量分布的是( A ) A 阴离子聚合 B 阳离子聚合 C 自由基聚合D自由基共聚合 6. 能引发苯乙烯阴离子活性聚合,并且聚合度等于两倍的动力学链长的是(D) A. BuLi B. AIBN C. AlCl3+H2O D. 萘+钠 7. 制备分子量分别较窄的聚苯乙烯,应该选择(B) A阳离子聚合B阴离子聚合反应C配位聚合反应D自由基聚合反应

第六章离子聚合

6 离子聚合 6.1 课程的知识要点 离子聚合基本原理;阴(阳)离子聚合的简单机理、引发剂;活性聚合的特点及应用、活性聚合的制备、遥爪聚合物;离子聚合与自由基聚合的比较。 6.2 本章习题 1.下列单体选用哪一引发剂才能聚合?指出聚合机理类型。 2、用n-丁基锂引发100g苯乙烯聚合,丁基锂加入量恰好是500分子,如无终止,苯乙烯和丁基锂都耗尽,计算活性聚苯乙烯链的数均分子量。 3、将1.0×10-3mol萘纳溶于四氢呋喃中,然后迅速加入2.0mol苯乙烯,溶液的总体积为1L.假如单位立即混合均匀,发现2000内已有一半单体聚合,计算聚合2000s和4000s时的聚合度。 4、将苯乙烯加到萘纳的四氢呋喃溶液中,苯乙烯和萘纳的浓度分别为0.2mol?L-1和1×10-3 mol?L-1。在25℃下聚合5s,测得苯乙烯的浓度为1.73×10-3mol?L-1,试计算: a.增长速率常数 b. 引发速率 c. 10s的聚合速率 d. 10s的数均聚合度 5、将5g充分纯化和干燥的苯乙烯在50ml四氢呋喃中的溶液保持在-50℃.另将1.0g钠和 6.0g萘加入干燥的四氢呋喃中搅拌均匀,形成暗绿色萘纳溶液.将1.0ml 萘纳绿色溶液注入苯乙烯溶液中,立刻变成橘红色,数分钟后反应完全.加入数毫升甲醇急冷,颜色消失,将反应混合物加热至室温,聚合物析出,用甲醇洗涤,无其它副反应,试求聚苯乙烯的.如所有大分子同时开始增长和终止,则产物应为多少? 6、25℃时,在四氢呋喃中,以C 4H 9 Li作引发剂(0.005mol·L-1),1-乙烯基萘(0.75mol·L-1) 进行阴离子聚合,计算:a.平均聚合度;b.聚合度的数量分布和质量分布。

第六章 离子聚合.doc

第六章离子聚合 思考题 6.1试从单体结构来解释丙烯腈和异丁烯离子聚合行为的差异,选用何种引发剂?丙烯酸、烯丙醇、丙烯酰胺、氯乙烯能否进行离子聚合,为什么? 答丙烯腈中氰基为吸电子基团,同时与双键形成丌-丌共轭,能使双键上的电子云密度减弱,有利于阴离子的进攻,并使所形成的碳阴离子的电子云密度分散而稳定,因此丙烯腈能够进行阴离子聚合。进行阴离子聚合时,可选用碱金属、碱金属化合物、碱金属烷基化合物、碱金属烷氧化合物等作为引发剂。 异丁烯中两个甲基为推电子基团,能使双键上的电子云密度增加,有利于阳离子的进攻,并使所形成的碳阳离子的电子云密度分散而稳定,因此异丁烯能够进行阳离子聚合。进行阳离子聚合时,通常采用质子酸、lewis酸及其相应的共引发剂进行引发。 丙烯酸、烯丙醇、丙烯酰胺、氯乙烯不能进行离子聚合,因为没有强烈的推电子基团和吸电子基团。 思考题6.2下列单体选用哪一引发剂才能聚合?指出聚合机理类型。 答苯乙烯三种机理均可,可以选用表中5种引发剂的任一种。 偏二腈乙烯,阴离子聚合,选用Na+萘或n-C4H9Li引发。 异丁烯,阳离子聚合,选用SnCl4+ H2O或BF3+H2O。 丁基乙烯基醚,阳离子聚合,选用SnCl4+ H2O或BF3+H2O。 CH2=C(CH3)CO2CH3,阴离子聚合和自由基聚合。阴离子聚合,选用Na+萘或n-C4H9Li 引发;自由基聚合选用(C6H5CO)2O2作引发剂。 思考题6.3下列引发剂可以引发哪些单体聚合?选择一种单体作代表,写出引发反应式。 (1)KNH2(2)A1C13+HCl (3)SnCl4+C2H5Cl (4)CH3ONa 答(1) KNH2是一类高活性的阴离子引发剂,可以引发大多数阴离子聚合的单体进行聚合。如引发苯乙烯进行聚合 (2) A1C13活性高,用微量水作共引发剂即可。A1C13+HCl配合时,C1-亲核性过强,易与阳离子共价终止,因此很少采用。 (3) SnCl4+C2H5Cl以引发异丁烯、乙烯基烷基醚及共轭烯烃进行阳离子聚合 (4) CH3ONa可以引发高活性和较高活性的单体进行阴离子聚合。高活性单体如硝基乙烯、偏二氰乙烯。较高活性单体如丙烯腈、甲基丙烯腈等,以及环氧烷烃(如环氧乙烷、环氧丙烷等)的开环聚合。 思考题6.4在离子聚合中,活性种离子和反离子之间的结合可能有几种形式?其存在形式受哪些因素影响?不同形式对单体的聚合机理、活性和定向能力有何影响? 答离子聚合中,活性种离子近旁总伴有反离子。它们之间的结合,可以是共价键、离子对,乃至自由离子,彼此处于平衡之中。如下所示,结合形式和活性种的数量受溶剂性质、温度及反离子等因素的影响。 Bδ-Aδ+,?B-A+ ?B-║A+ ?B- + A+ 极化共价键紧密接触溶剂隔离自由离子

第六章 离子聚合

第六章离子聚合 一、名词解释 活性聚合(Living Polymerization):当单体转化率达到100%时,聚合仍不终止,形成具有反应活性聚合物(活性聚合物)的聚合叫活性聚合。 阴离子聚合:活性中心为阴离子的聚合方法。 阳离子聚合:活性中心为阳离子的聚合方法。 二、问答题 1.试从单体,引发剂,聚合方法及反应的特点等方面对自由基,阴离子和阳离子聚合反应进行比较。

2.在离子聚合反应过程中,能否出现自动加速效应?为什么? 解:在离子聚合反应过程中不会出现自动加速现象。 自由基聚合反应过程中出现自动加速现象的原因是:随着聚合反应的进行,体系的粘度不断增大。当体系粘度增大到一定程度时,双基终止受阻碍,因而k t 明显变小,链终止速度下降;但单体扩散速度几乎不受影响,K p 下降很小,链 增长速度变化不大,因此相对提高了聚合反应速度,出现了自动加速现象。在离子聚合反应过程中由于相同电贺互相排斥不存在双基终止,因此不会出现自动加速效应。 3.在离子聚合反应过程中,活性中心离子和反离子之间的结合有几种形式?其存在形式受哪些因素的影响?不同存在形式和单体的反应能力如何? 解:在离子聚合中,活性中心正离子和反离子之间有以下几种结合方式: A A +A +A ++B - 共价键接触离子 对(紧对)溶剂分开的离子对(松对)自由离子 以上各种形式之间处于平衡状态。结合形式和活性种的数量受溶剂性质,温度,及反离子等因素的影响。 溶剂的溶剂化能力越大,越有利于形成松对甚至自由离子;随着温度的降低,离解平衡常数(K 值)变大,因此温度越低越有利于形成松对甚至自由离子;反离子的半径越大,越不易被溶剂化,所以一般在具有溶剂化能力的溶剂中随反离子半径的增大,形成松对和自由离子的可能性减小;在无溶剂化作用的溶剂中,随反离子半径的增大,A +与B -之间的库仑引力减小,A +与B -之间的距离增大。 活性中心离子与反离子的不同结合形式和单体的反应能力顺序如下: A ++B ->A +//B ->A + B - 共价键连接的A-B 一般无引发能力。 4.为什么阳离子聚合反应一般需要在很低温度下进行才能得到高分子量的聚合物? 解:因为阳离子聚合的活性种一般为碳阳离子。碳阳离子很活泼,极易发生重排和链转移反应。向单体的链转移常数(421010---≈M C )比自由基聚合(541010---≈M C )大的多。为了减少链转移反应的发生,提高聚合物的分子量,所以阳离子反应一般需在低温下进行。 5.何为活性聚合物??为什么阴离子聚合可为活性聚合? 解:活性聚合物是指在链增长反应中,活性链直到单体全部耗尽仍保持活性的聚合物,再加入单体还可以继续引发聚合,聚合物的分子量继续增加。 在阴离子聚合反应中,带相同电荷的活性链离子不能发生双基终止;活性链负碳离子的反离子常为金属离子,而不是原子团,它一般不能夺取链中的某个原子或H +而终止;活性链通过脱去H +离子发生链终止又很困难,所以当体系中无引起链转移或链终止的杂质时,实际上是无终止聚合,即活性聚合。

离散数学结构 第6章 集合代数

第六章集合代数 1. 集合,相等,(真)包含,子集,空集,全集,幂集 2. 交,并,(相对和绝对)补,对称差,广义交,广义并 3. 文氏图,有穷集计数问题 4. 集合恒等式(等幂律,交换律,结合律,分配律,德·摩根律,吸收律,零律,同一 律,排中律,矛盾律,余补律,双重否定律,补交转换律等) 学习要求 1. 熟练掌握集合的子集、相等、空集、全集、幂集等概念及其符号化表示 2. 熟练掌握集合的交、并、(相对和绝对)补、对称差、广义交、广义并的定义及其性 质 3. 掌握集合的文氏图的画法及利用文氏图解决有限集的计数问题的方法 4. 牢记基本的集合恒等式(等幂律、交换律、结合律、分配律、德·摩根律、收律、零 律、同一律、排中律、矛盾律、余补律、双重否定律、补交转换律) 5. 准确地用逻辑演算或利用已知的集合恒等式或包含式证明新的等式或包含式

6.1 集合的基本概念 一.集合的表示 集合是不能精确定义的基本概念。直观地说,把一些事物汇集到一起组成一个整体就叫集合,而这些事物就是这个集合的元素或成员。例如: 方程x2-1=0的实数解集合; 26个英文字母的集合; 坐标平面上所有点的集合; …… 集合通常用大写的英文字母来标记,例如自然数集合N(在离散数学中认为0也是自然数),整数集合Z,有理数集合Q,实数集合R,复数集合C等。 表示一个集合的方法有两种:列元素法和谓词表示法,前一种方法是列出集合的所有元素,元素之间用逗号隔开,并把它们用花括号括起来。例如 A={a,b,c,…,z} Z={0,±1,±2,…} 都是合法的表示。谓词表示法是用谓词来概括集合中元素的属性,例如集合 B={x|x∈R∧x2-1=0} 表示方程x2-1=0的实数解集。许多集合可以用两种方法来表示,如B也可以写成{-1,1}。但是有些集合不可以用列元素法表示,如实数集合。 集合的元素是彼此不同的,如果同一个元素在集合中多次出现应该认为是一个元素,如{1,1,2,2,3}={1,2,3} 集合的元素是无序的,如 {1,2,3}={3,1,2} 在本书所采用的体系中规定集合的元素都是集合。 元素和集合之间的关系是隶属关系,即属于或不属于,属于记作∈,不属于记作,例如 A={a,{b,c},d,{{d}}} 这里a∈A,{b,c}∈A,d∈A,{{d}}∈A,但b A,{d} A. b和{d}是A的元素的元素。可以用一种树形图来表示这种隶属关系,该图分层构成,每个层上的结点都表示一个集合,它的儿子就是它的元素。上述集合A的树形图如图6.1所示。图中的a,b,c,d也是集合,由于所讨论的问题与a,b,c,d的元素无关,所以没有列出它们的元素。鉴于集合的元素都是集合这一规定,隶属关系可以看作是处在不同层次上的集合之间的关系。

第6章离子聚合

5 离子聚合 思考题 1.(略) 答: (1)H 2C CHC 6H 5可被引发剂(C 6H 5CO)2O 2Na+萘BF 3+H 2O n-C 4H 9Li 引发聚合。、、和 2C 6H 5COO · (C 6H 5CO)2O C 6H 5COO ·+H 2C CHC 6H 5C 6H 5COOCH 2CH2C 6H 5· ; 属于自由基聚合。 H 2C CHC 6H 5+(C 6H 5CO)2O 2① H 2C CHC 6H 5+Na-萘; 属于阴离子聚合。 ②Na +H 2C CH C 65 Na HC C 65 CH 2+2Na HC 6H 5 CH 2 Na HC C 6H 5H 2C H 2 C CH 6H 5Na ③H 2C CHC 6H 5+; 属于阳离子聚合。 (BF 3+H 2O )BF 3 + H 2O H (BF 3OH) H 2C CHC 6H 5+H (BF 3OH) CH 2C 6H 5 H (BF 3OH) ④H 2C CHC 6H 5+; 属于阴离子聚合。 n-C 4H 9Li H 2C CHC 6H 5+ n-C 4H 9Li n-C 4H 9CH 2CHLi 6H 5+ - ; 属于阴离子聚合。 ①(2)可被引发剂(Na+萘)n-C 4H 9Li 引发聚合。 和H 2C C(CN)2H 2C C(CN)2Na+萘H 2C C(CN)2+ + Na + +Na C(CN)2CH 2 + _

; 属于阴离子聚合。 ②H 2C C(CN)2 + n-C 4H 9Li H 2C C(CN)2+n-C 4H 9Li n-C 4H 9CH 2C(CN)2Li -+ BF 3+H 2O (3)可被引发剂引发聚合,属于阳离子聚合。 H 2C C(CH 3)2BF 3+H 2O H +(BF 3OH)- H +(BF 3OH)H 2C C(CH 3)2+CH 3C +(CH 3)2(BF 3OH)- H 2C H C O n-C 4H 9BF 3+H 2O (4)可被引发剂引发聚合,属于阳离子聚合。 BF 3+H 2O H +(BF 3OH)-H 2C H C O n-C 4H 9+H +(BF 3OH)- CH 3C +H(BF 3OH)- O(n-C 4H 9) (5)可被引发剂H 2C C(CH 3)COOCH 3(C 6H 5CO)2O 2n-C 4H 9Li 引发聚合。和Na+萘、 2C 6H 5COO · (C 6H 5CO)2O C 6H 5COO ·+; 属于自由基聚合。 +(C 6H 5CO)2O 2①H 2C C(CH 3)COOCH 3H 2C C(CH 3)COOCH 3C 6H 5COOCH 2CCH 3 3· +Na-萘; 属于阴离子聚合。 ② Na +Na C H 3H 2C H 2 C C 3 Na H 2C C(CH 3)COOCH 3 H 2C C(CH 3)COOCH 3Na +C -COOCH 3 2 CH 3 + 2Na +C -COOCH 3 2 CH 3 CH 3H 3C +; 属于阴离子聚合。③ H 2C C(CH 3)COOCH 3 n-C 4H 9Li +H 2C C(CH 3)COOCH 3 n-C 4H 9Li 4H 9CH 2C(CH 3)Li 3-+

第六章 离子聚合

第六章离子聚合 思考题试从单体结构来解释丙烯腈和异丁烯离子聚合行为的差异,选用何种引发剂丙烯酸、烯丙醇、丙烯酰胺、氯乙烯能否进行离子聚合,为什么 答丙烯腈中氰基为吸电子基团,同时与双键形成丌-丌共轭,能使双键上的电子云密度减弱,有利于阴离子的进攻,并使所形成的碳阴离子的电子云密度分散而稳定,因此丙烯腈能够进行阴离子聚合。进行阴离子聚合时,可选用碱金属、碱金属化合物、碱金属烷基化合物、碱金属烷氧化合物等作为引发剂。 异丁烯中两个甲基为推电子基团,能使双键上的电子云密度增加,有利于阳离子的进攻,并使所形成的碳阳离子的电子云密度分散而稳定,因此异丁烯能够进行阳离子聚合。进行阳离子聚合时,通常采用质子酸、lewis酸及其相应的共引发剂进行引发。 丙烯酸、烯丙醇、丙烯酰胺、氯乙烯不能进行离子聚合,因为没有强烈的推电子基团和吸电子基团。 思考题下列单体选用哪一引发剂才能聚合指出聚合机理类型。 答苯乙烯三种机理均可,可以选用表中5种引发剂的任一种。 偏二腈乙烯,阴离子聚合,选用Na+萘或n-C4H9Li引发。 异丁烯,阳离子聚合,选用SnCl4+ H2O或BF3+H2O。 丁基乙烯基醚,阳离子聚合,选用SnCl4+ H2O或BF3+H2O。 CH2=C(CH3)CO2CH3,阴离子聚合和自由基聚合。阴离子聚合,选用Na+萘或n-C4H9Li引发;自由基聚合选用(C6H5CO)2O2作引发剂。 思考题下列引发剂可以引发哪些单体聚合选择一种单体作代表,写出引发反应式。 (1)KNH2 (2)A1C13+HCl (3)SnCl4+C2H5Cl (4)CH3ONa 答 (1) KNH2是一类高活性的阴离子引发剂,可以引发大多数阴离子聚合的单体进行聚

第六章 离子聚合

第六章离子聚合 思考题6.1试从单体结构来解释丙烯腈和异丁烯离子聚合行为的差异,选用何种引发剂?丙烯酸、烯丙醇、丙烯酰胺、氯乙烯能否进行离子聚合,为什么? 答丙烯腈中氰基为吸电子基团,同时与双键形成丌-丌共轭,能使双键上的电子云密度减弱,有利于阴离子的进攻,并使所形成的碳阴离子的电子云密度分散而稳定,因此丙烯腈能够进行阴离子聚合。进行阴离子聚合时,可选用碱金属、碱金属化合物、碱金属烷基化合物、碱金属烷氧化合物等作为引发剂。 异丁烯中两个甲基为推电子基团,能使双键上的电子云密度增加,有利于阳离子的进攻,并使所形成的碳阳离子的电子云密度分散而稳定,因此异丁烯能够进行阳离子聚合。进行阳离子聚合时,通常采用质子酸、lewis酸及其相应的共引发剂进行引发。 丙烯酸、烯丙醇、丙烯酰胺、氯乙烯不能进行离子聚合,因为没有强烈的推电子基团和吸电子基团。 思考题6.2下列单体选用哪一引发剂才能聚合?指出聚合机理类型。 答苯乙烯三种机理均可,可以选用表中5种引发剂的任一种。 偏二腈乙烯,阴离子聚合,选用Na+萘或n-C4H9Li引发。 异丁烯,阳离子聚合,选用SnCl4+ H2O或BF3+H2O。 丁基乙烯基醚,阳离子聚合,选用SnCl4+ H2O或BF3+H2O。 CH2=C(CH3)CO2CH3,阴离子聚合和自由基聚合。阴离子聚合,选用Na+萘或n-C4H9Li 引发;自由基聚合选用(C6H5CO)2O2作引发剂。 思考题6.3下列引发剂可以引发哪些单体聚合?选择一种单体作代表,写出引发反应式。 (1)KNH2(2)A1C13+HCl (3)SnCl4+C2H5Cl (4)CH3ONa 答(1) KNH2是一类高活性的阴离子引发剂,可以引发大多数阴离子聚合的单体进行聚合。如引发苯乙烯进行聚合 (2) A1C13活性高,用微量水作共引发剂即可。A1C13+HCl配合时,C1-亲核性过强,易与阳离子共价终止,因此很少采用。 (3) SnCl4+C2H5Cl以引发异丁烯、乙烯基烷基醚及共轭烯烃进行阳离子聚合 (4) CH3ONa可以引发高活性和较高活性的单体进行阴离子聚合。高活性单体如硝基乙烯、偏二氰乙烯。较高活性单体如丙烯腈、甲基丙烯腈等,以及环氧烷烃(如环氧乙烷、环氧丙烷等)的开环聚合。 思考题6.4在离子聚合中,活性种离子和反离子之间的结合可能有几种形式?其存在形式受哪些因素影响?不同形式对单体的聚合机理、活性和定向能力有何影响? 答离子聚合中,活性种离子近旁总伴有反离子。它们之间的结合,可以是共价键、离子对,乃至自由离子,彼此处于平衡之中。如下所示,结合形式和活性种的数量受溶剂性质、温度及反离子等因素的影响。 Bδ-Aδ+,?B-A+ ?B-║A+ ?B- + A+ 极化共价键紧密接触溶剂隔离自由离子

离散数学-第六章集合代数课后练习习题及答案

第六章作业 评分要求: 1. 合计57分 2. 给出每小题得分(注意: 写出扣分理由). 3. 总得分在采分点1处正确设置. 一有限集合计数问题 (合计20分: 每小题10分, 正确定义集合得4分, 方法与过程4分, 结果2分) 要求: 掌握集合的定义方法以及处理有限集合计数问题的基本方法 1 对60个人的调查表明, 有25人阅读《每周新闻》杂志, 26人阅读《时代》杂志, 26人阅读《财富》杂志, 9人阅读《每周新闻》和《财富》杂志, 11人阅读《每周新闻》和《时代》杂志, 8人阅读《时代》和《财富》杂志, 还有8人什么杂志也不读. (1) 求阅读全部3种杂志的人数; (2) 分别求只阅读《每周新闻》、《时代》和《财富》杂志的人数. 解定义集合: 设E={x|x是调查对象}, A={x|x阅读《每周新闻》}, B={x|x阅读《时代》}, C={x|x阅读《财富》} 由条件得|E|=60, |A|=25, |B|=26, |C|=26, |A∩C|=9, |A∩B|=11, |B∩C|=8, |E-A∪B∪C|=8 (1) 阅读全部3种杂志的人数=|A∩B∩C| =|A∪B∪C|-(|A|+|B|+|C|)+(|A∩B|+|A∩C|+|B∩C|) =(60-8)-(25+26+26)+(11+9+8)=3 (2) 只阅读《每周新闻》的人数=|A-B∪C|=|A-A∩(B∪C)|=|A-(A∩B)∪(A∩C)| =|A|-(|A∩B|+|A∩C|-|A∩B∩C|)=25-(11+9-3)=8 同理可得只阅读《时代》的人数为10, 只阅读《财富》的人数为12. 2 使用容斥原理求不超过120的素数个数. 分析:本题有一定难度, 难在如何定义集合. 考虑到素数只有1和其自身两个素因子, 而不超过120的合数的最小素因子一定是2,3,5或7(比120开方小的素数), 也就是说, 不超过120的合数一定是2,3,5或7的倍数. 因此, 可定义4条性质分别为2,3,5或7的倍数, 先求出不超过120的所有的合数, 再得出素数的个数. 解定义集合: 设全集E={x|x∈Z∧1≤x∧x≤120} A={2k|k∈Z∧k≥1∧2k≤120}, B={3k|k∈Z∧k≥1∧3k≤120}, C={5k|k∈Z∧k≥1∧5k≤120}, D={7k|k∈Z∧k≥1∧7k≤120}. 则不超过120的合数的个数=|A∪B∪C∪D|-4 (因为2,3,5,7不是合数) =(|A|+|B|+|C|+|D|)-(|A∩B|+|A∩C|+|A∩D|+|B∩C|+|B∩D|+|C∩D|)+ (|A∩B∩C|+|A∩B∩D|+|A∩C∩D|+|B∩C∩D|)-|A∩B∩C∩D|-4 =(60+40+24+17)-(20+12+8+8+5+3)+(4+2+1+1)-0-4 (理由见说明部分) =89 因此不超过120的素数个数=120-1-89=30 (因为1不是素数) 说明: |A|=int(120/2); |A?B|=int(120/lcd(2,3)); |A?B?C|=int(120/lcd(2,3,5)); |A?B?C?D|=int(120/lcd(2,3,5,7)).

高分子化学第二章 缩聚和逐步聚合(复习内容)

第二章缩聚与逐步聚合 名词解释 连锁聚合(Chain Polymerization):活性中心引发单体,迅速连锁增长的聚合。烯类单体的加聚反应大部分属于连锁聚合。连锁聚合需活性中心,根据活性中心的不同可分为自由基聚合、阳离子聚合和阴离子聚合。 逐步聚合(Step Polymerization):无活性中心,单体官能团之间相互反应而逐步增长。绝大多数缩聚反应都属于逐步聚合。 加聚反应(Addition Polymerization):即加成聚合反应,烯类单体经加成而聚合起来的反应。加聚反应无副产物。 缩聚反应(Condensation Polymerization):即缩合聚合反应,单体经多次缩合而聚合成大分子的反应。该反应常伴随着小分子的生成。 线形缩聚(Linear Poly-codensation):在聚合反应过程中,如用2-2 或 2 官能度体系的单体作原料,随着聚合度逐步增加,最后形成高分子的聚合反应。线型缩聚形成的聚合物为线形缩聚物,如涤纶、尼龙等。 体形缩聚(Tri-dimensional Poly-condensation):参加反应的单体,至少有一种单体含有两个以上的官能团,反应中形成的大分子向三个方向增长,得到体型结构的聚合物的这类反应。 官能度(Functionality):一分子聚合反应原料中能参与反应的官能团数称为官能度。 平均官能度(Aver-Functionality) :单体混合物中每一个分子平均带有的官能团数。即单体所带有的全部官能团数除以单体总数 反应程度(Extent of Reaction):参加反应的官能团数占起始官能团数的分率。 转化率(Conversion)参加反应的反应物(单体)与起始反应物(单体)的物质的量的比值即为转化率。 凝胶化现象(Gelation Phenomena) 凝胶点(Gel Point):体型缩聚反应进行到一定程度时,体系粘度将急剧增大,迅速转变成不溶、不熔、具有交联网状结构的弹性凝胶的过程,即出现凝胶化现象。此时的反应程度叫凝胶点。 结构预聚物(Structural Pre-polymer):具有特定的活性端基或侧基的预聚物称为结构预聚物。结构预聚物往往是线形低聚物,它本身不能进一步聚合或交联。 问答题 1.讨论下列两组反应物进行缩聚或环化反应的可能性。(m=2-10) (1) H2N(CH2)m COOH (2) HO(CH2)2OH+HOOC(CH2)m COOH 解:(1)m=3、4时易形成环,其余主要进行缩聚反应,形成线性聚合物。 (2)该体系不易成环,主要生成线性聚合物。 2.解释下列名词 (1)均缩聚、混缩聚、共缩聚; (2)平衡缩聚和非平衡缩聚; (3)DP与X n;

《高分子化学》第二章知识点

第二章缩聚及其他逐步聚合反应 缩聚反应 1、按聚合机理或动力学分类: *连锁聚合(Chain polymerization) *逐步聚合(Stepwise polymerization) 大部分缩聚属于逐步机理,大多数烯类加聚属于连锁机理 2、逐步聚合的种类: *缩聚:官能团间的缩合聚合反应,同时有小分子产生。 *聚加成:形式上是加成,机理是逐步的。 *开环反应:部分为逐步反应,如水、酸引发己内酰胺的开环生成尼龙-6 *氧化偶合:单体与氧气的缩合反应,如2,6-二甲基苯酚和氧气形成聚苯撑氧,也称聚苯醚(PPO)。 *Diels-Alder反应:共轭双烯烃与另一烯类发生1,4 加成,制得梯形聚合物.即多烯烃的环化聚合。 (附1)重要的逐步聚合物 3、绝大多数天然高分子都是缩聚物。

4、线性缩聚反应单体需要满足的条件:2-2官能度体系、反应单体不易成环、较少副反应。线形缩聚反应的机理特征 ①逐步特性:官能团之间逐步反应 n-聚体+m-聚体=(n+m)-聚体+水 高分子链向两个方向增长,分子链逐步增长 ②可逆平衡:缩聚产物被反应中伴生的小分子降解,单体分子与聚合物分子之间 )aABb +ab 存在可逆平衡的反应。aAa + bBb=( k?/k -1 平衡常数:K=k?/k -1 可逆程度,可根据平衡常数K衡量。线形缩聚大致分三类: K较小:反应可逆。如聚酯化反应(K=4),低分子副产物的存在对分子量影响较大,需高温减压脱除; K中等:如聚酰胺反应K=300-400),低分子副产物对分子量有所影响,一定程度减压脱除; K很大:可看作不可逆反应。如聚砜、聚碳酸酯等反应K>1000。 单体的转化率:参加反应的单体量占总单体量的百分比 7、缩聚:官能团间的缩合聚合反应,同时有小分子产生。 8、缩聚反应的特点:单体具有官能团:OH,NH?, COOH, COOR, COCI等;产生小分子副产物;缩聚物和单体分子量不成整数倍;缩聚物有特征官结构能团。 9、官能度体系:(缩聚批注中也有提及) 官能度:分子中能参与反应的官能团数。

6教材习题参考答案 第六章离子聚合.doc

教材习题参考答案第六章离子聚合 思考题: 5.分别叙述进行阴、阳离子聚合时,控制聚合反应运速率和聚合物分子量的主要方法。 解:进行离于聚合时.一蟹若果用改变聚合反应温度或改变溶剂极性的方法来控制聚合速度,阴离子聚合一般为无止聚合,所以通过引发剂的用量可调节聚合物约分了量。有时也通过加入链转移剂(例如R1苯)调代聚合物的分子量。 阳离子极易发生发生链转移反应。链转移反应是影响聚合物分子量的主要因素,而聚合反应温度对链转移反应的影响很大。所以一般通过控制聚合反应温度来控制聚合物的分子量。有时也通过加入链转移剂来控制聚合物的分子量。 计算题: 2.将1.0×10-3mol萘钠溶于四氢呋喃中,然后迅速加入2.0mol的苯乙烯,溶液的总体积为1L。假如单体立即均匀混合,发现2000秒钟内已有一半单体聚合,计算在聚合了2000秒和4000秒时的聚合度。 解:无终止的阴离子聚合速率为R p=k p[M-][M] 以萘钠为引发剂时,由于聚合开始前,引发剂就以定量地离解成活性中心∴[M-]=[C]=1.0×10-3mol/L 将R p式改写为-d[M]/dt=k p[C][M] 积分得ln([M]0/[M])=k p[C]t 已知t1=2000秒时,[M]0/[M]1=2,代入上面积分式: ln2=k p×2000 ∴k p[C]=ln2/2000 设当t2=4000秒时,剩余单体浓度为[M]2 ln([M]0/[M]2)=k p[C]t2=ln2/2000×4000=1.386 ∴[M]2= [M]0/4 则反应掉的单体浓度为[M]0-[M]0/4=3[M]0/4 根据阴离子聚合的聚合度公式n=n[M]/[C] (双阴离子n=2) [C]为引发剂浓度 ∵聚合到2000秒时,单体转化率为50%,则反应掉的单体浓度为50%[M]0∴n×50%[M]0/[C]=2×50%×2.0/(1.0×10-3)=2000 已求得聚合到4000秒时,反应掉的单体浓度为3[M]0/4 ∴n×(3[M]0/4)/[C]=2×(3/4)×2.0/(1.0×10-3)=3000

相关文档
最新文档