河南省洛阳市九年级上学期数学11月月考试卷
2023_2024学年河南省洛阳市九年级第一学期第一次月考数学测检测模拟试题(有答案)

2023-2024学年河南省洛阳市九年级上学期第一次月考数学模拟试题一.选择题(共30分)1.若是二次根式,则x的取值范围是( )A.x>1B.x≤1C.x≥1D.x≥02.下列二次根式中,是最简二次根式的是( )3.以下列数据(单位:cm)为长度的各组线段中,成比例线段的是( )4.下列运算正确的是( )5.若关于x的一元二次方程(k+2)x2+3x+k2﹣k﹣6=0必有一根为0,则k的值是( )A.3 或﹣2 B.﹣3或2C.3D.﹣26.化简:a的结果是( )7.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是( )A.k>且k≠1B.k>C.k≥且k≠1D.k≥8.如图,AC与BD相交于点O,DC∥AB,若,CO=8,则AC的长为( )A.10B.12C.14D.169.某热门电影上映的第一天票房约为2亿元,第二天、第三天持续增长,三天累计票房6.62亿元,若第二天、第三天按相同的增长率增长,则平均每天票房的增长率为( )A.5%B.10%C.15%D.20%10.如图,在等边三角形ABC中,AB=4,点D是边AB上一点,且BD=1,点P是边BC上一动点(D、P两点均不与端点重合),作∠DPE=60°,PE交边AC于点E.若CE=a,当满足条件的点P有且只有一个时,则a的值为( )A.2B.2.5C.3D.4(8题图)(10题图)(14题图)二.填空题(15分)11.最简二次根式与二次根式是同类二次根式,则x= .12.若=,则= .13.设x1,x2是方程x2﹣2x﹣3=0的两个实数根,则(x1﹣1)(x2﹣1)的值为 .14.如图,在正方形ABCD中,E为AD的中点,连接BE交AC于点F.若AB=6,则△AEF的面积为 .15.如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=8,E、F分别为AB、BC上的点,沿直线EF将∠B折叠,使点B恰好落在AC上的D处,当△ADE恰好为直角三角形时,BE 的长为 .三.解答题(共75分)16.(8分)计算.(1);(2).17.(8分)根据要求解下列方程(1)2x2﹣4x+1=0(用配方法);(2)3x2+5(2x﹣1)=0.(用公式法)18.(8分)若a=1﹣,先化简再求的值.19.(10分)如图,AB∥CD,AC与BD交于点E,且AB=6,AE=3,AC=12.(1)求CD的长.(2)求证:△ABE∽△ACB.20.(10分)关于x的方程x2﹣(m﹣3)x+m﹣4=0.(1)求证:无论m取任何实数值,此方程都有两个实数根;(2)若有一根大于4且小于8,求实数m的取值范围.21.(10分).如图,老李想用长为70m的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD,并在边BC上留一个2m宽的门(建在EF处,另用其他材料).(1)当羊圈的长和宽分别为多少米时,能围成一个面积为640m2的羊圈?(2)羊圈的面积能达到650m2吗?如果能,请你给出设计方案;如果不能,请说明理由.22.(10分)已知:矩形ABCD的两边AB,BC的长是关于x的方程x2﹣mx+=0的两个实数根.(1)当m为何值时,矩形ABCD是正方形?求出这时正方形的边长.(2)若AB的长为2,那么矩形ABCD的周长是多少?23.(11分)如图,在矩形ABCD中,AB=6cm,BC=8cm,动点P以2cm/s的速度从点A出发,沿AC向点C移动,同时动点Q以1cm/s的速度从点C出发.沿CB向点B移动,设P、Q两点移动t s(0<t<5)后,△CQP的面积为Scm2(1)在P、Q两点移动的过程中,△CQP的面积能否等于3.6cm2?若能,求出此时t的值;若不能,请说明理由;(2)当运动时间为多少秒时,△CPQ与△CAB相似.答案一.选择题1.C;2.C;3.B;4.A;5.C;6.B;7.A;8.C;9.B;10.D;二.填空题11.;12.;13.﹣4;14.3;15.或;16.解:(1)原式=(6﹣+4)÷2=÷2=;(2)解:===.17.解:(1)方程整理得:x2﹣2x=﹣,配方得:x2﹣2x+1=,即(x﹣1)2=,开方得:x﹣1=±,解得:x1=1+,x2=1﹣;(2)方程整理得:3x2+10x﹣5=0,这里a=3,b=10,c=﹣5,∵Δ=102﹣4×3×(﹣5)=100+60=160>0,∴x===,解得:x1=,x2=.18.解:=+.∵a=1﹣<1,∴原式=+=.把a=1﹣代入得:===(1+)2=3+2.19.(1)解:∵AE=3,AC=12∴CE=AC﹣AE=12﹣3=9;∵AB∥CD,∴△CDE∽△ABE;∴=,∴CD===18;(2)证明:∵=,=,∴=,∵∠A=∠A,∴△ABE∽△ACB.20.解:(1)x2﹣(m﹣3)x+m﹣4=0,∵a=1,b=﹣(m﹣3),c=m﹣4,∴Δ=[﹣(m﹣3)]2﹣4(m﹣4)=m2﹣10m+25=(m﹣5)2≥0,∴无论m取任何实数值,此方程都有两个实数根;(2),解得:x1=m﹣4,x2=1,∵有一根大于4且小于8,∴4<m﹣4<8,∴8<m<12.21.解:(1)设矩形ABCD的边AB=xm,则边BC=70﹣2x+2=(72﹣2x)m.根据题意,得x(72﹣2x)=640,化简,得x2﹣36x+320=0,解得x1=16,x2=20,当x=16时,72﹣2x=72﹣32=40;当x=20时,72﹣2x=72﹣40=32.答:当羊圈的长为40m,宽为16m或长为32m,宽为20m时,能围成一个面积为640m2的羊圈;(2)答:不能,理由:由题意,得x(72﹣2x)=650,化简,得x2﹣36x+325=0,Δ=(﹣36)2﹣4×325=﹣4<0,∴一元二次方程没有实数根.∴羊圈的面积不能达到650m2.22.解:(1)当矩形ABCD为正方形时,可知AB=BC,∴关于x的方程x2﹣mx+=0有两个相等实数根,∴Δ=0,即(﹣m)2﹣4()=0,解得m1=m2=1,此时方程为x2﹣x+=0,解得x1=x2=,即正方形的边长为;(2)当AB=2时,即x=2是方程的根,∴22﹣2m+=0,解得m=,‘此时方程为x2﹣x+1=0,解得x=2或x=,∴BC=,∴矩形ABCD的周长=2(AB+BC)=2×(2+)=5.23.解:(1)在矩形ABCD中,∵AB=6cm,BC=8cm,∴AC=10cm,AP=2tcm,PC=(10﹣2t)cm,CQ=tcm,过点P作PH⊥BC于点H,则PH=(10﹣2t)cm,根据题意,得t•(10﹣2t)=3.6,解得:t1=2,t2=3.答:△CQP的面积等于3.6cm2时,t的值为2或3.(2)如答图1,当∠PQC=90°时,PQ⊥BC,∵AB⊥BC,AB=6,BC=8,QC=t,PC=10﹣2t,∴△PQC∽△ABC,∴=,即=,解得t=(秒);如答图2,当∠CPQ=90°时,PQ⊥AC,∵∠ACB=∠QCP,∠B=∠QPC,∴△CPQ∽△CBA,∴=,即=,解得t=(秒).综上所述,t为秒与秒时,△CPQ与△CAB相似。
河南省洛阳市九年级上学期数学期末考试试卷

河南省洛阳市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2020·毕节模拟) 抛物线y=–x2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表所示:x…–2–1012…y…04664…从上表可知,下列说法错误的是A . 抛物线与x轴的一个交点坐标为(–2,0)B . 抛物线与y轴的交点坐标为(0,6)C . 抛物线的对称轴是直线x=0D . 抛物线在对称轴左侧部分是上升的2. (2分) (2017九上·下城期中) 在中,,,,则()A .B .C .D .3. (2分) (2018九上·巴南月考) 一个不透明的布袋里装有2个红球,4个白球,它们除颜色外都相同,从布袋里随机摸出一个球,摸出红球的概率是()A .B .C .D .4. (2分)(2019·重庆) 如图,△ABO∽△CDO,若BO=6,DO=3,CD=2,则AB的长是()A . 2B . 3C . 45. (2分)(2019·昆明模拟) 如图,在⊙O中,OC⊥AB,∠ADC=26°,则∠COB的度数是()A . 52°B . 64°C . 48°D . 42°6. (2分) (2018八下·长沙期中) 将抛物线向上平移1个单位,再向右平移2个单位,则平移后的抛物线为()A .B .C .D .7. (2分)已知∠AOB=45°,点P在∠AOB内部,点P1与点P关于OA对称,点P2与点P关于OB对称,则△P1OP2是()A . 含30°角的直角三角形B . 等腰直角三角形C . 等边三角形D . 顶角是30°的等腰三角形8. (2分)如图,下列条件不能判定△ADB∽△ABC的是()A . ∠ABD=∠ACBB . ∠ADB=∠ABCC . AB2=AD•ACD .9. (2分) (2019九上·昭平期中) 已知线段a=2,c=4,线段b是a,c的比例中项,则线段b的值为()B . 3C .D . 210. (2分)(2017·宁波) 一个大矩形按如图方式分割成九个小矩形,且只有标号为①和②的两个小矩形为正方形.在满足条件的所有分割中,若知道九个小矩形中n个小矩形的周长,就一定能算出这个在大矩形的面积,则n的最小值是()A . 3B . 4C . 5D . 6二、填空题 (共6题;共6分)11. (1分)(2020·谯城模拟) 已知:x:y=2:5,那么(x+y):y=________.12. (1分) (2019八下·大冶期末) 边长为2的等边三角形的面积为________13. (1分) (2020九上·秦淮期末) 已知点P是线段AB的黄金分割点,PA>PB,AB=4 cm,则PA=________cm.14. (1分)(2017·徐州模拟) 如图,AD是△ABC的高,AE是△ABC的外接圆⊙O的直径,且AB=6,AC=5,AD=3,则⊙O的直径AE=________.15. (1分)如图,△ABC中,∠ACB=90°,sinA= ,AC=12,将△ABC绕点C顺时针旋转90°得到△A'B'C,P为线段A′B'上的动点,以点P为圆心,PA′长为半径作⊙P,当⊙P与△ABC的边相切时,⊙P的半径为________.16. (1分)(2020·和平模拟) 如图,△ABC是等边三角形,AB=3,点E在AC上,AE AC , D是BC延长线上一点,将线段DE绕点E逆时针旋转90°得到线段FE ,当AF∥BD时,线段AF的长为________.三、解答题 (共8题;共72分)17. (5分) (2019八下·西乡塘期末) 计算:18. (6分) (2017九上·台州期中) 全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是________;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.19. (6分)(2019·仙居模拟) 某养殖户长期承包一口鱼糖养鱼,每年养殖一批,从鱼苗放入养到成品需要300天,鱼糖承包费用每年5000元,他记录了前几年平均每天投入饲料量(单位:kg)与年底成品鱼(达到一定规格可以销售)产量之间的关系如下表:平均每天投入饲料(kg)2025304050607080成品鱼产量(kg)28003000320036003900400039003600(1)请用适当的函数模型描述平均每天投入饲料数量与成品鱼产量之间的关系;(2)如果今年的饲料价格为1.6元/kg,成品鱼销售价为20元/kg,鱼苗费用4000元,假设养成的成品鱼全部都能按此价格卖出.请建立适当的函数模型分析:平均每天投入饲料多少千克时,该养殖户当年在该鱼糖养殖这种鱼获得的利润最多,最多利润是多少元?(利润=销售收入﹣饲料成本﹣鱼糖承包费﹣鱼苗成本).20. (10分)(2017·赤峰模拟) 如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上的影子F与墙角C有25米的距离(B,F,C在一条直线上).(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:sin22°≈ ,cos22° ,tan22 )21. (10分)(2020·大连模拟) 已知:如图,BE是△ABC的外接圆O的直径,CD是△ABC的高.(1)求证:AC·BC=BE·CD;(2)已知CD=6、AD=3、BD=8,求⊙O的直径BE的长.22. (10分)在Rt△ABC中,∠ACB=90°,BC=30,AB=50.点P是AB边上任意一点,直线PE⊥AB,与边AC相交于E.点M在线段AP上,点N在线段BP上,EM=EN,tan∠EMP=(1)如图1,当点E与点C重合时,求PM的长;(2)如图2,当点E在边AC上时,点E不与点A、C重合,设AP=x,BN=y,用含x的代数式表示PN,并求y关于x的函数关系式,且写出函数的自变量取值范围;(3)如图2,若△AME∽△ENB(△AME的顶点A、M、E分别与△ENB的顶点E、N、B对应),求AP的长.23. (10分) (2019九上·榆树期末) 如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF =45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.(1)求∠AHC与∠ACG的大小关系(“>”或“<”或“=”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.24. (15分) (2019九上·钢城月考) 已知如图,抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A、B两点,点A在点B左侧,点B的坐标为(1,0),C(0,-3)(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值.(3)若点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求点P的坐标;若不存在,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共72分)17-1、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、。
九年级上学期月考数学试卷(11月份)附答案

九年级上学期月考数学试卷(11月份)一、精心选一选(本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中只有一项是符合题目要求的,请在答题卷上把正确答案的代号涂黑)1.下列标志中,可以看作是中心对称图形有()A.1个B.2个C.3个D.4个2.下列方程是一元二次方程()A.x+2y=1 B.2x(x﹣1)=2x2+3 C.3x+=4 D.x2﹣2=03.组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排3场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=21 B.x(x﹣1)=21 C.x(x+1)=21 D.x(x﹣1)=214.如图,已知⊙O的半径为10,弦AB长为16,则点O到AB的距离是()A.8B.7C.6D.55.下列图形是中心对称图形,但不是轴对称图形的是()A.平行四边形B.等边三角形C.圆D.正方形6.把二次函数y=2x2﹣4x+3的图象绕原点旋转180°后得到的图象的解析式为()A.y=﹣2x2+4x﹣3 B.y=﹣2x2﹣4x+3 C.y=﹣2x2﹣4x﹣3 D.y=﹣2x2+4x+37.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为()A.B.C.D.8.如图,将Rt△ABC绕直角顶点顺时针旋转90°,得到△A′B′C,连结AA′,若∠1=25°,则∠B的度数是()A.70°B.65°C.60°D.55°9.x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在10.如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿AB向B 点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运动,当P运动到B点时,P、Q两点同时停止运动.设P点运动的时间为t,△APQ的面积为S,则S与t的函数关系的图象是()A.B.C.D.二、细心填一填(本大题共5小题,每小题4分,满分20分.请把答案填在答题卷相应题号的横线上)11.在平面直角坐标系xOy中,已知点A(﹣3,﹣4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是.12.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=4cm,∠BCD=22°30′,则⊙O的半径为cm.13.如图在四边形ABCD中,∠B+∠D=180°,AB=AD,AC=2,∠ACD=60°,四边形ABCD的面积等于.14.如图,BC为⊙O的直径,BC=2,弧AB=弧AC,P为BC(包括B、C)上一动点,M为AB的中点,设△PAM的周长为m,则m的取值范围是.15.二次函数y=ax2+bx+c(a≠0)图象如图,下列结论:①a+b=0;②a﹣b+c>0;③当m≠1时,a+b >am2+bm;④3a+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,x1+x2=2.其中正确的有.三、专心解一解(本大题共8小题,满分90分.请认真读题,冷静思考.解答题应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)16.用适当的方法解下列方程:x2﹣4x+1=0.17.如图:=,D、E分别是半径OA和OB的中点,求证:CD=CE.18.如图,已知二次函数y=a(x﹣h)2+2的图象经过原点O(0,0),A(4,0).(1)写出该函数图象的对称轴;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?19.在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中做出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(﹣3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.20.已知⊙O的直径为5,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=3,则AC=,BD=;(Ⅱ)如图②,若∠CAB=60°,求BD的长.21.一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为4元,该店每天固定支出费用为200元(不含套餐成本).若每份售价不超过6元,每天可销售180份;若每份售价超过6元,每提高1元,每天的销售量就减少10份.为了便于结算,每份套餐的售价x(元)取整数,用y(元)表示该店日净收入.(日净收入=每天的销售额﹣套餐成本﹣每天固定支出)(1)当x=6时,y=;当x>6时,y与x的函数关系式为;(2)该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?22.某汽车销售公司1月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为16万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部.月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元.①若该公司当月卖出4部汽车,则每部汽车的进价为万元;若该公司当月卖出m(1≤m≤20)部汽车,则每部汽车的进价为万元;②如果汽车的销售价位17万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)23.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm 把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙).这时AB与CD1相交于点O,与D1E1相交于点F.(1)求∠OFE1的度数;(2)求线段AD1的长;(3)若把三角形D1CE1绕着点C顺时针再旋转30°得△D2CE2,这时点B在△D2CE2的内部,外部,还是边上?证明你的判断.一、精心选一选(本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中只有一项是符合题目要求的,请在答题卷上把正确答案的代号涂黑)1.下列标志中,可以看作是中心对称图形有()A.1个B.2个C.3个D.4个考点:中心对称图形.分析:根据中心对称图形的概念求解.解答:解:第三个图形,第四个图形为中心对称图形,共2个.故选B.点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列方程是一元二次方程()A.x+2y=1 B.2x(x﹣1)=2x2+3 C.3x+=4 D.x2﹣2=0考点:一元二次方程的定义.分析:只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程.一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.解答:解:A、x+2y=1是二元一次方程,故错误;B、方程去括号得:2x2﹣2x=2x2+3,整理得:﹣2x=3,为一元一次方程,故错误;C、3x+=4是分式方程,故错误;D、x2﹣2=0,符合一元二次方程的形式,正确.故选D.点评:要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.3.组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排3场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=21 B.x(x﹣1)=21 C.x(x+1)=21 D.x(x﹣1)=21考点:由实际问题抽象出一元二次方程.分析:关系式为:球队总数×每支球队需赛的场数÷2=3×7,把相关数值代入即可.解答:解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=21.故选:B.点评:本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.4.如图,已知⊙O的半径为10,弦AB长为16,则点O到AB的距离是()A.8B.7C.6D.5考点:垂径定理;勾股定理.分析:过点O作OD⊥AB于点D,根据垂径定理求出AD的长,再根据勾股定理求出OD的长即可.解答:解:过点O作OD⊥AB于点D,∵AB=16,∴AD=AB=8,∴OD===6.故选C.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.5.下列图形是中心对称图形,但不是轴对称图形的是()A.平行四边形B.等边三角形C.圆D.正方形考点:中心对称图形;轴对称图形.专题:常规题型.分析:根据轴对称图形的概念先求出图形中轴对称图形,再根据中心对称图形的概念得出其中不是中心对称的图形.解答:解:A、平行四边形不是轴对称图形,是中心对称图形.故本选项正确;B、等边三角形是轴对称图形,不是中心对称图形.故本选项错误;C、圆是轴对称图形,也是中心对称图形.故本选项错误;D、正方形是轴对称图形,也是中心对称图形.故本选项错误.故选A.点评:本题考查了中心对称图形与轴对称图形的概念.轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.6.把二次函数y=2x2﹣4x+3的图象绕原点旋转180°后得到的图象的解析式为()A.y=﹣2x2+4x﹣3 B.y=﹣2x2﹣4x+3 C.y=﹣2x2﹣4x﹣3 D.y=﹣2x2+4x+3考点:二次函数图象与几何变换.分析:求出原抛物线的顶点坐标以及绕原点旋转180°后的抛物线的顶点坐标,再根据旋转后抛物线开口方向向下,利用顶点式解析式写出即可.解答:解:∵抛物线y=2x2﹣4x+3=2(x﹣1)2+1的顶点坐标为(1,1),∴绕原点旋转180°后的抛物线的顶点坐标为(﹣1,﹣1),∴所得到的图象的解析式为y=﹣2(x+1)2﹣1,即y=﹣2x2﹣4x﹣3.故选C.点评:本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式的变化更简便.7.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为()A.B.C.D.考点:垂径定理;勾股定理.专题:探究型.分析:先根据勾股定理求出AB的长,过C作CM⊥AB,交AB于点M,由垂径定理可知M为AD 的中点,由三角形的面积可求出CM的长,在Rt△ACM中,根据勾股定理可求出AM的长,进而可得出结论.解答:解:∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴AB===5,过C作CM⊥AB,交AB于点M,如图所示,∵CM⊥AB,∴M为AD的中点,∵S△ABC=AC•BC=AB•CM,且AC=3,BC=4,AB=5,∴CM=,在Rt△ACM中,根据勾股定理得:AC2=AM2+CM2,即9=AM2+()2,解得:AM=,∴AD=2AM=.故选C.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.8.如图,将Rt△ABC绕直角顶点顺时针旋转90°,得到△A′B′C,连结AA′,若∠1=25°,则∠B的度数是()A.70°B.65°C.60°D.55°考点:旋转的性质.分析:根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C,然后根据旋转的性质可得∠B=∠A′B′C.解答:解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C=∠1+∠CAA′=25°+45°=70°,由旋转的性质得∠B=∠A′B′C=70°.故选:A.点评:本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.9.x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在考点:根与系数的关系.分析:先由一元二次方程根与系数的关系得出,x1+x2=m,x1x2=m﹣2.假设存在实数m使+=0成立,则=0,求出m=0,再用判别式进行检验即可.解答:解:∵x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,∴x1+x2=m,x1x2=m﹣2.假设存在实数m使+=0成立,则=0,∴=0,∴m=0.当m=0时,方程x2﹣mx+m﹣2=0即为x2﹣2=0,此时△=8>0,∴m=0符合题意.故选:A.点评:本题主要考查了一元二次方程根与系数的关系:如果x1,x2是方程x2+px+q=0的两根时,那么x1+x2=﹣p,x1x2=q.10.如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿AB向B 点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运动,当P运动到B点时,P、Q两点同时停止运动.设P点运动的时间为t,△APQ的面积为S,则S与t的函数关系的图象是()A.B.C.D.考点:动点问题的函数图象.专题:动点型.分析:本题应分两段进行解答,①点P在AB上运动,点Q在BC上运动,②点P在AB上运动,点Q在CD上运动,依次得出S与t的关系式即可得出函数图象.解答:解:①点P在AB上运动,点Q在BC上运动,此时AP=t,QB=2t,故可得S=AP•QB=t2,函数图象为抛物线;②点P在AB上运动,点Q在CD上运动,此时AP=t,△APQ底边AP上的高保持不变,为正方形的边长4,故可得S=AP×4=2t,函数图象为一次函数.综上可得总过程的函数图象,先是抛物线,然后是一次增函数.故选:D.点评:此题考查了动点问题的函数图象,解答本题关键是分段求解,注意在第二段时,△APQ底边AP上的高保持不变,难度一般.二、细心填一填(本大题共5小题,每小题4分,满分20分.请把答案填在答题卷相应题号的横线上)11.在平面直角坐标系xOy中,已知点A(﹣3,﹣4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是(4,﹣3).考点:坐标与图形变化-旋转.专题:数形结合.分析:先构建Rt△OAB,再把△OAB绕坐标原点O逆时针旋转90°得到△O A′B′,根据旋转的性质得到A′B′=AB=3,OB′=OB=4,∠OB′A′=∠OBA=90°,然后写出A′点的坐标.解答:解:如图,把△OAB绕坐标原点O逆时针旋转90°得到△OA′B′,则A′B′=AB=3,OB′=OB=4,∠OB′A′=∠OBA=90°,所以点A′的坐标为(4,﹣3).故答案为(4,﹣3).点评:本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.通过把线段旋转的问题转化为直角三角形的性质解决问题.12.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=4cm,∠BCD=22°30′,则⊙O的半径为4cm.考点:垂径定理;等腰直角三角形;圆周角定理.分析:连接OB,则可知∠BOD=2∠BCD=45°,由垂径定理可得BE=2,在Rt△OEB中BE=OE,利用勾股定理可求得OB.解答:解:连接OB,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵CD是直径,弦AB⊥CD,∴BE=AE=AB=2cm,在Rt△BOE中,由勾股定理可求得OB=4cm,即⊙O的半径为4cm,故答案为:4.点评:本题主要考查垂径定理和圆周角定理,由条件得到∠BOD=45°且求得BE的长是解题的关键.13.如图在四边形ABCD中,∠B+∠D=180°,AB=AD,AC=2,∠ACD=60°,四边形ABCD的面积等于.考点:旋转的性质.分析:由于∠BAD=60°,AB=AD,则可把△ADC绕点A逆时针旋转60°得到△ABD′,根据旋转的性质得到∠ABC′=∠D,AC′=AC,∠C′AC=60°,而∠ABC+∠D=180°,则∠ABC+∠ABC′=180°,得到C′点在CB的延长线上,所以△ACC′为等边三角形,然后利用S四边形ABCD=S△AC′C=AC2进行计算即可.解答:如图,∵∠BAD=60°,AB=AD,∴把△ADC绕点A逆时针旋转60°得到△ABC′,∴∠ABC′=∠D,AC′=AC,∠C′AC=60°∵∠ABC+∠D=180°,∴∠ABC+∠ABC′=180°,∴C′点在CB的延长线上,而AC′=AC,∠C′AC=60°,∴△ACC′为等边三角形,∴S四边形ABCD=S△AC′C=AC2=×4=.故答案为:.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等边三角形的判定和性质.14.如图,BC为⊙O的直径,BC=2,弧AB=弧AC,P为BC(包括B、C)上一动点,M为AB的中点,设△PAM的周长为m,则m的取值范围是1+≤m≤3+.考点:轴对称-最短路线问题;圆心角、弧、弦的关系.分析:连接CM则m的最大值为P移动到B、C点时△ACM的周长,根据勾股定理即可求得CM的长,进而求得△ACM的周长;作AA′⊥BC,交⊙O于A′,连接A′B、A′C,则四边形ABA′C是正方形,作MM′⊥BC交A′B于M′,则M′与M关于BC对称,连接AM′交BC于P′,P′A+P′M=AM′,此时△PAM 的周长为m最小;根据勾股定理求得AM′的长,进而求得△AP′M的周长,即可求得m的取值范围.解答:解:∵⊙O的直径BC=2,∴∠CAB=90°,∵=,∴∠B=∠C=45°,∴AC=AB=2,∴AM=AB=1,连接CM,则CM==,∴m的最大值为2+1+=3+,作AA′⊥BC,交⊙O于A′,连接A′B、A′C,则四边形ABA′C是正方形,作MM′⊥BC交A′B于M′,则M′与M关于BC对称,连接AM′交BC于P′,P′A+P′M=AM′,此时△PAM 的周长为m最小;∵A′B=AB=2,M为AB的中点,∴BM′=BM=1,∵AM′=,∴m的最小值为1+,∴m的取值范围是1+≤m≤3+.故答案为1+≤m≤3+.点评:本题考查了轴对称﹣最短路线问题以及轴对称的性质,勾股定理的应用,正方形的判定及性质,解决本题的关键是确定AP+PM的最大值和最小值.15.二次函数y=ax2+bx+c(a≠0)图象如图,下列结论:①a+b=0;②a﹣b+c>0;③当m≠1时,a+b >am2+bm;④3a+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,x1+x2=2.其中正确的有③⑤.考点:二次函数图象与系数的关系.专题:数形结合.分析:由抛物线的对称轴为直线x=﹣=1得到2a+b=0,则可对①进行判断;利用抛物线的对称性得到抛物线与x轴的另一个交点在点(0,0)和(﹣1,0)之间,则x=﹣1时,y<0,即a﹣b+c<0,可对②进行判断;根据二次函数的最大值对③进行判断;利用a﹣b+c<0,b=﹣2a得到3a+c<0,可对④进行判断;把ax12+bx1=ax22+bx2移项后分解因式得到(x1﹣x2)[a(x1+x2)+b]=0,则a(x1+x2)+b=0,可计算出x1+x2=2,于是可对⑤进行判断.解答:解:∵抛物线的对称轴为直线x=﹣=1,∴2a+b=0,所以①错误;∵抛物线与x轴的一个交点在点(2,0)和(3,0)之间,而对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(0,0)和(﹣1,0)之间,∴x=﹣1时,y<0,即a﹣b+c<0,所以②错误;∵x=1时,y有最大值,∴a+b+c>am2+bm+c(m≠1),即a+b>am2+bm(m≠1),所以③正确;∵a﹣b+c<0,b=﹣2a,∴a+2a+c<0,即3a+c<0,所以④错误;∵ax12+bx1=ax22+bx2,∴ax12﹣ax22+bx1﹣bx2=0,(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,∴a(x1+x2)+b=0,∴x1+x2=﹣=﹣=2,所以⑤正确.故答案为③⑤.点评:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.三、专心解一解(本大题共8小题,满分90分.请认真读题,冷静思考.解答题应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)16.用适当的方法解下列方程:x2﹣4x+1=0.考点:解一元二次方程-配方法.分析:把常数项1移项后,再在左右两边同时加上一次项系数﹣4的一半的平方,再进行计算即可.解答:解:x2﹣4x+1=0,x2﹣4x=﹣1,x2﹣4x+4=﹣1+4,(x﹣2)2=3,x﹣2=,x1=2+,x2=2﹣;点评:此题考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.17.如图:=,D、E分别是半径OA和OB的中点,求证:CD=CE.考点:圆心角、弧、弦的关系;全等三角形的判定与性质.分析:连接OC,构建全等三角形△COD和△COE;然后利用全等三角形的对应边相等证得CD=CE.解答:证明:连接OC.在⊙O中,∵=∴∠AOC=∠BOC,∵OA=OB,D、E分别是半径OA和OB的中点,∴OD=OE,∵OC=OC(公共边),∴△COD≌△COE(SAS),∴CD=CE(全等三角形的对应边相等).点评:本题考查了圆心角、弧、弦的关系,以及全等三角形的判定与性质.判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.18.如图,已知二次函数y=a(x﹣h)2+2的图象经过原点O(0,0),A(4,0).(1)写出该函数图象的对称轴;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?考点:待定系数法求二次函数解析式;二次函数的性质;坐标与图形变化-旋转.分析:(1)由二次函数的对称性可知对称轴方程过线段OA的中点,可得出其对称轴方程;(2)由(1)可得出二次函数的顶点坐标为(2,2),再利用旋转的性质求得A′点的坐标与顶点坐标相同即可得出结论.解答:解:(1)设线段OA的中点为C,则C点坐标为(2,0),∵二次函数y=a(x﹣h)2+2的图象经过原点O(0,0),A(4,0),∴二次函数的对称轴过线段OA的中点,∴二次函数的对称轴为直线x=2;(2)由(1)可知h=2,可知二次函数的顶点坐标为(2,2),当线段OA绕点O逆时针旋转60°到OA′,则可知OA=OA′=4,所以△OAA′为等边三角形,如图,过A′作A′E′⊥OA,交OA于点E′,则可求得OE′=2,A′E′=2,所以A′为二次函数的顶点.点评:本题主要考查二次函数的对称轴和顶点坐标,掌握二次函数的顶点式方程,即y=a(x﹣h)2+k 是解题的关键,其中顶点坐标为(h,k).19.在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中做出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(﹣3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.考点:作图-旋转变换.专题:作图题.分析:(1)根据网格结构找出点B、C的对应点B1、C1的位置,然后与点A顺次连接即可;(2)以点B向右3个单位,向下5个单位为坐标原点建立平面直角坐标系,然后写出点A、C的坐标即可;(3)根据网格结构找出点A、B、C关于原点的对称点A2、B2、C2的位置,然后顺次连接即可.解答:解:(1)△AB1C1如图所示;(2)如图所示,A(0,1),C(﹣3,1);(3)△A2B2C2如图所示,B2(3,﹣5),C2(3,﹣1).点评:本题考查了利用旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.20.已知⊙O的直径为5,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=3,则AC=4,BD=;(Ⅱ)如图②,若∠CAB=60°,求BD的长.考点:圆周角定理;勾股定理.分析:(1)BC为直径可知△ABC为直角三角形,利用勾股定理可求得AC,再结合AD为角平分线,可得CD=BD,在Rt△CBD中可求得BD;(2)连接OB、OD,则可知∠BOD=2∠DAB=∠CAB=60°,可知△BOD为等边三角形,可知BD=OB,可求得BD的长.解答:解:(1)∵BC为直径,∴∠CAB=∠CDB=90°,∵AD平分∠CAB,∴∠CAD=∠BAD,∴CD=BD,在Rt△ABC中,BC=5,AB=3,由勾股定理可求得AC=4,在Rt△CBD中,BC=5,CD=BD,由勾股定理可求得BD=,故答案为:4;;(2)如图,连接OB、OD,∵AD平分∠CAB,∴∠CAD=∠BAD=30°,∴∠BOD=2∠BAD=60°,且OB=OD,∴△BOD为等边三角形,∴BD=OB,又直径为5,∴BD=2.5.点评:本题主要考查圆周角定理及等边三角形的判定和性质,掌握在同圆或等圆中相等的圆周角所对的弦相等是解题的关键.21.一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为4元,该店每天固定支出费用为200元(不含套餐成本).若每份售价不超过6元,每天可销售180份;若每份售价超过6元,每提高1元,每天的销售量就减少10份.为了便于结算,每份套餐的售价x(元)取整数,用y(元)表示该店日净收入.(日净收入=每天的销售额﹣套餐成本﹣每天固定支出)(1)当x=6时,y=160;当x>6时,y与x的函数关系式为y=﹣10x2+280x﹣1160(x>6);(2)该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?考点:一元二次方程的应用.专题:销售问题.分析:(1)本题考查的是分段函数的知识点.当x=6时,y=180(6﹣4)﹣200;当x >6时,y=(x﹣4)[180﹣10(x﹣6)]﹣200;(2)由题意可得y与x的函数关系式,用配方法求出最大值.解答:解:(1)由题意得:当x=6时,y=180×(6﹣4)﹣200=160;当x>6时,y=(x﹣4)[180﹣10(x﹣6)]﹣200=﹣10x2+280x﹣1160.即y=﹣10x2+280x﹣1160(x>6).故答案是:160;y=﹣10x2+280x﹣1160(x>6).(2)由题意得:y=﹣10x2+280x﹣1160=﹣10(x﹣14)2+800,故每份套餐的售价应定为14元,此时日净收入为800元.点评:本题考查的是二次函数的实际应用和一元二次方程的应用以及分段函数的有关知识,解题的关键是根据题目中的等量关系列出函数关系.22.某汽车销售公司1月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为16万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部.月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元.①若该公司当月卖出4部汽车,则每部汽车的进价为15.8万元;若该公司当月卖出m(1≤m≤20)部汽车,则每部汽车的进价为﹣0.1m+16.1万元;②如果汽车的销售价位17万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)考点:一元二次方程的应用.专题:销售问题.分析:(1)根据若当月仅售出1部汽车,则该部汽车的进价为16万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,得出该公司当月售出3部汽车时,则每部汽车的进价为:16﹣0.1×2,该公司当月卖出m(1≤m≤20)部汽车,则每部汽车的进价为:16﹣0.1(m﹣1)=﹣0.1m+16.1,即可得出答案;(2)利用设需要卖出x部汽车,由题意可知每部汽车的销售利润,根据当0≤x≤10,以及当x>10时,分别讨论得出即可.解答:解:(1)∵若当月仅售出1部汽车,则该部汽车的进价为16万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,∴若该公司当月售出3部汽车,则每部汽车的进价为:16﹣0.1×(3﹣1)=15.8,若该公司当月卖出m(1≤m≤20)部汽车,则每部汽车的进价为:16﹣0.1(m﹣1)=﹣0.1m+16.1;故答案为:15.8,﹣0.1m+16.1;(2)设需要卖出x部汽车,由题意可知,每部汽车的销售利润为:17﹣[16﹣0.1(m﹣1)]=(0.1x+0.9)(万元),当0≤x≤10,根据题意,得x•(0.1x+0.9)+0.5x=12,整理,得x2+14x﹣120=0,解这个方程,得x1=﹣20(不合题意,舍去),x2=6,当x>10时,根据题意,得x•(0.1x+0.9)+x=12,整理,得x2+19x﹣120=0,解这个方程,得x1=﹣24(不合题意,舍去),x2=5,因为5<10,所以x2=5舍去.答:需要卖出6部汽车.点评:本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系并进行分段讨论是解题关键.23.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm 把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙).这时AB与CD1相交于点O,与D1E1相交于点F.(1)求∠OFE1的度数;(2)求线段AD1的长;(3)若把三角形D1CE1绕着点C顺时针再旋转30°得△D2CE2,这时点B在△D2CE2的内部,外部,还是边上?证明你的判断.考点:旋转的性质;勾股定理;等腰直角三角形.专题:压轴题.分析:(1)根据OFE1=∠B+∠1,易得∠OFE1的度数;(2)在Rt△AD1O中根据勾股定理就可以求得AD1的长;(3)设BC(或延长线)交D2E2于点P,Rt△PCE2是等腰直角三角形,就可以求出CB的长,判断B 在△D2CE2内.解答:解:(1)如图所示,∠3=15°,∠E1=90°,∴∠1=∠2=75°,又∵∠B=45°,∴∠OFE1=∠B+∠1=45°+75°=120°;(2)∵∠OFE1=120°,∴∠D1FO=60°,。
河南省洛阳市洛宁县2024-—2025学年九年级上学期10月月考数学试题(含答案)

2024-2025学年10月份学情调研九年级数学注意事项:1.本试卷共4页,三个大题,满分120分,考试时间100分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。
答在试卷上的答案无效。
一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的。
1.一元二次方程的一次项系数是( )A .2B .C .D .32a 的值不可以是( )A .2B .1C .0D .3.方程的解是( )A . B .C.D .4的值为2,那么x 的值是( )A .2B .4C.D .2或5.解方程时,最适当的方法是( )A .直接开平方法B .因式分解法C .配方法D .公式法6.下列运算错误的是()A B .C .D .7.用配方法解方程,若配方后的结果为,则n 的值为( )A .1B. C . D .8可以合并成一项,则m 可以是( )A .50C.15B .0.5D .9;2213x x +=3x -3-2-290x -=3x =3x =-3x =±9x =±2-2-(23)46x x x +=+==62=2(27-=-234y y -=2()y m n -=341214152233==5544==80.810====50.5520.22=====,上述探究过程蕴含的思想方法是( )A .特殊与一般B .整体C .转化D .分类讨论10.网络购物已成为新的消费方式,催生了快递行业的高速发展,某小型快递公司今年7月份完成投递的快递件数为6万件,8月份比7月份增加了1.8万件,9月份比8月份增加了0.84万件.假设这两个月投递的快递件数的月平均增长率为x ,则可列方程为( )A .B .C .D .二、填空题(每小题3分,共15分)11.学习完“二次根式”后,小宛同学画出了如下结构图进行知识梳理,理解A 是研究本章内容的关键,那么A 处应填__________________.12.一元二次方程的根是_________.13x 可取的最小整数值是_________.14.若,则_________.15.定义新运算“※”,规定:如,则_________;已知的两根为,则_________.三、解答题(本大题共8个小题,满分75分)16.(10分)(1;(2)先化简,再求值:,其中17.(9分)解下列方程(要求两方程所用解法不能相同):(1);(2).18.(9分)已知.(1)求AC 的长;(00)a b ≥>,6(1)6 1.80.84x x +=++26(1)6 1.80.84x +=++266(1)6 1.80.84x x ++=++266(1)6(1)6 1.80.84x x ++++=++22025x x =2m =+243m m -+=(),().a ab a b b a b ⎧=⎨>⎩※…121=※2=210x x --=12,x x 12x x =※÷11m n+33m n =+=-23420x x --=(5)(1)2x x -+=ABC △21AB BC =-=-(2)判断的形状,并说明理由.19.(9分)已知m 是方程的一个根,求下列代数式的值.(1);(2).20.(9分)有一块矩形木板ABCD ,木工甲采用如图的方式,将木板的长AD 增加,宽AB 增加,得到一个面积为的正方形AEFG .(1)求矩形木板ABCD 的面积;(2)木工乙想从矩形木板ABCD 中裁出一个面积为的矩形木料,则该矩形木料的长为_______;(3)木工丙想从矩形木板ABCD 中截出长为、宽为的矩形木条,最多能截出_________根这样的木条.21.(9分)在实数范围内定义一种新运算“△”,规定:,根据这个规定回答下列问题.(1)计算_________;(2)若是方程的一个根,求k 的值和另一个根;(3)已知某直角三角形的两边长是(2)中方程的两个根,请直接写出该直角三角形第三边的长.22.(10分)高空抛物是一种非常危险的行为.据研究,从高处坠落的物品,其下落的时间t (s )和下落高度h (m )近似满足公式(不考虑空气阻力的影响).(1)小东家住某小区21层,每层楼的高度近似为,若从小东家坠落一个物品,则该物品落地的时间为_________s (结果保留根号);(2)某物体从高空落到地面的时间为,则该物体的起始高度_________m ;(3)资料显示:伤害无防护人体只需要的动能,从高空下落的物体产生的动能E (单位:J )可用公式计算,其中,m 为物体质量(单位),,h 为高度(单位:m ).根据以上信息判断,ABC △2410x x --=(5)(1)m m -+221m m +2192cm 212cm cm 2.0cm 1.5cm 22a b a b =-△31x =(2)0x k -=△t =3m 3s h =65J E mgh =kg 10N/kg g ≈一个质量为的玩具经过落在地面上,该玩具在坠落地面时所带能量能伤害到楼下无防护的行人吗?请说明理由.23.(10分)【阅读与思考】为了落实“内容结构化”理念,进行单元整体教学,李老师在讲授完“一元二次方程”后,对初中阶段各类方程(组)的解法进行了系统总结:它们解法虽不尽相同,但基本思想都是“转化”,即把未知转化为已知:通过“消元”“降次”“去分母”等把“多元方程”“高次方程”“分式方程”转化为“一元一次方程”再求解.利用“转化”的数学思想,我们还可以解一些新方程.例如:形如这种根号内含有未知数的方程,我们称之为无理方程.解法如下:移项,得:.两边同时平方,得:,即,解这个一元二次方程,得:.……【任务】(1)小虎认为材料中这个一元二次方程的两个根就是原无理方程的解;小豫认为这个一元二次方程的根并不(2)解下列方程:①;②.01kg .4s 3x +=3x +=2196x x x -=-+27100x x -+=122,5x x ==340x x -=13x =参考答案2024-2025学年10月份学情调研九年级数学一、选择题(每小题3分,共30分)1.C 2.D 3.C 4.D 5.B 6.C 7.A 8.D 9.A 10.B二、填空题(每小题3分,共15分)11.二次根式的意义12.13.14.415三、解答题(本大题共8个小题,满分75分)16.解:(1)原式 1分2分3分4分(2),,4分.6分17.解:(1),1分3分4分(2)原方程可化为, 1分则,即,3分120,2025x x ==1-=+==12=33m n =+= 226,39101m n mn ∴+==-=-=-11661n m m n mn +∴+===--3,4,2a b c ==-=- 224(4)43(2)1624400b ac ∴-=--⨯⨯-=+=>x ∴===12x x ∴==247x x -=24474x x -+=+2(2)11x -=解得, 4分即.5分18.解:(1),其中,.4分(2)等腰直角三角形. 分理由如下:由(1)知是等腰三角形.7分是直角三角形,是等腰直角三角形.9分19.解:(1)是方程的一个根,,即.2分.4分(2)是方程的一个根,,即,6分.9分20.解:(1)正方形AEFG 的面积为,,2分∴矩形木板ABCD 的长, 3分矩形木板ABCD的宽,4分∴矩形木板ABCD 的面积为.5分(2) 7分(3)59分21.解:(1)32分(2)由题意得:.22x x -=∴=1222x x =+=-ABC△21AB BC ==(21)1AC ∴=---=ABC △1,BC AC ABC ==∴△222222(261)1)6AB BC AC =-=-+=-+-=- 222,AB BC AC ABC ∴=+∴△ABC ∴△m 2410x x --=2410m m ∴--=241m m -=22(5)(1)5545154m m m m m m m ∴-+=+--=--=-=-m 2410x x --=2410m m ∴--=214m m -=222222111224218m m m m m m ⎛⎫-⎛⎫∴+=-+=+=+= ⎪ ⎪⎝⎭⎝⎭2192cm ∴=AD AE DE =-=-=AB AG BG =-=-=()218cm AB AD ⋅==22(2)0x k --=把代入得.4分当时,原方程可化为,解得:的值为,另一个根为3.7分(3)该直角三角形第三边的长为9分22.解:(1)2分【解法提示】小明家住21层,每层楼的高度近似为,.(2)45 4分【解法提示】当时,(3)能伤害到楼下无防护的行人. 5分理由如下:当时,,解得, 7分,9分∴质量为的玩具经落地所带能量能伤害到楼下无防护的行人. 10分23.解:(1) 2分(2)①,,,4分或或,.6分,两边同时平方,得,整理,得:,解这个一元二次方程,得:.8分1x =21,1k k =∴=±1k =±2(2)1x -=121,3x x ==k ∴1± 3m (211)360(m),h t ∴=-⨯=∴====3s t =345(m)h =∴=4s t =4=80h =100.18080(J)65J E mgh ∴=≈⨯⨯=>0.1kg 4s 2x =340x x -= ()240x x ∴-=(2)(2)0x x x -+=0x ∴=20x -=20x +=1230,2,2x x x ∴===-13x =-2231(13)x x +=-20x x -=120,1x x ==的双重非负性,当不成立,不是原方程的根,∴原方程的根为.10分1x =13x =-1x ∴=0x =。
河南省部分学校2024-2025学年高三上学期11月月考数学试题

河南省部分学校2024-2025学年高三上学期11月月考数学试题一、单选题1.函数tan y x =的值域可以表示为()A .{tan }xy x =∣B .{tan }yy x =∣C .{(,)tan }x y y x =∣D .{tan }y x =2.若“sin 2θ=”是“tan 1θ=”的充分条件,则θ是()A .第四象限角B .第三象限角C .第二象限角D .第一象限角3.下列命题正确的是()A .x ∃∈R ,20x <B .(0,4)x ∀∈,20log 2x <<C .(0,)x ∃∈+∞,132x x <D .π0,2x ⎛⎫∃∈ ⎪⎝⎭,4sin cos x x =4.函数24()f x x x =-的大致图象是()A .B .C .D .5.已知向量1e ,2e 满足121e e == ,120e e ⋅= ,则向量1e 与12e e - 的夹角为()A .45︒B .60︒C .120︒D .135︒6.已知5πtan210α+=,则4π5tan 5α-=()A .125B .125-C .43D .43-7.已知0a >,0b >,9a b +=,则36a ba+的最小值为()A .8B .9C .12D .168.若0x ∀>,()()()21ln 10x ax ax ---≥,则a =()AB C D 二、多选题9.已知函数sin()()2x f x -=,则()A .()f x 的值域为1,22⎡⎤⎢⎥⎣⎦B .()f x 为奇函数C .()f x 在ππ,22⎡⎤-⎢⎥⎣⎦上单调递增D .()f x 的最小正周期为2π10.国庆节期间,甲、乙两商场举行优惠促销活动,甲商场采用购买所有商品一律“打八四折”的促销策略,乙商场采用“购物每满200元送40元”的促销策略.某顾客计划消费(0)x x >元,并且要利用商场的优惠活动,使消费更低一些,则()A .当0200x <<时,应进甲商场购物B .当200300x ≤<时,应进乙商场购物C .当400500x ≤<时,应进乙商场购物D .当500x >时,应进甲商场购物11.已知函数()f x 满足:①x ∀,R y ∈,()[()]y f xy f x =;②(2)1f ->,则()A .(0)0f =B .()()()f x y f x f y +=⋅C .()f x 在R 上是减函数D .[1,3]x ∀∈,()2(3)1f x kx f x -⋅-≥,则3k ≥三、填空题12.已知函数()1ln(2)f x x =-+,则曲线()y f x =在点(1,(1))f --处的切线方程为.13.已知函数()cos (0)f x x ωω=>,若π2f x ⎛⎫+ ⎪⎝⎭为偶函数,且()f x 在区间(0,π)内仅有两个零点,则ω的值是.14.若ABC V 内一点P 满足PAB PBC PCA α∠=∠=∠=,则称P 为ABC V 的布洛卡点,α为布洛卡角.三角形的布洛卡点是法国数学家和数学教育家克洛尔于1816年首次发现,1875年被法国军官布洛卡重新发现,并用他的名字命名.如图,在ABC V 中,AB AC =,3cos 5BAC ∠=,若P 为ABC V 的布洛卡点,且2PA =,则BC 的长为.四、解答题15.在ABC V 中,内角,,A B C 的对边分别为,,a b c ,且π2sin 6a C b c ⎛⎫+=+ ⎪⎝⎭.(1)求A ;(2)若O 为ABC V 的外心,D 为边BC 的中点,且1OD =,求ABC V 周长的最大值.16.在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,且tan tan tan tan 1B C B C ++=,1b =,c =(1)求a ;(2)如图,D 是ABC V 外一点(D 与A 在直线BC 的两侧),且AC CD ⊥,45CBD ∠= ,求四边形ABDC 的面积.17.已知平面向量(,)m a b = ,(sin ,cos )n x x ωω=,且2m n = ,其中0a >,0ω>.设点(0,1)和11π(,0)12在函数()f x m n =⋅ 的图象(()f x 的部分图象如图所示)上.(1)求a ,b ,ω的值;(2)若()G x y ,是()y f x =图象上的一点,则1(2,)2K x y 是函数()y g x =图象上的相应的点,求()g x 在[0,π]上的单调递减区间.18.已知函数()2()e xf x x mx n =++,m ,n ∈R .(1)当24m n =时,求()f x 的最小值;(2)当2m =-时,讨论()f x 的单调性;(3)当0m n ==时,证明:0x ∀>,()ln 1f x x >+.19.已知非零向量(,)a m n =,(,)b p q = ,a ,b 均用有向线段表示,现定义一个新的向量c以及向量间的一种运算“※”:(,)c a b mp nq mq np ==-+※.(1)证明:c 是这样一个向量:其模是a 的模的 b 倍,方向为将a绕起点逆时针方向旋转β角(β为x 轴正方向沿逆时针方向旋转到b所成的角,且02πβ≤<),并举一个具体的例子说明之;(2)如图1,分别以ABC V 的边AB ,AC 为一边向ABC V 外作ABD △和ACE △,使π2BAD CAE ∠=∠=,(01)AD AEAB AC λλ==<<.设线段DE 的中点为G ,证明:AG BC ⊥;(3)如图2,设(3,0)A -,圆22:4O x y +=,B 是圆O 上一动点,以AB 为边作等边ABC V (A ,B ,C 三点按逆时针排列),求||OC 的最大值.。
2018-2019学年河南省洛阳市地矿双语学校九年级(上)第一次月考数学试卷

2018-2019学年河南省洛阳市地矿双语学校九年级(上)第一次月考数学试卷一、选择题(每小题3分,共30分)1.(3分)下列方程中是一元二次方程的为()A.x2+y=3B.x2﹣2x+5=0C.D.x﹣2y=92.(3分)一元二次方程2x2+kx﹣3=0的根的情况是()A.由k的符号决定B.没有实数根.C.有两个相等的实数根D.有两个不相等的实数根3.(3分)如图,是一个简单的数值运算程序.则输入x的值为()A.3或﹣3B.4或﹣2C.1或3D.274.(3分)二次函数y=ax2+bx+c的y与x的部分对应值如表:X…0134…y…242﹣2…则下列判断中正确的是()A.抛物线开口向上B.y最大值为4C.当x>1时,y随著x的增大而减小D.当0<x<2时,y>25.(3分)已知关于x的一元二次方程x2+(2m﹣3)x+m2=0的两个不相等的实数根α,β满足+=1,则m的值为()A.﹣3B.1C.﹣3 或1D.26.(3分)某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035B.x(x+1)=1035C.x(x﹣1)=1035D.x(x﹣1)=10357.(3分)设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+a上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y2 8.(3分)当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.﹣1B.2C.0或2D.﹣1或29.(3分)已知二次函数y=ax2+bx的图象如图所示,则一次函数y=ax+b的图象是()A.B.C.D.10.(3分)抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,与x轴的一个交点坐标为(4,0),抛物线的对称轴是x=1,下列结论中:①abc>0;②2a+b=0;③方程ax2+bx+c=3有两个不相等的实数根;④抛物线与x轴的另一个交点坐标是(2,0);⑤若点A(m,n)在该抛物线上,则am2+bm+c≤a+b+c,其中说法正确的有()A.5个B.4个C.3个D.2个二、填空题(每小题3分,共15分)11.(3分)抛物线y=﹣(x+1)2+2的顶点坐标为.12.(3分)若方程x2+(k﹣1)x﹣6=0的一个根是2,则k=.13.(3分)如图,抛物线y=ax2+1,y=ax2﹣1(a<0)的图象与直线x=﹣2,x=2所围成的阴影部分图形的面积是.14.(3分)某种商品原价为100元,经过连续两次的降价后,价格变为81元,如果每次降价的百分率是一样的,那么每次降价的百分率是15.(3分)如图,抛物线y=﹣x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点,若△PCD是以CD为底的等腰三角形,则点P的坐标为.三、解答题(满分75分)16.(15分)用适当方法解下列方程:(1)3(x+1)2﹣9=0(2)x2+4x﹣1=0(3)3x2﹣2=4x17.(6分)已知关于x的方程(k+1)+(k﹣3)x﹣1=0(1)当k取何值时,它是一元一次方程?(2)当k取何值时,它是一元二次方程?18.(9分)已知抛物线y=(x﹣m)2﹣(x﹣m),其中m是常数.(1)求证:不论m为何值,该抛物线与x轴一定有两个公共点;(2)若该抛物线的对称轴为直线x=.①求该抛物线的函数解析式;②把该抛物线沿y轴向上平移多少个单位长度后,得到的抛物线与x轴只有一个公共点.19.(8分)如图所示,在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为570m2,道路应为多宽?20.(8分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答:(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c<0的解集;(3)写出y随x的增大而增大时自变量x的取值范围;(4)若方程ax2+bx+c=k有实数根,求k的取值范围.21.(8分)某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元,为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调査发现,如果每件衬衫每降价5元,商场平均每天可多售出10件,求:若商场平均每天要盈利1200元,每件衬衫应降价多少元?22.(10分)关于x的方程x2+(2k+1)x+k2=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)是否存在k的值使x1,x2满足x1﹣x2=﹣7,若存在,求出k的值;若不存在,请说明理由.23.(11分)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)连接AC,直接写出△P AC为直角三角形时点P的坐标.2018-2019学年河南省洛阳市地矿双语学校九年级(上)第一次月考数学试卷参考答案一、选择题(每小题3分,共30分)1.B;2.D;3.B;4.D;5.A;6.C;7.A;8.D;9.A;10.C;二、填空题(每小题3分,共15分)11.(﹣1,2);12.2;13.8;14.10%;15.(1+,2)或(1﹣,2);三、解答题(满分75分)16.;17.;18.;19.;20.;21.;22.;23.;。
2024-2025学年初中九年级上学期数学第一次月考卷及答案(北师大版)

2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第1章~第3章(北师版)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一.单项选择题(本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列方程中,是一元二次方程的是()A.xx2−3xx−5=−5B.2xx2−yy−1=0C.xx2−xx(xx+2.5)=0D.aaxx2+bbxx+cc=02.下列命题为真命题的是()A.有两边相等的平行四边形是菱形B.有一个角是直角的平行四边形是菱形C.对角线互相垂直的平行四边形是矩形D.有三个角是直角的四边形是矩形3.若关于xx的方程xx2+mmxx−6=2.则mm为()A.−2B.1 C.4 D.−34.a是方程xx2+2xx−1=0的一个根,则代数式aa2+2aa+2020的值是()A.2018 B.2019 C.2020 D.20215.如图,在正方形AAAAAAAA中,EE为AAAA上一点,连接AAEE,AAEE交对角线AAAA于点FF,连接AAFF,若∠AAAAEE=35°,则∠AAFFAA的度数为()A.80°B.70°C.75°D.45°6.有一块长40m,宽32m的矩形种植地,修如图等宽的小路,使种植面积为1140m2,求小路的宽.设小路的宽为x,则可列方程为()A.(40﹣2x)(32﹣x)=1140 B.(40﹣x)(32﹣x)=1140C.(40﹣x)(32﹣2x)=1140 D.(40﹣2x)(32﹣2x)=11407.在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则红球的个数约是()A.2 B.12 C.18 D.248.如图,在菱形AAAAAAAA中,对角线AAAA,AAAA相交于点OO,EE是AAAA的中点,若菱形的周长为20,则OOEE的长为()A.10 B.5 C.2.5D.19.在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为xx人,则根据题意可列方程为()A.xx(xx−1)=110B.xx(xx+1)=110C.(xx+1)2=110D.(xx−1)2=11010.关于xx的一元二次方程kkxx2−2xx−1=0有两个不相等的实数根,则kk的取值范围是()A.kk>−1B.kk>−1且kk≠0C.kk<1D.kk<1且kk≠011.如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则EF的长为()A.74B.95C.1910D.76�312.如图,在正方形AAAAAAAA中,AAAA=4,E为对角线AAAA上与点A,C不重合的一个动点,过点E作EEFF⊥AAAA于点F,EEEE⊥AAAA与点G,连接AAEE,FFEE,有下列结论:①AAEE=FFEE.②AAEE⊥FFEE.③∠AAFFEE=∠AAAAEE.④FFEE的最小值为3,其中正确结论的序号为()A.①②B.②③C.①②③D.①③④第Ⅱ卷二.填空题(本题共6小题,每小题3分,共18分.)13.一元二次方程5xx2+2xx−1=0的一次项系数二次项系数常数项.14.xx1,xx2为一元二次方程xx2−2xx−10=0的两根,则1xx1+1xx2=.15.如图,矩形ABCD中,对角线AC、BD相交于点O,若OB=2,∠ACB=30°,则AB的长度为.16.如图所示,菱形AAAAAAAA的对角线AAAA、AAAA相交于点OO.若AAAA=6,AAAA=8,AAEE⊥AAAA,垂足为EE,则AAEE的长为.17.如图,将一张长方形纸片AAAAAAAA沿AAAA折起,重叠部分为ΔΔAAAAEE,若AAAA=6,AAAA=4,则重叠部分ΔΔAAAAEE的面积为.18.如图,在正方形AAAAAAAA中,AAAA=6,点E,F分别在边AAAA,AAAA上,AAEE=AAFF=2,点M在对角线AAAA上运动,连接EEEE和EEFF,则EEEE+EEFF的最小值等于.三、解答题(本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)解下列方程:(1)3xx2−4xx−1=0;(2)2�xx−3�2=xx2−920.(8分)已知方程xx2+�kk+1−6=0是关于xx的一元二次方程.(1)求证:对于任意实数kk方程中有两个不相等的实数根.(2)若xx1,xx2是方程的两根,kk=6,求1xx1+1xx2的值.21.(8分)如图,在菱形AAAAAAAA中,对角线AAAA,AAAA交于点OO,AAEE⊥AAAA交AAAA延长线于EE,AAFF∥AAEE交AAAA延长线于点FF.(1)求证:四边形AAEEAAFF是矩形;(2)若AAEE=4,AAAA=5,求AAAA的长.22.(10分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,某食品公司为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如图两幅统计图.请根据以上信息回答:(1)参加本次调查的有______人,若该居民区有8000人,估计整个居民区爱吃D粽的有______人.(2)请将条形统计图补充完整;(3)食品公司推出一种端午礼盒,内有外形完全相同的A、B、C、D粽各一个,小王购买了一个礼盒,并从中任意取出两个食用,请用列表或画树状图的方法,求他恰好能吃到C粽的概率.23.(8分)阅读材料,回答问题.材料1:为了解方程�xx2�2−13xx2+36=0,如果我们把xx2看作一个整体,然后设yy=xx2,则原方程可化为yy2−13yy+36=0,经过运算,原方程的解为xx1,2=±2,xx3,4=±3,我们把以上这种解决问题的方法通常叫做换元法.材料2:已知实数mm,nn满足mm2−mm−1=0,nn2−nn−1=0,且mm≠nn,显然mm,nn是方程xx2−xx−1=0的两个不相等的实数根,由韦达定理可知mm+nn=1,mmnn=−1.根据上述材料,解决以下问题:(1)为解方程xx4−xx2−6=0,可设yy=____,原方程可化为____.经过运算,原方程的解是____.(2)应用:若实数aa,bb满足:2aa4−7aa2+1=0,2bb4−7bb2+1=0且aa≠bb,求aa4+bb4的值;24.(10分)中秋期间,某商场以每盒140元的价格购进一批月饼,当每盒月饼售价为180元时,每天可售出60盒.为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每盒月饼降价2元,那么商场每天就可以多售出5盒.(1)设售价每盒下降xx元,则每天能售出______盒(用含xx的代数式表示);(2)当月饼每盒售价为多少元时,每天的销售利润恰好能达到2550元;(3)该商场每天所获得的利润是否能达到2700元?请说明理由.25.(12分)在数学实验课上,老师让学生以“折叠筝形”为主题开展数学实践探究活动.定义:两组邻边分别相等的四边形叫做“筝形”.(1)概念理解:如图1,将一张纸对折压平,以折痕为边折出一个三角形,然后把纸展平,折痕为四边形AAAAAAAA.判断四边形AAAAAAAA的形状:筝形(填“是”或“不是”);(2)性质探究:如图2,已知四边形AAAAAAAA纸片是筝形,请用测量、折叠等方法猜想筝形的角、对角线有什么几何特征,然后写出一条性质并进行证明;(3)拓展应用:如图3,AAAA是锐角△AAAAAA的高,将△AAAAAA沿边AAAA翻折后得到△AAAAEE,将△AAAAAA沿边AAAA翻折后得到△AAAAFF,延长EEAA,FFAA交于点G.①若∠AAAAAA=50°,当△AAAAEE是等腰三角形时,请直接写出∠AAAAAA的度数;②若∠AAAAAA=45°,AAAA=2,AAAA=5,AAEE=EEEE=FFEE,求AAAA的长.26.(12分)探究式学习是新课程倡导的重要学习方式,某兴趣小组学习正方形以后做了以下探究:在正方形AAAAAAAA中,E,F为平面内两点.【初步感知】(1)如图1,当点E在边AAAA上时,AAEE⊥AAFF,且B,C,F三点共线.请写出AAEE与FFAA的数量关系______;【深入探究】(2)如图2,当点E在正方形AAAAAAAA外部时,AAEE⊥AAFF,AAEE⊥EEFF,E,C,F三点共线.若AAEE=2,AAEE=4,求AAEE的长;【拓展运用】(3)如图3,当点E在正方形AAAAAAAA外部时,AAEE⊥EEAA,AAEE⊥AAFF,AAEE⊥AAEE,且D,F,E三点共线,猜想并证明AAEE,AAEE,AAFF之间的数量关系.2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
河南省洛阳市东方第二中学2024-2025学年九年级上学期第一次月考数学试卷(含答案)

东方二中九年级数学10月份大练习一.选择题(每题3分,共30分)1.方程的解为()A. B. C. D.,2.抛物线先向右平移2个单位长度,再向下平移3个单位长度所得的抛物线解析式为()A. B.C. D.3.用配方法解一元二次方程,方程可变形为( )A. B. C. D.4.某地区2022年投入教育经费2500万元,预计2024年投入3600万元,则这两年投入教育经费的年平均增长率为()A.10%B.20%C.25%D.40%5.如果二次函数的最小值为0,那么c 的值等于( )A.2B.4C.D.86.如图,,,可以看作是由绕点O 顺时针旋转角度得到的.若点A 在AB 上,则旋转角的大小可以是()A.30° B.45° C.60° D.90°7.如图,,,,由旋转而成,则BE 的长为()A.1C.1.2D.28.抛物线过三点,,。
则()A. B. C. D.23x =120x x ==123x x ==123x x ==-10x =23x =2y x =-()223y x =-++()223y x =--+()223y x =-+-()223y x =---2870x x -+=()249x +=()249x -=()2816x -=()2857x +=24y x x c =-+2-90AOB ∠=︒30B ∠=︒A OB ''△AOB △αα90C ∠=︒4AC =3BC =ADE △ABC △22y x x m =-+()12016,y ()22016,y -()32017,y 123y y y >>321y y y >>213y y y >>231y y y >>9.光合作用和呼吸作用是植物生命活动中至关重要的两个过程,光合作用产氧速率与呼吸作用耗氧速率相差越大越利于有机物的积累,植物生长越快,水果的品质越好.某农科院为了更好地指导果农种植草莓,在0℃至50℃的气温,水资源及光照充分的条件下,对温度(单位:℃)对光合作用产氧速率和呼吸作用耗氧速率的影响进行研究,并将得到的相关数据绘制成如图所示的图象.请根据图象,判断下列说法中不正确的是( )A.草莓的光合作用产氧速率先增大后减小B.当温度为45℃时,草莓的呼吸作用耗氧速率最大C.草莓的光合作用产氧速率比呼吸作用耗氧速率大D.草莓中有机物积累最快时的温度约为35℃10.二次函数的图象如图所示,以下结论正确的个数为( )①;②;③;④(m 为任意实数)A.1个B.2个C.3个D.4个二.填空题(每题3分,共15分)11.函数是二次函数,则m =______.12.已知是方程的一个根,则方程的另一个根是______.13.某数学小组在活动结束后互相握手28次,此小组人数为______.14.抛物线,当时,y 的最小值与最大值的和是______.15.如图,矩形ABCD 中,,.点E 为边DC 上一个动点(不与D 、C 重合),把沿AE 折叠,当点D 的对应点落在矩形ABCD 的对称轴上时,则DE 的长为______.2y ax bx c =++0abc <20c a +<930a b c -+=20am a bm b -++>()211m y m x +=-1x =220x bx +-=()2223y x =--+03x ≤≤10AD =16AB =ADE △D '三.解答题(共8个小题,满分75分)16.解方程(8分)①②17.(9分)如图,在平面直角坐标系中,已知的三个顶点的坐标分别为,,.(1)与关于原点O 成中心对称,画出;(2)的面积为______;(3)若D 点在第一象限,且以A 、B 、C 、D 为顶点的四边形是平行四边形,则D 点的坐标为______.18.(9分)已知关于x 的一元二次方程.(1)求证:无论m 为何值,该方程总有两个不相等的实数根;(2)若该方程的两个根为p 和q ,且满足,求m 的值.19.(9分)如图,利用一面墙(墙EF 最长可利用28米),围成一个矩形花园ABCD .与墙平行的一边BC 上要预留2米宽的入口(如图中MN 所示,不用砌墙).用砌60米长的墙的材料.(1)当矩形花园的面积为300平方米时,求AB 的长;(2)能否围成500平方米的矩形花园,为什么?(计算说明)2410x x --=()()2737x x x +=+ABC △()5,1A -()2,2B -()1,4C -111A B C △ABC △111A B C △111A B C △22230x mx m ++-=0pq p q --=20.(9分)问题情境:如图1,四边形ABCD 是菱形,过点A 作于点E ,过点C 作于点F .图1 图2猜想证明:(1)判断四边形AECF 的形状,并说明理由;深入探究:(2)将图1中的绕点A 逆时针旋转,得到,点E ,B 的对应点分别为点G ,H .如图2,当线段AH 经过点C 时,GH 所在直线分别与线段AD ,CD 交于点M ,N .猜想线段CH 与MD 的数量关系,并说明理由;21.(10分)如图,抛物线与直线交于点和点C .(1)求a 和b 的值;(2)求点C 的坐标,并结合图象写出不等式的解集;(3)点M 是直线AB 上的一个动点,将点M 向右平移2个单位长度得到点N ,若线段MN 与抛物线只有一个公共点,直接写出点M 的横坐标xM 的取值范围.22.(10分)问题情境:如图1,矩形MNKL 是学校花园的示意图,其中一个花坛的轮廓可近似看成由抛物线的一部分与线段AB 组成的封闭图形,点A ,B 在矩形的边MN 上.现要对该花坛内种植区域进行划分,以种植不同花卉,学校面向全体同学征集设计方案.方案设计:如图2,米,AB 的垂直平分线与抛物线交于点P ,与AB 交于点O ,点P 是抛物线的顶点,且米.欣欣设计的方案如下:第一步:在线段OP 上确定点C ,使,用篱笆沿线段AC ,BC 分隔出区域,种植串串红;第二步:在线段CP 上取点F (不与C ,P 重合),过点F 作AB 的平行线,交抛物线于点D ,E .用篱笆沿DE ,CF 将线段AC ,BC 与抛物线围成的区域分隔成三部分,分别种植不同花色的月季.方案实施:学校采用了欣欣的方案,在完成第一步区域的分隔后,发现仅剩6米篱笆材料.若要在第二步分隔中恰好用完6米材料,需确定DE 与CF 的长.为此,欣欣在图2中以AB 所在直线为x 轴,OP 所在直线为y 轴建立平面直角坐标系.请按照她的方法解决问题:AE BC ⊥CF AD ⊥ABE △AHG △2y x ax =-+y x b =-+()4,0A 2x ax x b -+>-+6AB =9PO =90ACB ∠=︒ABC △ABC △图1 图2(1)在图2中画出坐标系,并求抛物线的函数表达式;(2)求6米材料恰好用完时DE 与CF 的长;(3)种植区域分隔完成后,欣欣又想用灯带对该花坛进行装饰,计划将灯带围成一个矩形.她尝试借助图2设计矩形四个顶点的位置,其中两个顶点在抛物线上,另外两个顶点分别在线段AC ,BC 上,直接写出符合设计要求的矩形周长的最大值.23.(11分)在等腰直角三角形ABC 和等腰直角三角形EBF 中,,连接AF ,M 是AF 的中点,连接CM ,EM .图1 图2 图3(1)观察猜想:图1中,线段CM 与EM 的数量关系是______,位置关系是______.(2)探究证明:把绕点B 顺时针旋转一周,(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由.(3)拓展延伸:如图3,在平面直角坐标系中,点A 的坐标为,点B 的坐标为,点C 的坐标为,P 为平面内一动点,且,连接CP ,D 是CP 的中点,连接BD .请直接写出BD 的最值.90ACB BEF ∠=∠=︒EBF △(2,0)(6,0)(6,4)2AP =东方二中九年级数学10月份大练习答案一、选择题:本题共10小题,每小题3分,共30分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南省洛阳市九年级上学期数学11月月考试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共10题;共20分)
1. (2分)今年元旦,某风景区的最低气温为﹣5℃,最高气温为10℃,则这个风景区今年元旦的最高气温比最低气温高()
A . ﹣15℃
B . 15℃
C . 5℃
D . ﹣5℃
2. (2分) (2020七下·玄武期中) 若(x-2y)2 =(x+2y)2+M,则M= ()
A . 4xy
B . - 4xy
C . 8xy
D . -8xy
3. (2分) (2018八上·大庆期末) 下列图案中,不是中心对称图形的是()
A .
B .
C .
D .
4. (2分) (2016九上·衢州期末) 将抛物线y=x2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为()
A . y=(x﹣1)2+4
B . y=(x﹣4)2+4
C . y=(x+2)2+6
D . y=(x﹣4)2+6
5. (2分)(2020·成都模拟) 如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是()
A .
B .
C .
D .
6. (2分)已知反比例函数y=,下列结论中不正确的是()
A . 图象必经过点(1,﹣5)
B . y随x的增大而增大
C . 图象在第二、四象限内
D . 若x>1,则﹣5<y<0
7. (2分)三角形在方格纸中的位置如图所示,则tanα的值是()
A .
B .
C .
D .
8. (2分) (2020八下·和平月考) 如图,边长为的正方形的对角线交于点,点分别在边上(),且的延长线交于点的延长线交于点
恰为的中点.下列结论:
① ;
② ;
③ .
其中,正确结论的个数是()
A . 个
B . 个
C . 个
D . 个
9. (2分)▱ABCD中,∠A:∠B:∠C:∠D可以为()
A . 1:2:3:4
B . 1:2:2:1
C . 2:2:1:1
D . 2:1:2:1
10. (2分)(2013·内江) 若抛物线y=x2﹣2x+c与y轴的交点为(0,﹣3),则下列说法不正确的是()
A . 抛物线开口向上
B . 抛物线的对称轴是x=1
C . 当x=1时,y的最大值为﹣4
D . 抛物线与x轴的交点为(﹣1,0),(3,0)
二、填空题 (共10题;共10分)
11. (1分) (2019七上·襄州期中) 2019年10月18日晚上八点,第七届世界军人运动会开幕式在武汉体育中心举行,网络直播截止晚上9点40分,参与人数达到1690000人,用科学计数法表示为________人.
12. (1分)(2017·黑龙江模拟) 分解因式:a3﹣4a2b+4ab2=________.
13. (1分)(2017·官渡模拟) 函数的自变量的取值范围是________.
14. (1分) (2019九上·赣榆期末) 已知抛物线经过点、,则
________ 填“ ”“ ”,或“ ” .
15. (1分)计算:-=________
16. (1分)(2020·许昌模拟) 如图,在扇形OAB中,∠AOB=90°,C是OA的中点,D是的中点,连接CD、CB.若OA=2,则阴影部分的面积为________.(结果保留π)
17. (1分)(2015·舟山) 把一枚均匀的硬币连续抛掷两次,两次正面朝上的概率是________.
18. (1分)(2017·盐城模拟) 在Rt△ABC中,∠C=90°,AC=6,BC=8,点E是BC边上的动点,连接AE,过点E作AE的垂线交AB边于点F,则AF的最小值为________.
19. (1分)如图,在平面直角坐标系中,⊙Oˊ与两坐标轴分别交于A、B、C、D四点,已知A(6,0),C(﹣2,0).则点B的坐标为________.
20. (1分)(2017·金华) 如图,已知点A(2,3)和点B(0,2),点A在反比例函数y= 的图象上.作射线AB,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则点C的坐标为________.
三、解答题 (共7题;共59分)
21. (5分)计算:
(1) |
(2).
22. (10分)已知,如图,点B、C、D在⊙O上,四边形OCBD是平行四边形,
(1)求证:= ;
(2)若⊙O的半径为2,求的长.
23. (2分)(2017·湖州模拟) 李老师为了解学生完成数学课前预习的具体情况,对部分学生进行了跟踪调查,并将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.制成以下两幅不完整的统计图,
请你根据统计图解答下列问题:
(1)李老师一共调查了多少名同学?
(2) C类女生有________名,D类男生有________名,将下面条形统计图补充完整________;
(3)为了共同进步,李老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.
24. (2分)如图1,▱ABCD中,点O是对角线AC的中点,EF过点O,与AD,BC分别相交于点E,F,GH过点O,与AB,CD分别相交于点G,H,连接EG,FG,FH,EH.
(1)求证:四边形EGFH是平行四边形.
(2)如图2,若EFABGHBC,在不添加任何辅助线的情况下,请直接写出图2中与四边形AGHD面积相等的所有平行四边形(四边形AGHD除外).
25. (10分) (2017九上·遂宁期末) 如图,在△ABC中,AB=6cm,BC=12cm,∠B=90°.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,如果P,Q分别从A,B同时出发,设移动时间为t(s).
(1)当t=2时,求△PBQ的面积;
(2)当为多少时,四边形APQC的面积最小?最小面积是多少?
(3)当为多少时,△PQB与△ABC相似.
26. (15分)(2019·惠安模拟) 如图1,已知⊙O是ΔADB的外接圆,∠ADB的平分线DC交AB于点M,交⊙O 于点C,连接AC,BC.
(1)求证:AC=BC;
(2)如图2,在图1的基础上做⊙O的直径CF交AB于点E,连接AF,过点A作⊙O的切线AH,若AH//BC,求∠ACF的度数;
(3)在(2)的条件下,若ΔABD的面积为,ΔABD与ΔABC的面积比为2:9,求CD的长.
27. (15分) (2017·柘城模拟) 如图,抛物线y=x2+bx+c与直线y= x﹣3交于A、B两点,其中点A在y 轴上,点B坐标为(﹣4,﹣5),点P为y轴左侧的抛物线上一动点,过点P作PC⊥x轴于点C,交AB于点D.
(1)求抛物线的解析式;
(2)以O,A,P,D为顶点的平行四边形是否存在?如存在,求点P的坐标;若不存在,说明理由.
(3)当点P运动到直线AB下方某一处时,过点P作PM⊥AB,垂足为M,连接PA使△PAM为等腰直角三角形,请直接写出此时点P的坐标.
参考答案一、单选题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共10题;共10分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
19-1、
20-1、
三、解答题 (共7题;共59分)
21-1、
21-2、
22-1、
22-2、
23-1、
23-2、
23-3、
24-1、
24-2、25-1、
25-2、
25-3、26-1、
26-2、
27-1、
27-2、。