人教版七年级上册试卷《一元一次方程》专项测验——列方程解应用题.docx

合集下载

七年级上册 3.4实际问题与一元一次方程(配套问题)专题练习(Word版,含答案)

七年级上册  3.4实际问题与一元一次方程(配套问题)专题练习(Word版,含答案)
人教版七年级上册数学3.4实际问题与一元一次方程--配套问题专题练习
一、单选题
1.现用90立方米木料制作桌子和椅子,已知1立方米木料可做5把椅子或1张桌子要使桌子和椅子刚好配套(-张桌子配4把椅子),设用x立方米的木料做桌子,则依题意可列方程为()
A.5x=4(90-x)B.4x=5(90-x)C.x=4(90-x) 5D.4x 5=90-x
20.为了防控新冠病毒,某工厂要制作一批医用口罩,制作一个口罩要用一个口罩面体和2条松紧带.某车间有12名工人,每人每天可以生产1200个口罩面体或4800条松紧ቤተ መጻሕፍቲ ባይዱ.为使每天生产的口罩面体和松紧带刚好配套,应安排生产口罩面体和松紧带的工人各多少名?
参考答案:
1.B
2.C
3.B
4.C
5.B
6.D
7.C
12.小明妈妈想检测小明学习“列方程解应用题”的效果,给了小明37个苹果,要小明把它们分成4堆.要求分后,如果再把第一堆增加一倍,第二堆增加2个,第三堆减少三个,第四堆减少一半后,这4堆苹果的个数相同,那么这四堆苹果中个数最多的一堆为_____个.
13.某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母.1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?若设应安排x名工人生产螺钉,则生产螺母的有_____人.
A.5和15B.15和5C.12和8D.8和12
6.一套仪器由1个A部件和3个B部件构成,1立方米钢材可做40个A部件或240个B部件,现要用6立方米钢材制作这种仪器,设应用x立方米钢材做B部件,其他钢材做A部件,恰好配套,则可列方程为()
A. B.
C. D.
7.一个班级,若分成12个小组,则余3人,若每组人数增加2人,则可分成8组,仍余3人,这个班的人数是()

人教版七年级上册数学 一元一次方程单元综合测试(Word版 含答案)

人教版七年级上册数学 一元一次方程单元综合测试(Word版 含答案)

一、初一数学一元一次方程解答题压轴题精选(难)1.如图,数轴上 A、B 两点所对应的数分别是 a 和 b,且(a+5)2+|b﹣7|=0.(1)求 a,b;A、B 两点之间的距离.(2)有一动点 P 从点 A 出发第一次向左运动 1 个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到 2019次时,求点P所对应的数.(3)在(2)的条件下,点P在某次运动时恰好到达某一个位置,使点P到点B的距离是点 P 到点 A 的距离的3倍?请直接写出此时点 P所对应的数,并分别写出是第几次运动.【答案】(1)解:∵(a+5)2+|b﹣7|=0,∴a+5=0,b﹣7=0,∴a=﹣5,b=7;∴A、B两点之间的距离=|﹣5|+7=12;(2)解:设向左运动记为负数,向右运动记为正数,依题意得:﹣5﹣1+2﹣3+4﹣5+6﹣7+…+2018﹣2019=﹣5+1009﹣2019=﹣1015.答:点P所对应的数为﹣1015(3)解:设点P对应的有理数的值为x,①当点P在点A的左侧时:PA=﹣5﹣x,PB=7﹣x,依题意得:7﹣x=3(﹣5﹣x),解得:x=﹣11;②当点P在点A和点B之间时:PA=x﹣(﹣5)=x+5,PB=7﹣x,依题意得:7﹣x=3(x+5),解得:x=﹣2;③当点P在点B的右侧时:PA=x﹣(﹣5)=x+5,PB=x﹣7,依题意得:x﹣7=3(x+5),解得:x=﹣11,这与点P在点B的右侧(即 x>7)矛盾,故舍去.综上所述,点P所对应的有理数分别是﹣11和﹣2.所以﹣11和﹣2分别是点P运动了第11次和第6次到达的位置.【解析】【分析】(1)由绝对值和平方的非负性可得a与b的值,相减得两点间的距离。

(2)设向左运动记为负数,向右运动记为正数,并在-5的基础上把得到的数据相加即可。

(3)设点P对应的有理数的值为x,分别表示PA和PB的长,列方程求解即可。

最新人教版七年级上册数学 一元一次方程综合测试卷(word含答案)

最新人教版七年级上册数学 一元一次方程综合测试卷(word含答案)

一、初一数学一元一次方程解答题压轴题精选(难)1.下列图表是2017 年某校从参加中考体育测试的九年级学生中随机调查的10 名男生跑1000 米和 10 名女生跑 800米的成绩.(1)按规定,女生跑 800 米的时间不超过 3'24"就可以得满分.该校九年级学生有 490 人,男生比女生少 70 人.请你根据上面成绩,估计该校女生中有多少人该项测试成绩得满分? (2)假如男生 1 号和男生 10 号被分在同组测试,请分析他俩在 400 米的环形跑道测试的过程中能否相遇。

若能,求出发多长时间才能相遇;若不能,说明理由.【答案】(1)解:设男生有x人,女生有(x+70)人,由题意得:x+x+70=490,解得:x=210,则女生x+70=210+70=280(人).故女生得满分人数: (人)(2)解:不能;假设经过x分钟后,1号与10号在1000米跑中能首次相遇,根据题意得:解得又∵∴考生1号与10号不能相遇。

【解析】【分析】(1)通过男生、女生的人数关系列出方程,得出女生的人数;(2)根据题意表达出1号跟10号的速度,两位若相遇,相减的路程为400米,得出的时间为4.8, 但是4.8分钟大于3分钟,所以两位在测试过程中不会相遇。

2.如图,已知点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b﹣2)2=0.(1)求A、B两点的对应的数a、b;(2)点C在数轴上对应的数为x,且x是方程2x+1= x﹣8的解.①求线段BC的长;②在数轴上是否存在点P,使PA+PB=BC?求出点P对应的数;若不存在,说明理由.【答案】(1)解:∵|a+3|+(b﹣2)2=0,∴a+3=0,b﹣2=0,解得,a=﹣3,b=2,即点A表示的数是﹣3,点B表示的数是2 。

(2)解:①2x+1= x﹣8解得x=﹣6,∴BC=2﹣(﹣6)=8即线段BC的长为8;②存在点P,使PA+PB=BC理由如下:设点P的表示的数为m,则|m﹣(﹣3)|+|m﹣2|=8,∴|m+3|+|m﹣2|=8,当m>2时,解得 m=3.5,当﹣3<m<2时,无解当x<﹣3时,解得m=﹣4.5,即点P对应的数是3.5或﹣4.5【解析】【分析】(1)根据绝对值及平方的非负性,几个非负数的和为零则这几个数都为零从而得出解方程组得出a,b的值,从而得出A,B两点表示的数;(2)①解方程2x+1= x﹣8 ,得出x的值,从而得到C点的坐标,根据两点间的距离得出BC的长度;②存在点P,使PA+PB=BC理由如下:设点P的表示的数为m,根据两点间的距离公式列出方程|m﹣(﹣3)|+|m﹣2|=8,然后分类讨论:当m>2时,解得m=3.5,当﹣3<m<2时,无解,当x<﹣3时,解得m=﹣4.5,即点P对应的数是3.5或﹣4.5 。

七年级数学上册 一元一次方程单元测试题(Word版 含解析)

七年级数学上册 一元一次方程单元测试题(Word版 含解析)
一、初一数学一元一次方程解答题压轴题精选(难)
1.(公园门票价格规定如下表:
Hale Waihona Puke 购票张数 1~50 张 51~100 张 100 张以上
每张票的价格 13 元 11 元
9元
某校七年级(1)、(2)两个班共 104 人去游公园,其中(1)班人数较少,不足 50 人,
(2)班超过 50 人,但不足 100 人。经估算,如果两个班都以班为单位购票,则一共应付 1240 元,问:
4.某城市平均每天产生垃圾 700 t,由甲、乙两家垃圾处理厂处理.已知甲厂每小时可处 理垃圾 55 t,费用为 550 元;乙厂每小时可处理垃圾 45 t,费用为 495 元. (1)如果甲、乙两厂同时处理该城市的垃圾,那么每天需几小时? (2)如果该城市规定每天用于处理垃圾的费用不得高于 7370 元,那么至少安排甲厂处理 几小时? 【答案】 (1)解:设两厂同时处理每天需 xh 完成, 根据题意,得(55+45)x=700,解得 x=7. 答:甲、乙两厂同时处理每天需 7 h.
3.元旦假期,甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不
同的优惠方案:在甲超市当日累计购物超出了 300 元以后,超出部分按原价 8 折优惠;在
乙超市当日累计购物超出 200 元之后,超出部分按原价 8.5 折优惠.设某位顾客在元旦这
天预计累计购物 x 元(其中 x>300).
若为“中点方程”,则 x=

∵≠ , ∴ 不符合“中点方程”定义,故不存在
(2)解:∵ ∴ (2a-b)x+b=0. ∵ 关于 x 的方程
∴ x=
=a.
, 是“中点方程”,
把 x=a 代入原方程得:

最新人教版数学七年级上册 一元一次方程达标检测卷(Word版 含解析)

最新人教版数学七年级上册 一元一次方程达标检测卷(Word版 含解析)

一、初一数学一元一次方程解答题压轴题精选(难)1.你知道为什么任何无限循环小数都可以写成分数形式吗?下面的解答过程会告诉你原因和方法.(1)阅读下列材料:问题:利用一元一次方程将化成分数.设.由,可知,即.(请你体会将方程两边都乘以10起到的作用)可解得,即.填空:将写成分数形式为________ .(2)请仿照上述方法把小数化成分数,要求写出利用一元一次方程进行解答的过程.【答案】(1)(2)解:设 =m,方程两边都乘以100,可得100× =100x由=0.7373…,可知100× =73.7373…=73+0.73即73+x=100x可解得x= ,即 =【解析】【分析】解:(1)设0.4˙=x,则4+x=10x,∴x= .故答案是:;(2)理解该材料的关键在于:将循环小数扩大的倍数在于循环小数的循环节,释放一个循环节后,循环小数的大小仍不变.2.今年夏天,我州某地区遭受罕见的水灾,“水灾无情人有情”,州里某单位给该地区某中学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件。

(1)求饮用水和蔬菜各有多少件。

(2)现计划租用甲、乙两种型号的货车共8辆,一次性将这批饮用水和蔬菜全部运往受灾地区某中学。

已知每辆甲型货车最多可装饮用水40件和蔬菜10件,每辆乙型货车最多可装饮用水和蔬菜各20件,则该单位安排甲、乙两种货车时有几种方案?请你帮忙设计出来。

(3)在(2)的条件下,如果甲型货车每辆需付运费400元,乙型货车每辆需付运费360元。

该单位应选择哪种方案可使运费最少?最少运费是多少元?【答案】(1)解:设蔬菜有x件,根据题意得解得:答:蔬菜有件、饮用水有件(2)解:设安排甲种货车a辆,根据题意得解得:∵a为正整数∴或或∴有三种方案:①甲种货车2辆,乙种货车6辆;②甲种货车3辆,乙种货车5辆;③甲种货车4辆,乙种货车4辆(3)解:方案①:(元)方案②:(元)方案③:(元)∵∴选择方案①可使运费最少,最少运费是元【解析】【分析】(1)设蔬菜有x件,根据题意列出方程,求出方程的解,即可求解;(2)设安排甲种货车a辆,根据题意列出不等式组,求出不等式组的解集,由a为正整数,得出a为2或3或4,即可求出有三种方案;(3)分别求出三种方案的运费,即可求解.3.(公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元1)班人数较少,不足50人,(2)班超过50人,但不足100人。

【精选】人教版七年级数学上册 一元一次方程达标检测(Word版 含解析)

【精选】人教版七年级数学上册 一元一次方程达标检测(Word版 含解析)

一、初一数学一元一次方程解答题压轴题精选(难)1.用“ ”规定一种新运算:对于任意有理数 a 和b,规定.如:.(1)求的值;(2)若=32,求的值;(3)若,(其中为有理数),试比较m、n的大小.【答案】(1)解:∵∴ =(2)解:∵=32,∴可列方程为;解方程得:x=1(3)解:∵ = ,;∴;∴【解析】【分析】(1)利用规定的运算方法直接代入计算即可;(2)利用规定的运算方法得出方程,求得方程的解即可;(3)利用规定的运算方法得出m、n,再进一步作差比较即可.2.先阅读下列解题过程,然后解答问题⑴、⑵,解方程:。

解:①当3x≥0时,原方程可化为一元一次方程3x=1,它的解是;②当3x≤0时,原方程可化为一元一次方程-3x=1,它的解是。

(1)请你根据以上理解,解方程:;(2)探究:当b为何值时,方程,①无解;②只有一个解;③有两个解。

【答案】(1)解:当x−3≥0时,原方程可化为一元一次方程为2(x−3)+5=13,方程的解是x=7;②当x−3<0时,原方程可化为一元一次方程为2(3−x)+5=13,方程的解是x=−1(2)解:∵|x−2|≥0,∴当b+1<0,即b<−1时,方程无解;当b+1=0,即b=−1时,方程只有一个解;当b+1>0,即b>−1时,方程有两个解【解析】【分析】(1)当x−3≥0时,得出方程为2(x−3)+5=13,求出方程的解即可;当x−3<0时,得出方程为2(3−x)+5=13,求出方程的解即可;(2)根据绝对值具有非负性得出|x−2|≥0,分别求出b+1<0,b+1=0,b+1>0的值,即可求出答案.3.根据绝对值定义,若有,则或,若,则,我们可以根据这样的结论,解一些简单的绝对值方程,例如:解:方程可化为:或当时,则有:;所以 .当时,则有:;所以 .故,方程的解为或。

(1)解方程:(2)已知,求的值;(3)在(2)的条件下,若都是整数,则的最大值是________(直接写结果,不需要过程).【答案】(1)解:方程可化为:或,当时,则有,所以;当时,则有,所以,故方程的解为:或(2)解:方程可化为:或,当时,解得:,当时,解得:,∴或(3)100【解析】【解答】(3)∵或,且都是整数,∴根据有理数乘法法则可知,当a=-10,b=-10时,取最大值,最大值为100.【分析】(1)仿照题目中的方法,分别解方程和即可;(2)把a+b看作是一个整体,利用题目中方法求出a+b的值,即可得到的值;(3)根据都是整数结合或,利用有理数乘法法则分析求解即可.4.某航空公司开展网络购机票优惠活动:凡购机票每张不超过2000元的一律八折优惠;超过2000元的,其中2000元按八折算,超过2000的部分按七折算.(1)甲旅客购买了一张机票的原价为1500元,需付款________元;(2)乙旅客购买了一张机票的原价为x(x>2000)元,需付款________元(用含x的代数式表示);(3)丙旅客因出差购买了两张机票,第一张机票实际付款1440元,第二张机票享受了七折优惠,他査看了所买机票的原价,发现两张票共节约了910元,求丙旅客第二张机票的原价和实际付款各多少元?【答案】(1)1200(2)0.7x+200(3)解:第一张机票的原价为1440÷0.8=1800(元).设丙旅客第二张机票的原价为y元,则购买两种票实际付款(1800+y-910)元,根据题意得:1440+0.7y+200=1800+y-910,解得:y=2500,∴1800+y-910-1440=1950.答:丙旅客第二张机票的原价为2500元,实际付款1950元【解析】【解答】解:(1)1500×0.8=1200(元).故答案为:1200.(2)根据题意得:需付款=2000×0.8+(x-2000)×0.7=0.7x+200(元).故答案为:(0.7x+200).【分析】(1)利用需付款=原价×0.8,即可求出结论;(2)根据需付款=2000×0.8+0.7×超出2000元部分,即可求出结论;(3)根据原价=需付款÷0.8可求出第一张机票的原价,设丙旅客第二张机票的原价为y元,则购买两种票实际付款(1800+y-910)元,根据(2)的结论,即可得出关于y的一元一次方程,解之即可得出结论.5.甲乙两人相约元旦一起到某书店购书,恰逢该书店举办全场9.5折的新年优惠活动.甲乙两人在该书店共购书15本,优惠前甲平均每本书的价格为20元,乙平均每本书的价格为25元,优惠后甲乙两人的书费共323元.(1)问甲乙各购书多少本?(2)该书店凭会员卡当日可以享受全场8.5折优惠,办理一张会员卡需交20元工本费.如果甲乙两人付款前立即合办一张会员卡,那么比两人不办会员卡购书共节省多少钱?【答案】(1)解:设甲购书x本,则乙购书(15﹣x)本,根据题意得:[20x+25(15﹣x)]×0.95=323,解得:x=7,∴15﹣x=8.答:甲购书7本,乙购书8本(2)解:(20×7+25×8)×0.85+20=309(元),323﹣309=14(元).答:办会员卡比不办会员卡购书共节省14元钱【解析】【分析】(1)设甲购书x本,则乙购书(15﹣x)本,根据两人买书共消费了323元列出方程,求解即可;(2)先求出办会员卡购书一共需要多少钱,再用323元减去这个钱数即可.6.寒假将至,某班家委会组织学生到北京旅游,现联系了一家旅行社,这家旅行社报价为4000元/人,但根据具体报名情况推出了优惠举措:人数10人及以下(含10人)超过10人不超过20人的部分超过20人的部分收费标准原价(不优惠)3500元/人3000元/人(2)在(1)问前提下,后来又有部分同学要求参加,设这部分同学加入后总共参与旅游的人数为人,若总人数还是不超过20人,则总费用为________元;若总人数超过了20人,则总费用为________元;(结果均用含的代数式表示)(3)若最后家委会支付给旅行社人均费用为原价的九折,问共有多少人参加了本次旅游?【答案】(1)50500(2);(3)解:,显然 .①若,则;(不合题意,舍去)②若,则;答:共有25人参加了本次旅游【解析】【解答】解:(1)根据题意得,4000×10+3500×(13-10)=50500(元),故答案为:50500;(2)根据题意得,①若总人数x还是不超过20人,则总费用为:4000×10+3500(x-10)=3500x+5000(元);②若总人数x超过了20人,则总费用为:4000×10+3500(20-10)+3000(x-20)=3000x+15000(元)故答案为:(3500x+5000);(3000x+15000)【分析】(1)根据优惠措施,旅游13人的总费用为:其中10人按4000元/人算,另3人按3500元/人计算;(2)分两种情况解答:①不超过20人时,总费用=10×400+3500×(x-10);②超过20人时总费用=10×4000+3500×10+3000×(x-20);(3)先判断出x>10,然后分两种情况解答:①当时,②当时,7.某城市平均每天产生垃圾700 t,由甲、乙两家垃圾处理厂处理.已知甲厂每小时可处理垃圾55 t,费用为550元;乙厂每小时可处理垃圾45 t,费用为495元.(1)如果甲、乙两厂同时处理该城市的垃圾,那么每天需几小时?(2)如果该城市规定每天用于处理垃圾的费用不得高于7370元,那么至少安排甲厂处理几小时?【答案】(1)解:设两厂同时处理每天需xh完成,根据题意,得(55+45)x=700,解得x=7.答:甲、乙两厂同时处理每天需7 h.(2)解:设安排甲厂处理y h,根据题意,得550y+495× ≤7370,解得y≥6.∴y的最小值为6.答:至少安排甲厂处理6 h.【解析】【分析】(1)设甲、乙两厂同时处理,每天需x小时,根据甲乙两厂同时处理垃圾每天需时=每天产生垃圾÷(甲厂每小时可处理垃圾量+乙厂每小时可处理垃圾量),列出方程,求出x的值即可;(2)设甲厂需要y小时,根据该市每天用于处理垃圾的费用=甲厂处理垃圾的费用+乙厂处理垃圾的费用,每厂处理垃圾的费用=每厂每小时处理垃圾的费用×每天处理垃圾的时间,列出不等式,求出y的取值范围,再求其中的最小值即可.8.阅读理解:定义:若一元一次方程的解在一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“子方程”.例如:的解为,的解集为,不难发现在的范围内,所以是的“子方程”.问题解决:(1)在方程① ,② ,③ 中,不等式组的“子方程”是________;(填序号)(2)若关于x的方程是不等式组的“子方程”,求k的取值范围;(3)若方程,都是关于x的不等式组的“子方程”,直接写出m的取值范围.【答案】(1)③(2)解:解不等式3x-6>4-x,得:>,解不等式x-1≥4x-10,得:x≤3,则不等式组的解集为<x≤3,解:2x-k=2,得:x= ,∴<≤3,<,解得:3<k≤4;(3)解:解方程:2x+4=0得,解方程:得:,解关于x的不等式组当<时,不等式组为:,此时不等式组的解集为:>,不符合题意,所以:>所以得不等式的解集为:m-5≤x<1,∵2x+4=0,都是关于x的不等式组的“子方程”,∴,解得:2<m≤3.【解析】【解答】解:(1)解方程:3x-1=0得:解方程:得:,解方程:得:x=3,解不等式组:得:2<x≤5,所以不等式组的“子方程”是③.故答案为:③;【分析】(1)先求出方程的解和不等式组的解集,再判断即可;(2)解不等式组求得其解集,解方程求出x= ,根据“子方城”的定义列出关于k的不等式组,解之可得;(3)先求出方程的解和不等式组的解集,分<与>讨论,即可得出答案.9.已知,如图A、B分别为数轴上的两点,A点对应的数为-20,B点对应的数为80.(1)请写出AB的中点M对应的数.(2)现在有一只电子蚂蚁P从B点出发,以2个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以3个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C 点相遇,①你知道经过几秒两只电子蚂蚁相遇?②点C对应的数是多少?③经过多长时间两只电子蚂蚁在数轴上相距15个单位长度?【答案】(1)解:M点的数值为:;(2)解:①设所用时间为t,依题意得:3t﹢2t=100,解得:t=20;②依题意得:点C位置为: 80-2t=80-2×20=40;③设所用时间为x,依题意得:3x+2x=100-15或3x+2x=100+15,解得:x=17或x=23;∴当x=17或x=23时,两个电子蚂蚁再数轴上相距15个单位长度.【解析】【分析】(1)由AM=BM,结合两点间的距离公式,即可求出AB的中点;(2)①根据时间=路程÷速度,即可求出相遇的时间;②结合相遇的时间,即可求出点C;③根据题意,两个电子蚂蚁在数轴上相距15,可分为:相遇前相距15和相遇后相距15,两种情况进行讨论.10.如图,在数轴上点A表示数a,点C表示数c,且 .我们把数轴上两点之间的距离用表示两点的大写字母一起标记.比如,点A与点B之间的距离记作AB.(1)求AC的值;(2)若数轴上有一动点D满足CD+AD=36,直接写出D点表示的数;(3)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度,同时点A,C在数轴上运动,点A、C的速度分别为每秒 3个单位长度,每秒4个单位长度,运动时间为t秒.①若点A向右运动,点C向左运动,AB=BC,求t的值.②若点A向左运动,点C向右运动,2AB-m×BC的值不随时间t的变化而改变,请求出m的值.【答案】(1)解:∵|a+10|+(c-20)2=0,∴a+10=0,c-20=0,∴a=-10,c=20(2)解:当点D在点A的左侧,∵CD+AD=36,∴AD+AC+AD=36,∴AD=3,∴点D点表示的数为-10-3=-13;当点D在点A,C之间时,∵CD+AD=AC=30≠36,∴不存在点D,使CD+AD=36;当点D在点C的右侧时,∵CD+AD=36,∴AC+CD+CD=36,∴CD=3,∴点D点表示的数为20+3=23;综上所述,D点表示的数为-13或23(3)解:①∵AB=BC,∴|(1+t)-(-10+3t)|=|(1+t)-(20-4t)|∴t= 或;②∵2AB-m×BC=2×(11+4t)-m(19+3t)=(8-3m)t+22-19m,且2AB-m×BC的值不随时间t的变化而改变,∴8-3m=0,∴m= .【解析】【分析】(1)根据非负性可求出答案;(2)分三种情况:当点D在点A的左侧;当点D在点A,C之间时;当点D在点C的右侧时;进行讨论可求D点表示的数;(3)①用t的代数式表示AB,BC,列出等式可求解;②用t的代数式表示AB,BC,代入代数式可求解;11.鄞州公园计划在园内的坡地上栽种树苗和花苗,树苗和花苗的比例是1:25,已知每人每天能种植树苗3棵或种植花苗50棵,现有15人参与种植劳动 .(1)怎样分配种植树苗和花苗的人数,才能使得种植任务同时完成?(2)现计划种植树苗60棵,花苗1500棵,要求在3天内完成,原有人数能完成吗?如能完成,请说明理由;如不能完成,请问至少派多少人去支援才能保证3天内完成任务? 【答案】(1)解:设种树苗人数为x人,则种花苗人数为(15-x)人,由题意得3x:50(15-x)=1:25解得x=6答:6人种树苗,9人种花苗。

(完整word版)人教版初一数学上册一元一次方程单元测试卷含答案,推荐文档

3一元一次方程单元测试分,满分30分)3. 下列等式的变形错误的是(C.如果x y ,那么-丫z z4. 下列两个方程的解相同的是 A. 方程5x + 3 = 6和方程2x = 4 B .方程3x = x + 1和方程2x = 4x — 1C.方程x +丄=0和方程 乞丄=0 D .方程6x — 3(5x — 2) = 5和方程6x — 15x 2 2=35. 若 I 与一1-互为倒数,那么x 的值等于() 6 3A. -B.— -C . 7 8 * * 11D . — X7735356. 方程〔x - 5 1,去分母得()23A. 3x 2x 10 1B. 3x 2x 10 1 、选择题(本大题共10个小题, 每小题只有一个符合条件的选项,每小题 1.下列方程是一儿次方程方程的是A. x y 5B.x 2 C.D. 2.下列方1的是A. x 1 0B.C.D. A.如果x y ,那么x 2B.如果x y ,那么2x 2y D.如果xy ,那么2 x 2 yC. 3x 2x 10 6D. 3x 2x 10 62(3)2 26D.方程U _L 1化成3x 6.0.20.59. 若代数式x —— 的值是2,则x 的值是(3A. 0.75B. 1.75C. 1.510. 朵朵幼儿园的阿姨给小朋友分苹果,如果每人 个又多2个,请问共有多少个小朋友?(A. 4 个 B . 5 个 C . 10 个 二、填空题(本大题共10个小题,每小题3分,满分30 分)111.方程2x -的解为 。

212. __________________________________________________ 请你写出一个解是 1的一元一次方程为: __________________________________ 。

13. _____________________________________________________ 若 3x m3y 2n 与 2x 2m2y n 1 为同类项,贝U n m ___________________________________ 。

最新七年级上册一元一次方程单元测试卷 (word版,含解析)

一、初一数学一元一次方程解答题压轴题精选(难)1.如图,数轴上 A、B 两点所对应的数分别是 a 和 b,且(a+5)2+|b﹣7|=0.(1)求 a,b;A、B 两点之间的距离.(2)有一动点 P 从点 A 出发第一次向左运动 1 个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到 2019次时,求点P所对应的数.(3)在(2)的条件下,点P在某次运动时恰好到达某一个位置,使点P到点B的距离是点 P 到点 A 的距离的3倍?请直接写出此时点 P所对应的数,并分别写出是第几次运动.【答案】(1)解:∵(a+5)2+|b﹣7|=0,∴a+5=0,b﹣7=0,∴a=﹣5,b=7;∴A、B两点之间的距离=|﹣5|+7=12;(2)解:设向左运动记为负数,向右运动记为正数,依题意得:﹣5﹣1+2﹣3+4﹣5+6﹣7+…+2018﹣2019=﹣5+1009﹣2019=﹣1015.答:点P所对应的数为﹣1015(3)解:设点P对应的有理数的值为x,①当点P在点A的左侧时:PA=﹣5﹣x,PB=7﹣x,依题意得:7﹣x=3(﹣5﹣x),解得:x=﹣11;②当点P在点A和点B之间时:PA=x﹣(﹣5)=x+5,PB=7﹣x,依题意得:7﹣x=3(x+5),解得:x=﹣2;③当点P在点B的右侧时:PA=x﹣(﹣5)=x+5,PB=x﹣7,依题意得:x﹣7=3(x+5),解得:x=﹣11,这与点P在点B的右侧(即 x>7)矛盾,故舍去.综上所述,点P所对应的有理数分别是﹣11和﹣2.所以﹣11和﹣2分别是点P运动了第11次和第6次到达的位置.【解析】【分析】(1)由绝对值和平方的非负性可得a与b的值,相减得两点间的距离。

(2)设向左运动记为负数,向右运动记为正数,并在-5的基础上把得到的数据相加即可。

(3)设点P对应的有理数的值为x,分别表示PA和PB的长,列方程求解即可。

(好题)初中数学七年级数学上册第五单元《一元一次方程》检测卷(答案解析)(3)

一、选择题1.在一次数学活动中,小明在某月的日历上圈出了相邻的三个数a ,b ,c ,求出它们的和为36,则这三个数在日历中的排布不可能的是( )A .B .C .D .2.已知关于x 的方程3210x a +-=的解与方程20x a -=的解互为相反数,则a 的值为( )A .14-B .12- C .4 D .2 3.3x =-是下列哪个方程的解( ) A .35210x x -+=+B .123x x -=C .()32x x x +=-D .2633x -+= 4.某超市在“元旦”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠;小敏在该超市两次购物分别付了85元和270元,如果小敏把这两次购物改为一次性购物,则小敏至少需付款( )元A .284B .308C .312D .3205.若9个工人14天完成了一件工作的35,由于任务的需要,剩下的工作要在4天内完成,则需要增加的人数是( )A .14B .13C .12D .116.已知a =b ,则下列变形不一定成立的是( )A .a +n =b +nB .a n =b nC .a 2=b 2D .a b =1 7.已知2n ++(5m -3)2=0,则关于x 的方程10mx +4=3x +n 的解是( ) A .x =23 B .x =-23 C .x =2 D .x =-28.2020年武汉抗击疫情期间,全国各地加班加点为前线医护人员提供防护面罩和防护服.已知某车间有40名工人,每人每天生产防护服160件或防护面罩240个,一件防护服和一个防护面罩配成一套,若分配x 名工人生产防护服,其他工人生产防护面罩,恰好使每天生产的防护服和防护面罩配套,则所列方程是( )A .()16024040x x =-B .()16040240x x -=C .()160240402x =-D .()240160402x x -= 9.如图,在长方形ABCD 中,AB 6cm =,8BC cm =,点E 是AB 上的点,且2AE BE =.点P 从点C 出发,以2/cm s 的速度沿点C D A E ---匀速运动,最终到达点E .设点P 运动时间为ts ,若三角形PCE 的面积为218cm ,则t 的值为( )A .98或194B .194或98或274 C .94或6 D .6或94或274 10.已知4x =是关于x 的方程373ax x -+=的解,则a 的值为( ) A .2 B .3 C .4 D .511.中国古代数学问题:有甲、乙两个牧童,甲对乙说:“把你羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是( )A .()123x x +=-B .122x x -=+C .()122x x +=-D .112x x +-= 12.甲、乙、丙三数之比是2:3:4,甲、乙两数之和比乙、丙两数之和大30,则甲数为( )A .30-B .45-C .15-D .60-二、填空题13.若2752m x y +-与3213n x y -是同类项,则n m 的值为________.14.已知关于x 的方程5x +m =﹣2的解为x =2,则m 的值为_____.15.若|2||3|9x x ++-=,则x 的值为________.16.如图,有一根木棒MN 放置在数轴上,它的两端M 、N 分别落在点A 、B 处.将木棒在数轴上水平移动,当MN 的中点移动到点B 时,点N 所对应的数为175.,当MN 的右三等分点移动到点A 时,点M 所对应的数为4.5,则木棒MN 的长度为_______.17.如图,O 为直线AB 上一点,过点O 作射线OC ,30AOC ∠=︒,将一直角三角板(30M ∠=︒)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周.经过______秒后,OM 恰好评分BOC ∠;若三角板在转动的同时,射线OC 也绕O 点以每秒5°的速度沿顺时针方向旋转一周,如图,那么经过______秒,OC 平分MON ∠?18.李明同学欲购买一件运动服,打七折比打九折少花30元钱,那么这件运动服的原价为__________元.19.甲、乙两站相距300km ,一列慢车从甲站开往乙站,每小时行40km ,一列快车从乙站开往甲站,每小时行80km .已知慢车先行1.5h ,快车再开出,则快车开出______h 与慢车相遇.20.2019年4月4日,中国国际女足锦标赛半决赛在武汉进行,这场由中国队迎战俄罗斯队的比赛牵动着众多足球爱好者的心,在未开始检票入场前,已有1200名足球爱好者排队等待入场,假设检票开始后,每分钟赶来的足球爱好者人数是固定的,1个检票口每分钟可以进入40人,如果4个检票口同时检票,15分钟后排队现象消失;如果7个检票口同时检票,则___________分钟后排队现象消失.三、解答题21.用适当方法解方程(1)12146x x -+= (2)对于任意四个有理数a ,b ,c ,d ,可以组成两个有理数对(),a b 与(),c d .我们规定:()(),,a b c d bc ad =-※.若有理数对()()3,211,17x x --+=※,则x 的值是多少?22.甲、乙二人同时从相距1252千米的A 地去B 地,甲骑车,乙步行.甲每小时的速度比乙每小时的速度的3倍多1千米,甲达到B 地后停留45分,然后从B 地返回A 地,在途中遇见乙,这时距他们出发的时间恰好3小时,求两人的速度各是多少?23.饺子源于古代的角子,饺子原名“娇耳”,一个饺子皮加馅就可以做一个饺子.中国北方还流行一种面食—合子,含有团团圆圆的美好寓意,在两层饺子皮中间加一层馅,就可以包成一个合子.“元旦”这天,妈妈走进书房对正在学习的小刚说;“妈妈刚才在厨房包饺子,结果面和多了,做了106个饺子皮,最后包的饺子和合子一共是98个.”小刚说:“妈妈,我能用学过的数学知识列一元一次方程,求出妈妈包的饺子和合子分别是多少.”请你写出小刚的解答过程.24.越来越多的人在用微信付款、转账,把微信账户里的钱转到银行卡叫做提现,每个微信账户终身享有1000元的免费提现额度,当累计..提现金额超过1000元时,超出的部分需支付0.1%的手续费,以后每次提现支付的手续费均为提现金额的0.1%.(1)小赵使用微信至今,用自己的微信账户共提现两次,提现金额均为1500元,则小赵这两次提现分别需支付手续费多少元?(2)小周使用微信至今,用自己的微信账户共提现三次,若小周第三次提现金额恰好等于前两次提现金额的差,提现手续费如下表,求小周第一次提现的金额.第一次第二次第三次手续费/元0 1.10.225.如图,已知数轴上点A表示的数为-10,点B表示的数为2.动点P从点A出发,以每秒4个单位长度的速度沿数轴向右匀速运动,动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,P、Q同时出发,设运动时间为t(t>0)秒,解答下列问题.(1)数轴上点P表示的数为,点Q表示的数为(用含t的代数式表示);(2)当点P表示的数和点Q表示的数互为相反数时,求t的值;(3)点P追上点Q时,求t的值;(4)若点B恰好是线段PQ的3等分点时,t的值为.26.某景区门票上绘制了简易游览图(如图),从游客中心到观景台有1km山路,从观景台到山顶有2km山路,圆圆同学从导游口中得知:离观景台500m处有一个凉亭,离凉亭200m处有一个小卖部.(1)圆圆同学把这张图中的游览线路抽象成一条数轴,其中游客中心是原点,往山顶方向为正方向,1km为1个单位长度,请在数轴上标出小卖部P所有可能的位置,并用数字表示出来.(2)圆圆同学上山时从游客中心到山顶共用了h小时,下山时从山顶到游客中心的平均速度为v千米/小时,求圆圆同学上山、下山全程的平均速度(用含h和v的代数式表示).(3)若凉亭在观景台到山顶的途中,方方同学上午8:00从游客中心出发匀速上山,于8:40到达观景台,在观景台停留30分钟后,以同样的速度继续上山,途中又在凉亭休息了15分钟,到山顶游玩了35分钟后下山(下山途中不再停留),为了在下午13:00准时回到游客中心,方方同学下山的速度比上山的速度快%a,求a的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.根据题意可列方程求解.【详解】解:A、设最小的数是x.x+x+7+x+14=36,x=5.故本选项不合题意;B、设最小的数是x.x+x+6+x+7=36,x=233,故本选项错误符合题意;C、设最小的数是x.x+x+7+x+8=36,x=7,故本选项不合题意;D、设最小的数是x.x+x+8+x+16=36,x=4,本选项不合题意.故选择:B.【点睛】本题考查用字母表示数,列代数式,列方程解应用题,掌握用字母表示数,列代数式的方法,列方程解应用题方法与步骤是解题关键.2.A解析:A【分析】先求出第二个方程的解,根据相反数得出第一个方程的解是x=−2a,把x=−2a代入第一个方程,再求出a即可.【详解】解:解方程x−2a=0得:x=2a,∵方程3x+2a−1=0的解与方程x−2a=0的解互为相反数,∴3(−2a)+2a−1=0,解得:a=14 -.故选A【点睛】本题考查了解一元一次方程、一元一次方程的解和相反数,能得出关于a的一元一次方程是解此题的关键.3.B解析:B【分析】根据方程的解的定义,把x=-3代入方程进行检验即可.【详解】解:A、把3x=-代入方程,左边=14,右边=4,左边≠右边,故不符合题意;B、把3x=-代入方程,左边=-3,右边=-3,左边=右边,故符合题意;C、把3x=-代入方程,左边=0,右边=6,左边≠右边,故不符合题意;D、把3x=-代入方程,左边=4,右边=3,左边≠右边,故不符合题意.故选:B.【点睛】本题主要考查了方程解的定义,解题关键是将x的值代入方程左右两边进行验证.4.B解析:B【分析】设第一次购物购买商品的价格为x元,第二次购物购买商品的价格为y元,分0<x<100及100≤x<350两种情况可得出关于x的一元一次方程,解之可求出x的值,由第二次购物付款金额=0.9×第二次购物购买商品的价格可得出关于y的一元一次方程,解之可求出y 值,再利用两次购物合并为一次购物需付款金额=0.8×两次购物购买商品的价格之和,即可求出结论.【详解】解:设第一次购物购买商品的价格为x元,第二次购物购买商品的价格为y元,当0<x<100时,x=85;当100≤x<350时,0.9x=85,解得:8509x=(不符合题意,舍去);∴85x=;当100≤y<350时,则0.9y=270,∴y=300.当y>350时,0.8y=270,∴y=337.5(不符合题意,舍去);∴300y=;∴0.8(85300)308⨯+=(元).∴小敏至少需付款308元.故选:B .【点睛】此题主要考查了一元一次方程的应用,解题关键是第一次购物的90元可能有两种情况,需要讨论清楚.本题要注意不同情况的不同算法,要考虑到各种情况,不要丢掉任何一种. 5.C解析:C【分析】设剩下的工作要在4天内完成,需要增加的人数是x 人,根据工程问题的数量关系:一个人的工作效率×增加后的总人数×时间4天=135-,建立方程求出其解即可. 【详解】解:设剩下的工作要在4天内完成,需要增加的人数是x 人,由题意,得3391449155x ÷÷⨯⨯+=-()() , 解得:x=12.故选:C .【点睛】本题考查了列一元一次方程解实际问题的运用,工程问题的数量关系的运用,解答时根据工程问题的数量关系建立方程是关键.6.D解析:D【分析】分别利用等式的基本性质,判断得出即可.【详解】解:解:A 、当a =b 时,两边同时加上n ,该等式仍然成立;B 、当a =b 时,a n =b n ,该等式仍然成立;C 、当a =b 时,a 2=b 2,该等式仍然成立;D 、当a =b ,b=0时,a b 无意义,所以a b=1不成立; 故选:D .【点睛】此题主要考查了等式的基本性质,熟练掌握性质1、等式两边加同一个数(或整式)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数(或整式),结果仍得等式是解题关键. 7.D解析:D【分析】利用非负数的性质,求出m 与n 的值,代入方程1043mx x n +=+,解方程即可求解.【详解】()22530n m ++-=, 20n ∴+=,530m -=,2n ∴=-,35m =, 将2n =-,35m =代入方程1043mx x n +=+, 得3104325x x ⨯+=-, ∴36x =-,∴2x =-,故选:D .【点睛】本题考查了绝对值的非负性,及解一元一次方程,准确求解出参数是解题关键. 8.A解析:A【分析】若分配x 名工人生产防护服,根据“某车间有40名工人,每人每天生产防护服160件或防护面罩240个,一件防护服和一个防护面罩配成一套”列出方程.【详解】解:设分配x 名工人生产防护服,则分配(40−x )人生产防护面罩,根据题意,得160x =240(40−x ).故选:A .【点睛】本题主要考查了由实际问题抽象出一元一次方程,解题的关键是找到等量关系. 9.C解析:C【分析】分为三种情况讨论,当点P 在CD 上,即0<t≤3时,根据三角形的面积公式建立方程求出其解即可;当点P 在AD 上,即3<t≤7时,由S △PCE =S 四边形ABCD −S △CDP −S △APE −S △BCE 建立方程求出其解即可;当点P 在AE 上,即7<t≤9时,由S △PCE =12PE•BC =18建立方程求出其解即可.【详解】解:设点P 运动的时间为ts .∵AB 6cm =,2AE BE =∴AE=4cm ,BE=2cm如图,当0<t≤3时,S △PCE =12×2t×8=18,解得t =94(s ); 如图,当3<t≤7时,S △PCE =40−S △CDP −S △APE −S △BCE =48−12×6×(2t-6)−12×4×(14-2t )−12×8×2=18 解之得:t =6(s );如图,当7<t≤9时,S △PCE =12×8×(18−2t )=18, 解得t =274(s ). ∵274<7, ∴t =274应舍去 综上,当t =94s 或6s 时,△PCE 的面积等于18cm 2. 故选C .【点睛】 本题考查了一元一次方程的应用,解题的关键是熟知矩形的性质的运用,三角形的面积公式的运用,根据题意找到数量关系列方程求解.10.A解析:A【分析】把4x =代入方程,转化为关于a的一元一次方程求解可.【详解】∵4x =是关于x 的方程373ax x -+=的解,∴41273a -+=,解得a=2,故选A .【点睛】本题考查了一元一次方程的解的定义,一元一次方程的解法,熟练利用方程解的定义代入转化为所求字母的一元一次方程是求解的关键.11.A解析:A【分析】根据甲的话可得乙羊数的关系式,根据乙的话得到等量关系即可.【详解】解:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x 只羊, ∴乙有12x ++1只, ∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”, ∴12x ++1+1=x-1,即x+1=2(x-3) 故选:A .【点睛】 考查列一元一次方程;得到乙的羊数的关系式是解决本题的难点.12.A解析:A【分析】设甲数是2x ,则乙数是3x ,丙数是4x ,列出方程,解方程求得x 的值即可.【详解】解:设甲数是2x ,则乙数是3x ,丙数是4x ,则2x+3x-(3x+4x )=30解得x=-15.故2x=-30,3x=-45,4x=-60.即甲、乙、丙分别为-30、-45、-60.故选:A .【点睛】考查了一元一次方程的应用,难度不大,关键是根据题意恰当的设未知数,列出方程.二、填空题13.-8【分析】根据同类项定义得到2m+7=32n-1=5解方程求出m 及n 的值代入计算即可【详解】解:由题意得2m+7=32n-1=5解得:m=-2n=3∴故答案为:-8【点睛】此题考查同类项的定义解一解析:-8【分析】根据同类项定义得到2m+7=3,2n-1=5,解方程求出m 及n 的值代入计算即可.【详解】解:由题意得2m+7=3,2n-1=5,解得:m=-2,n=3,∴3(2)8n m =-=-,故答案为:-8.【点睛】此题考查同类项的定义,解一元一次方程,有理数的乘方运算,正确掌握同类项的定义列得方程是解题的关键.14.-12【分析】把x =2代入方程得出一个关于m 的方程求出方程的解即可【详解】解:把x =2代入方程5x+m =﹣2得:10+m =﹣2解得:m =﹣12故答案为:﹣12【点睛】本题考查了解一元一次方程和一元一解析:-12【分析】把x =2代入方程,得出一个关于m 的方程,求出方程的解即可.【详解】解:把x =2代入方程5x +m =﹣2得:10+m =﹣2,解得:m =﹣12,故答案为:﹣12.【点睛】本题考查了解一元一次方程和一元一次方程的解,能得出关于m 的方程是解此题的关键. 15.或5【分析】根据绝对值的意义及数轴上两点间的距离分析求解【详解】解:表示数轴上x 表示的点到-2的距离;表示数轴上x 表示的点到3的距离∵3-(-2)=5且∴x <-2或x >3当x <-2时解得:当x >3时解析:4-或5【分析】根据绝对值的意义及数轴上两点间的距离分析求解.【详解】解:|2|x +表示数轴上x 表示的点到-2的距离;|3|x -表示数轴上x 表示的点到3的距离 ∵3-(-2)=5且|2||3|9x x ++-=∴x <-2或x >3当x <-2时,|2||3|9x x ++-=239x x ---+=,解得:4x =-当x >3时,|2||3|9x x ++-=239x x ++-=,解得:5x =综上,x 的值为-4或5故答案为:-4或5.【点睛】本题考查一元一次方程的应用,根据数轴上两点间的距离数形结合思想解题是关键.16.【分析】如图为的中点为的三等分点设再利用线段的和差关系表示结合题意可得对应的数为对应的数为再求解从而可列方程求解于是可得的长【详解】解:如图为的中点为的三等分点设由题意得:对应的数为对应的数为故答案 解析:6.【分析】如图,G 为AB 的中点,,F P 为AB 的三等分点,设3,MN AB x == 再利用线段的和差关系表示11AM BN ,,结合题意可得1M 对应的数为4.5,1N 对应的数为17.5, 再求解11M N , 从而可列方程求解x ,于是可得MN 的长.【详解】解:如图,G 为AB 的中点,,F P 为AB 的三等分点,设3,MN AB x ==由题意得:1 1.5,AG BG BN x === ,AF FP PB x === 12,AM x =1123 1.5 6.5,M N x x x x ∴=++=1M 对应的数为4.5,1N 对应的数为17.5,1117.5 4.513M N ∴=-=,6.513,x ∴=2,x ∴=3 6.MN x ∴==故答案为:6.【点睛】本题考查的是线段的中点,线段的三等分点的含义,数轴上两点之间的距离,数轴上动点问题,一元一次方程的应用,掌握以上知识是解题的关键.17.【分析】①根据角平分线的定义计算即可;②根据题意先求出∠NOC=45°然后设∠AON=3t ∠AOC=30+5t 根据∠AOC ∠AON=∠CON 构建方程即可解决问题;【详解】解:①如图2中∵∠AOC=3解析:7.5【分析】①根据角平分线的定义计算即可;②根据题意,先求出∠NOC=45°,然后设∠AON=3t ,∠AOC=30+5t ,根据∠AOC -∠AON=∠CON ,构建方程即可解决问题;【详解】解:①如图2中,∵∠AOC=30°,∴∠BOC=180°-∠AOC=150°,∵OM 平分∠BOC ,∴∠COM=∠BOM=12∠BOC=75°, ∠AON=180°-90°-75°=15°,∴1553︒=︒s , 故答案为:5;②根据题意,如图:OC 平分∠MON ;∵∠MON=90°,∴∠NOC=1902⨯︒=45°, ∴45NOC AOC AON ∠=∠-∠=︒,∵三角板绕点O 以每秒3°的速度,射线OC 也绕O 点以每秒5°的速度旋转,设∠AON 为3t ,∠AOC 为30°+5t ,∴305345t t ︒+-=︒,解得:7.5t =,∴那么经过7.5秒,OC 平分MON ∠.故答案为:7.5.【点睛】此题考查了角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.18.150【分析】等量关系为:打九折的售价-打七折的售价=30根据这个等量关系可列出方程再求解【详解】解:设这件运动服的原价为x 元由题意得:09x-07x=30解得x=150故这件运动服的原价是150元解析:150【分析】等量关系为:打九折的售价-打七折的售价=30.根据这个等量关系,可列出方程,再求解.【详解】解:设这件运动服的原价为x元,由题意得:0.9x-0.7x=30,解得x=150.故这件运动服的原价是150元.故答案为:150.【点睛】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.19.2【分析】根据相遇时慢车行驶的总路程与快车行驶的总路程的和等于300列方程求解即可【详解】设快车开出x小时两车相遇根据题意得40×15+40x+80x=300解得x=2故填2【点睛】本题考查了一元一解析:2【分析】根据相遇时,慢车行驶的总路程与快车行驶的总路程的和等于300,列方程求解即可.【详解】设快车开出x小时,两车相遇,根据题意,得 40×1.5+40x+80x=300,解得x=2,故填2.【点睛】本题考查了一元一次方程应用中的相遇问题,把握相遇时的等时性是解题的关键. 20.【分析】设每分钟赶来的足球爱好者人数为人由4个检票口同时检票15分钟后排队现象消失列出方程可求每分钟赶来的足球爱好者人数再设7个检票口同时检票分钟排队现象消失列出方程可求解【详解】设每分钟赶来的足球解析:【分析】设每分钟赶来的足球爱好者人数为x人,由4个检票口同时检票,15分钟后排队现象消失,列出方程,可求每分钟赶来的足球爱好者人数,再设7个检票口同时检票,y分钟排队现象消失,列出方程,可求解.【详解】设每分钟赶来的足球爱好者人数为x人,x+=⨯⨯,由题意可得:151********x=,∴80∴每分钟赶来的足球爱好者人数为80人,设7个检票口同时检票,y 分钟排队现象消失,由题意可得:801200740y y +=⨯⨯,∴6y =,答:7个检票口同时检票,6分钟排队现象消失,故答案为:6.【点睛】本题考查了一元一次方程的应用,找出等量关系列出正确的方程是本题的关键.三、解答题21.(1)-5;(2)1;【分析】(1)先去分母,然后去括号,移项,合并同类项,系数化为1即可求解;(2)根据题意()()a b c d bc ad =-,※,,将()()32111x x --+,※,直接代入求值即可;【详解】(1)12146x x -+= 去分母得:()()31221x x -=+ ,去括号得:3342x x -=+ ,移项得:3423x x -=+ ,解得:x=-5(2)∵()()a b c d bc ad =-,※, ,()()()32111213121337x x x x x x --+=-++=-++=,※, , ∴ 1x = .【点睛】本题考查了解一元一次方程,解方程注意去分母时各项都乘以各分母的最小公倍数. 22.甲的速度为16千米/小时,乙的速度是5千米/小时【分析】设乙的速度是x 千米/小时,则甲的速度为(3x+1)千米/小时,根据二人行走路程之和为A 、B 两地路程的二倍列出方程,解方程即可.【详解】解:设乙的速度是x 千米/小时,则甲的速度为(3x+1)千米/小时,由题意得 ()451313+3=252602x x ⎛⎫+-⨯ ⎪⎝⎭, 解得 x=5,3x+1=16,答:甲的速度为16千米/小时,乙的速度是5千米/小时.本题考查了一元一次方程的应用,理解题意,找到等量关系是解题关键.23.妈妈包的饺子和合子分别是90个和8个【分析】设妈妈包了x 个饺子,则合子为()98x -个,结合题意列一元一次方程并求解,即可得到答案.【详解】设妈妈包了x 个饺子,则合子为()98x -个根据题意得:()298106x x +-=∴90x =∴9898908x -=-=∴妈妈包的饺子和合子分别是90个和8个.【点睛】本题考查了一元一次方程的知识;解题的关键是熟练掌握一元一次方程的性质,并运用到实际生活中,从而完成求解.24.(1)第一次需手续费0.5元,第二次需手续费1.5元;(2)第一次提现950元.【分析】(1)第一次:手续费=(提现金额-1000)×0.1%,第二次:手续费=提现金额×0.1%,计算即可求出结果;(2)根据表格中的数据结合所收手续费为超出金额的0.1%,可知第一次必定小于1000元,第二次部分需要手续费,设第一次提现x 元,可表示第二次提现金额和计算出第三次提现金额,根据第三次提现金额恰好等于前两次提现金额的差列出方程求解即可.【详解】解:(1)第一次: (1500-1000)×0.1%=0.5(元);第二次:1500×0.1%=1.5元,故第一次需手续费0.5元,第二次需手续费1.5元;(2)超过1000元的部分才有手续费,而第一次没有手续费,那必定小于1000元,则第二次部分需要手续费,设第一次提现x 元,∵第二次手续费为1.1元,∴超过1000元的部分为 1.111000.1%=元, ∴第二次提110010002100x x +-=-()元, 第三次提现金额为:0.2=2000.1%元, 由题意可知 2100200x x --=,解得x=950,所以,第一次提现950元.本题考查一元一次方程的应用.找准等量关系,正确列出方程是解题关键.25.(1)104t -+,22t +;(2)43t =;(3)6t =;(4) 1.5, 2.4t t == 【分析】(1)根据数轴上两点间的距离,在结合路程=速度⨯时间,即可解答(2)根据相反数的定义,在结合(1)的结论列方程即可(3)根据题意列方程求解即可(4)根据题意列方程求解即可【详解】解:(1)数轴上点P 表示的数为:104t -+;点Q 表示的数为:22t +(2)由题意得()()104220t t -+++= 解得43t =即43t =时,点P 表示的数和点Q 表示的数互为相反数 (3)由题意得42210t t =++-解得6t =即当点P 追上点Q 时,6t =(4)由题意得:()()()22104221043t t t --+=+--+⎡⎤⎣⎦或()()()12104221043t t t --+=+--+⎡⎤⎣⎦ 解得: 1.5t =或 2.4t =【点睛】本题考查了数轴,一元一次方程的应用,解题关键是要读懂题意,根据题目给出的条件,找出合适等量关系流出方程,在求解.26.(1)答案见解析;(2)63h v+千米/小时;(3)20a = 【分析】(1)凉亭可在观景台的左边,也可在观景台的右边,小卖部可在凉亭的左边,也可在凉亭的右边,由此标出小卖部P 所有可能的位置;(2)根据路程、速度、时间的关系即可求解;(3)根据路程、速度、时间的关系表示出方方同学上山实际时间,计算出下山前总花费时间从而得出下山的时间,根据路程相等列出方程,解方程即可.【详解】解:(1)设Q 表示凉亭的位置,凉亭可在观景台的左边,也可在观景台的右边,则1Q 可用数字0.5表示,2Q可用数字1.5表示,小卖部可在凉亭的左边,也可在凉亭的右边,小卖部P所有可能的位置,1P可用数字0.3表示,2P可用数字0.7表示,3P可用数字1.3表示,4P可用数字1.7表示,如图,;(2)圆圆下山用了3v小时,全程的平均速度为63hv+千米/小时.(3)上山实际时间:403=120⨯(分),下山前总花费时间:120+30+15+35=200(分),上午8:00到下午13:00共300分,300200100-=(分).设上山的速度是v千米/小时,根据题意得()1201001%v a v=+,解得20a=.【点睛】本题考查数轴表示数的意义和方法,两点间的距离,列代数式,一元一个方程的应用,需要注意到点的距离等于某一个数的点可以在这个点的左边,也可以在这个点的右边,这是本题容易出错的地方.。

【精选】人教版数学七年级上册第三章一元一次方程单元测试卷.docx

第三章一元一次方程单元测试卷(时间:45分钟,满分:100分)一、选择题(每小题4分,共32分)1.下列方程中是一元一次方程的是()A.x+3=y+2B.x+3=3-xC.=1D.x2-1=02.方程3x-1=5的解是()A.x=B.x=C.x=18D.x=23.下列方程变形中,正确的是()A.方程3x-2=2x+1,移项,得3x-2x=-1+2B.方程3-x=2-5(x-1),去括号,得3-x=2-5x-1C.方程t=,未知数系数化为1,得t=1D.方程-=1化成3x=64.日历中同一竖列相邻三个数的和不可能是()A.78B.26C.21D.455.方程-x=-+1去分母得()A.3(2x+3)-x=2(9x-5)+6B.3(2x+3)-6x=2(9x-5)+1C.3(2x+3)-x=2(9x-5)+1D.3(2x+3)-6x=2(9x-5)+66.如图①,天平呈平衡状态,其中左侧盘中有一袋玻璃球,右侧盘中也有一袋玻璃球,还有2个各20 g的砝码.现将左侧袋中一颗玻璃球移至右侧盘,并拿走右侧盘中的1个砝码,天平仍呈平衡状态,如图②.则移动的玻璃球质量为()A.10 gB.15 gC.20 gD.25 g7.若“☆”是新规定的某种运算符号,设x☆y=xy+x+y,则2☆m=-16中,m的值为()A.8B.-8C.6D.-68.铜仁市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5 m栽1棵,则树苗缺21棵;如果每隔6 m栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是()A.5(x+21-1)=6(x-1)B.5(x+21)=6(x-1)C.5(x+21-1)=6xD.5(x+21)=6x二、填空题(每小题4分,共16分)9.已知x=2是关于x的方程ax-5x-6=0的解,则a=.10.已知|x+1|+(y+3)2=0,则(x+y)2的值是.11.当m=时,单项式x2m-1y2与-8x m+3y2是同类项.12.将一个底面半径为6 cm,高为40 cm的“瘦长”的圆柱钢材压成底面半径为12 cm的“矮胖”的圆柱形零件,则它的高变成了cm.三、解答题(共52分)13.(16分)解下列方程:(1)---1;(2)-=0.5.14.(8分)当m为何值时,式子2m--的值与式子-的值的和等于5?15.(8分)一架飞机在两个城市之间飞行,风速为24千米/时,顺风飞行要2小时50分,逆风飞行要3小时,求飞机在静风中的速度.16.(10分)某地为了打造风光带,将一段长为360 m的河道整治任务由甲、乙两个工程队先后接力完成,共用时20天,已知甲工程队每天整治24 m,乙工程队每天整治16 m.求甲、乙两个工程队分别整治了多长的河道?17.(10分)某市为促进节约用水,提高用水效率,建设节水型城市,将自来水划分为“家居用水”和“非家居用水”.根据新规定,“家居用水”用水量不超过6 t,按每吨1.2元收费;如果超过6 t,未超过部分仍按每吨1.2元收费,而超过部分则按每吨2元收费.如果某用户5月份水费平均为每吨1.4元,那么该用户5月份应交水费多少元?参考答案一、选择题1.B判断方程是否为一元一次方程,只需两步:(1)判断是否是方程;(2)对方程化简,化简后判断是否只含有一个未知数(元),并且未知数的最高次数是1次.2.D3.D4.B日历中同一竖列相邻三个数的和必须是3的倍数,所以不可能是26.5.D6.A7.D根据题意,得2☆m=2m+2+m=-16,3m=-18,m=-6.8.A设原有树苗x棵,由题意得5(x+21-1)=6(x-1).故选A.二、填空题9.810.16根据绝对值和平方的非负性,可知x+1=0,且y+3=0,解得x=-1,y=-3,所以(x+y)2=16.11.4根据同类项的定义,相同字母的指数相同,得2m-1=m+3,解得m=4.12.10设高变成了x cm,根据题意,得π×122×x=π×62×40,解得x=10.所以圆柱的高变成了10cm.三、解答题13.解:(1)去分母,得4(2x-1)-2(10x-1)=3(2x+1)-12.去括号,得8x-4-20x+2=6x+3-12,移项、合并同类项,得-18x=-7.系数化为1,得x=.(2)原方程可化为-=0.5,即-=0.5.去分母,得5x-(1.5-x)=1,去括号,得5x-1.5+x=1,移项,合并同类项,得6x=2.5,系数化为1,得x=.14.解:根据题意,得2m---=5.解这个方程,得m=-7.所以当m=-7时,式子2m--的值与式子-的值的和等于5.15.解:设飞机在静风中的速度为x千米/时,则(x+24)×2=(x-24)×3,x=840.答:飞机在静风中的速度是840千米/时.16.解:设甲工程队整治河道x m,则乙工程队整治河道(360-x)m.依题意,得-=20.解得x=120.当x=120时,360-x=240.答:甲工程队整治河道120m,则乙工程队整治河道240m.17.解:设该用户5月份用水x t,根据题意,得1.4x=6×1.2+2(x-6).解这个方程,得x=8.所以8×1.4=11.2(元).答:该用户5月份应交水费11.2元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

马鸣风萧萧
马鸣风萧萧
《一元一次方程》专项测验——列方程解应用题

1.已知某水池有进水管和出水管各一根,进水管单独工作15小时可以将空水池放满,
出水管单独工作24小时可以将满池的水放完;对于空的水池,如果进水管先打开2小时,
再同时打开两管,问注满水池还需要多少时间?

2.某服装厂要生产某种型号的学生校服,已知3m长的某种布料可做上衣2件或裤子3条,
一件上衣和一条裤子为一套,库内存这种布料600m,应如何分配布料做上衣和做裤子才能
恰好配套?共能做多少套?

3.某校学生在礼堂开联欢会,如果每3人坐一条长凳,则有一条长凳上少坐了1人;如
果每5人坐一条长凳,则有一条长凳上只坐了3人,另外还空余9条长凳。礼堂里有多
少条长凳?参加联欢会的有多少名学生?

4.某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元;而按定价的九
折出售将赚20元。问这种商品的定价是多少?

5.工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺
品8件与将标价降低35元销售该工艺品12件所获利润相等.该工艺品每件的进价、标价
马鸣风萧萧
马鸣风萧萧
分别是多少元?
6.已知甲、乙两人骑自行车,同时从相距64千米的两地相向而行,如果甲的速度为10
千米/时,乙的速度为6千米/时,经过多长时间,两人相距32千米?

7.某船由A地顺流而下到B地,然后按原路逆流而上到A、B两地之间的C地,共用7
小时,已知船在静水中的速度是8千米/时,水流速度是2千米/时.A、C两地相距10千
米,求A、B两地的距离。

8.一架飞机飞行在两个城市之间,风速为24千米/时. 顺风飞行需要2小时50分,逆
风飞行需要3小时. 求飞机在无风时的速度及两城之间的飞行路程.

9.两列迎面行驶的火车,A列速度为20米每秒,B列速度为25米每秒,若A列车长
200米,B列车长160米,则两车错车的时间是几秒?

10.从甲地到乙地,先下山然后走平路,某人骑自行车从甲地以每小时12千米的速度下
山,而以每小时9千米的速度通过平路,到乙地用55分钟,他回来,以每小时8千米的
速度上山,回到甲地用1小时10分钟,求甲、乙两地距离多远?
马鸣风萧萧
马鸣风萧萧
初中数学试卷
马鸣风萧萧

相关文档
最新文档