第五章 船舶强度
船舶强度.

第五章船舶强度1. ,则其扭转强度越差。
A 船越长B 船越宽C 船越大D 甲板开口越大2.船首尾端所受的总纵弯曲力矩,所受的局部作用力。
A 较小,较小B 较大,较大C 较小,较大D 较大,较小3.船体发生纵向弯曲变形和破坏是由于。
A 局部强度不足B 总纵弯曲强度不足C 横向强度不足D 扭转强度不足4.船体中拱时,甲板受到,船底受到。
A 拉应力;拉应力B 压应力;压应力C 拉应力;压应力D 压应力;拉应力5.各层甲板中强度最大的一层甲板是。
A 平台甲板B 艇甲板C 起居甲板D 强力甲板6.加强船舶首尾端结构,是为了提高船体的。
A 总纵强度B 横向强度C 扭转强度D 局部强度7.同一层甲板中强度最大的区域是。
A 首端B 尾端C 首尾两端D 船中前后8.同一船舶,甲板所受的总纵弯曲应力比船底所受的弯曲应力。
A 大B 小C 一样D 大小不定9.尾机船不满足纵向强度的主要危险在于其压载营运状态,这时船舶处于。
A 中垂B 中拱C 中垂或中拱D 中垂中拱不存在10.尾机型船最适宜于。
A 客船B 油轮C 高速船D 客货船11.下述船舶营运状态中会产生中拱变形。
A 中机型船轻载,波峰在船中B 中机型船满载,波谷在船中C 尾机型船,首尖舱加压载,波峰在船中D A,B,C均会产生12.中机型船比尾机型船容易调整。
A 载货量B 稳性C 吃水差D 强度13.中机型货船满载航行遇到波浪时,可能会发生最大的A 中拱弯曲变形B 中垂弯曲变形C 扭曲变形D 严重振动14.重力与浮力之差在纵向上的分布称为。
A 重力曲线B 载荷曲线C 切力曲线D 弯矩曲线15.船舶纵向强度是指船舶结构抵抗。
A 船体沿船宽方向发生损坏及变形的能力B 各层甲板沿船长方向发生扭曲变形的能力C 船体沿船长方向产生剪切及弯曲变形的能力D 载荷和水压力作用保持不损坏和不发生很大变形的能力16.船舶发生中拱变形时。
A 中部浮力小于重力,首尾部重力大于浮力B 中部浮力小于重力,首尾部重力小于浮力C 中部浮力大于重力,首尾部重力大于浮力D 中部浮力大于重力,首尾部重力小于浮力17.船舶轻载时,主要考虑船体的。
船舶强度

' MS M' 船舶在实际装载状态下静水弯矩 S ,根据下列近似公式计算:
2)船舶在实际装载状态下静水弯矩
(5-4) 式中:△o——空船重量,t; m ——空船重量的相当力臂,m:中机船 m = 0.2277 Lbp; 中后机船 m = 0.2353 Lbp; 尾机船 m = 0.2478 Lbp; Pi ——载荷(包括货物、压载、燃油、淡水、粮食等)的重量,t; Xi ——载荷重心距船中距离的绝对值,m; △——船舶在计算状态时的排水量,t; C——船体浮力的相当力臂系数,可根据船舶在计算状态的方形系数Cb 从规范中查 得。如表 5-3;Lbp 为船舶垂线间长,m。 公式(5-4)中,9.81(△0· m + ΣPiXi)为船舶的重量力矩;9.81△·C·Lbp 为船 体的浮力矩,该数值可在船舶资料中查取,如表 5-4。 表 5-3 C 值表
图 5-3 船舶的最大剪力与最大弯矩
由于弯矩作用使船舶产生两种变形: 1.中拱(Hogging) :船体受正弯矩作用,中部上拱,这时船中部浮力大于重力,首、尾
部浮力小于重力,船舶上甲板受拉伸,船底受挤压。如图 5-4a 2.中垂(Sagging) :船体受负弯矩作用,中部下垂,这时船中部重力大于浮力,首、尾 部重力小于浮力,船舶上甲板受挤压,船底受拉伸。如图 5-4b
第一节
船舶强度基本概念
船舶结构抵抗船体发生极限变形和损坏的能力称为船舶强度(Strength of ships) 。船舶 强度分为总强度(包括纵向强度,横向强度,扭转强度)和局部强度。从船舶积载角度来说, 主要考虑船舶的纵向强度和局部强度问题。 船舶强度是否满足要求, 取决于船体结构尺度的 正确选择和船上载荷分布的合理性。 对于已投入营运的船舶, 只能通过合理的载荷分布来改 善船舶的受力情况。因此,正确地使用船舶,合理地分布载荷,保证船舶积载满足船舶的强 度要求,对保证船舶安全运输和延长船舶的使用寿命都具有重要的现实意义。 一、纵向强度 船体结构抵抗总纵弯曲或破坏的能力称为船体纵向强度(Longitudinal strength) ,纵向 强度主要研究船体在外力作用下抵抗纵向弯曲、剪切和扭转的能力。当船舶正浮时,船舶总 的重力与总浮力大小相等,方向相反,作用在同一条垂直线上,即重力与浮力相平衡。如图 5-1 所示。
船舶强度与设计名词解释

船舶强度与设计名词解释引起船体梁总纵弯曲的外力计算总纵弯曲:船体梁在外力的作用下沿其纵向铅垂面内所发生的弯曲总纵强度:船体梁抵抗总纵弯曲的能力波浪剪力:完全是由波浪产生的附加浮力引起的附加剪力重量曲线:船舶在某一计算状态下,描述船体重量沿船长分布的曲线不变重量:即空船重量,包括船体结构、舾装设备、机电设备等各项固定重量变动重量:即装载重量,包括货物、燃油、淡水、旅客压载等各项可变重量总体性重量:即沿船体梁全长分布的重量,包括主体结构、油漆、索具等局部性重量:沿船长某一区段分布的重量,包括货物、燃油、机电设备等浮力曲线:船舶在某一装载时,描述浮力沿船长分布状况的曲线载荷曲线:引起船体梁总纵弯曲的载荷沿船长分布状况的曲线静水剪力曲线:船体梁在静水中所受到的剪力沿船长分布状况的曲线计算状态:在总纵强度计算中为确定最大弯矩所选取的船舶典型装载状态波浪要素:包括波形、波长与波高坦谷波:波峰陡峭、波谷平坦,波浪轴线上下的剖面积不相等的波史密斯修正:考虑波浪动力压力影响对浮力曲线所做的修正总纵弯矩:船舶在同一计算状态下,静水弯矩和静波浪弯矩的代数和重量的分布原则:遵循静力等效原则。
保持重量的大小不变;保持重量的重心的纵向坐标不变;近似分布曲线的范围与该项重量的实际分布范围相同或大体相同重量曲线绘制的方法与原理?梯形法:船舶往往中部丰满,两端尖瘦,可以将平行中体部分用均匀的重量分布,两端部分用两个梯形分布,根据重量分布原则确定梯形要素围长法:假设船体结构单位长度的重量与该横剖面围长(包括甲板)成比例。
该方法适用于船舶主体结构重量的分布库尔求莫夫法:用特定的阶梯型分布曲线来表示船体重量的分布装载曲线、剪力曲线、弯矩曲线的特征:首尾端点处的剪力和弯矩为零,亦即剪力和弯矩曲线在端点处封闭零载荷点与剪力的极值相对应,零剪力点与弯矩的极值相对应剪力曲线大致是反对称的,零点在靠近船中的某处,而在离首尾约船长的1/4 处具有最大正值或负值弯矩曲线在两端的斜率为零,最大弯矩一般在船中0.4倍船长范围内载荷曲线特点:与坐标轴之间所围面积之和等于零;该面积对纵轴上任一点惯性矩为零。
船舶强度与设计名词解释

船舶强度与设计名词解释引起船体梁总纵弯曲的外力计算总纵弯曲:船体梁在外力的作用下沿其纵向铅垂面内所发生的弯曲总纵强度:船体梁抵抗总纵弯曲的能力波浪剪力:完全是由波浪产生的附加浮力引起的附加剪力重量曲线:船舶在某一计算状态下,描述船体重量沿船长分布的曲线不变重量:即空船重量,包括船体结构、舾装设备、机电设备等各项固定重量变动重量:即装载重量,包括货物、燃油、淡水、旅客压载等各项可变重量总体性重量:即沿船体梁全长分布的重量,包括主体结构、油漆、索具等局部性重量:沿船长某一区段分布的重量,包括货物、燃油、机电设备等浮力曲线:船舶在某一装载时,描述浮力沿船长分布状况的曲线载荷曲线:引起船体梁总纵弯曲的载荷沿船长分布状况的曲线静水剪力曲线:船体梁在静水中所受到的剪力沿船长分布状况的曲线计算状态:在总纵强度计算中为确定最大弯矩所选取的船舶典型装载状态波浪要素:包括波形、波长与波高坦谷波:波峰陡峭、波谷平坦,波浪轴线上下的剖面积不相等的波史密斯修正:考虑波浪动力压力影响对浮力曲线所做的修正总纵弯矩:船舶在同一计算状态下,静水弯矩和静波浪弯矩的代数和重量的分布原则:遵循静力等效原则。
保持重量的大小不变;保持重量的重心的纵向坐标不变;近似分布曲线的范围与该项重量的实际分布范围相同或大体相同重量曲线绘制的方法与原理?梯形法:船舶往往中部丰满,两端尖瘦,可以将平行中体部分用均匀的重量分布,两端部分用两个梯形分布,根据重量分布原则确定梯形要素围长法:假设船体结构单位长度的重量与该横剖面围长(包括甲板)成比例。
该方法适用于船舶主体结构重量的分布库尔求莫夫法:用特定的阶梯型分布曲线来表示船体重量的分布装载曲线、剪力曲线、弯矩曲线的特征:首尾端点处的剪力和弯矩为零,亦即剪力和弯矩曲线在端点处封闭零载荷点与剪力的极值相对应,零剪力点与弯矩的极值相对应剪力曲线大致是反对称的,零点在靠近船中的某处,而在离首尾约船长的1/4 处具有最大正值或负值弯矩曲线在两端的斜率为零,最大弯矩一般在船中0.4倍船长范围内载荷曲线特点:与坐标轴之间所围面积之和等于零;该面积对纵轴上任一点惯性矩为零。
海上货物运输课件——保证满足船体的强度条件

(3)如果该点落在中间点划线与下侧虚线之间, 船舶呈中垂变形,但变形程度较空船时小,船舶处 于有利的中垂变形状态;
(4)如果该点落在上侧虚线与上侧实线之间,船 舶呈中拱变形,变形程度较空船时大,但较临界状 态小,船舶处于允许的中拱变形状态;
一、船体的总纵强度概述 1、船体纵向受力分析
一、船体的总纵强度概述
2、船体所受的负荷、切力和弯矩
(1)负荷—单位长度的船体所受
的重力和浮力的差值,用负荷分
布密度函数f(x)表示。
(2)切力(Shear force)—船体
横剖面两侧的船体之间通过横剖
面上的纵向构件相互传递的垂向
1/2L
力,在数值上等于横剖面一侧的
(2)当船中处的静水弯矩的绝对值与空船时船 中的静水弯矩相等
Pi Xi 2(MSL Mb Ml ) f1(dM )
Pi Xi 2(MSL Mb Ml ) f2(dM )
MSL为空船时船中处的静水弯矩
2、强度曲线图中的等值曲线
(3)当船中处的静水弯矩的绝对值与《规范》 规定的临界值相等
一、船体的总纵强度概述
(4)波浪切力—波浪中剖面所受的切力与同 样装载状态下静水中的切力的差值。
(5)波浪弯矩—波浪中剖面所受的弯矩与同 样装载状态下静水中的弯矩的差值。
一、船体的总纵强度概述
3、船体的总纵变形
a、剪切变形—微小长度的船体在切力作用下所 发生的变形 b、弯曲变形—微小长度的船体在弯矩作用下所 发生的变形
3、强度曲线图及其使用
根据船舶平均实际吃水和计算得到的载荷对中弯矩 (绝对值、不含空船)在图上确定一点。 (5)如果该点落在下侧虚线与下侧实线之间,船 舶呈中垂变形,变形程度较空船时大,但较临界状 态小,船舶处于允许的中垂变形状态; (6)如果该点落在上侧实线以上,船舶呈中拱变 形,变形程度较临界状态大,船舶处于不允许的中 拱变形状态; (7)如果该点落在下侧实线以下,船舶呈中垂变 形,变形程度较临界状态大,船舶处于不允许的中 垂变形状态;
第五章船舶强度1

第五章船舶强度1
第二节船舶纵向强度校核及保证措 施
一、船舶配积载时纵向强度保证措施为了保 证船体纵向强度,我们应特别注意货物重 量沿船首尾方向的正确配置。因为当货物 的纵向配置变化时,虽然排水量保持不变, 弯矩仍一可能有很大的变化。为了减少弯 矩,在船舶配载和装卸货物时应注意下列 各点: (1)满足纵向强度条件的经验方法:
(4)最外面的两条曲线(实线)表示船舶根据规范规定所能 承受最大的静水弯矩的中拱及中垂的边界线。
(5)虚线与实线之间部位表示船舶在该装载状态时,强度尚 能满足要求,应力处于允许的范围。
(6)超出实线以外的部位表示船体所受应力超过规范的规定, 应力处于危险的状况,应调整船舶的装载。
2)强度曲线图的使用
当船舶处在波浪中时,如波长接近于船长,对船 体最为不利。特别是船中位于波峰或波谷时,且 船舶各货舱中配载不均匀时,在波浪中航行的船 舶中拱或中垂的将加剧,弯曲变形现象将更为严 重,甚至危及船舶安全。在船舶配载工作中,应 防止严重中拱或中垂的产生。
船舶在静水中,尽管装载比较均衡也可能产生中 拱或中垂的变形,但其数值较小,为一般船舶强 度所允许。若船舶由于装载不合理产生较大的中 拱变形或产生较大的中垂变形是不允许的。这对 船体结构有影响,轻者会使某些结构部位受到过 大应力而降低船舶使用寿命,重者会发生船体变 形以致断裂的严重后果。
(1)中间的一条曲线(点划线)表示船体所受的静水弯矩为 零,是船体受力的最理ቤተ መጻሕፍቲ ባይዱ状态,即船舶无拱、垂变形。
船舶强度与结构设计第五章

5.1.1 船舶建造规范的产生、发展和作用18世纪40年代以前,所有的船舶都凭经验建造,也经历了带有巨大损失的尝试。
后来,通过对建造实绩和航行经验的总结与提高,逐渐形成了造船所应遵循的规范。
规定建造规范的初步措施是俄罗斯政治家——彼得大帝作出的,他于1723年颁布了“关于按照新的船样建造河船”的条例。
在此条例中规定了船体的基本构件。
随着产业革命,贸易也发达起来,船舶建造愈来愈多,轮船保险商感到各船舶的吨位、建造日期、建造材料及船舶所有人等资料有集中的必要。
于是1760年成立了世界上第一个船级机构——英国劳氏船级协会。
以后,各航运事业发达的国家都相继成立了船舶协会。
起初,船级协会的主要工作是制订船舶登记册,载有关于入级船舶的船体和轮机状况。
直到1835年才出现第一本船级协会颁布的《建造规范》。
该规范系英国劳氏船级协会出版,适用于一百七十英尺长、一百总吨左右的木船,结构尺寸按吨位数字决定。
自那以后,随着造船材料、构件连接方式及船体强度理论的发展,建造规范也经历着不断发展(例如,1855年、1888年相继出现了《铁船规范》、《钢船规范》)和逐步完善的漫长过程。
目前,世界上船级社很多,其中比较主要的有以下几个:中国船检局(中国船级社)(CCS)美国船检局(ABS)英国劳氏船级社(LR)德国劳氏船级社(GL)日本海事协会(NK)法国船级社(BV)挪威船级社(DNV)意大利船级社(RI.N.A)俄罗斯船舶登记局(RS)船级社规范监督船的建造,并允许船舶正式“入级”,给它们所登记的船办各种国际协定所要求的证书;此外,还对使用中的船舶作定期检查,以确定这些船是否仍保持在“级”内。
各主要船级社在世界各地都有办事处,几乎在各港口都能找到它的代表。
建造规范也为航运、造船、相关的制造业和保险业服务。
经过“入级”登记的船,符合公认的健全的建造标准,这就等于告诉运货人说,他将他的货物交给已经入级的船承运时,他并没有冒险脱离实际的风险;同时,保险公司有被请求给船保险时,船的入级有助于保险公司判断隐含着的危险性质。
第五章 船舶强度

第5章 检测题
波谷在船中时,船舶的受力情况是:
A.甲板受拉,船底受拉 B.甲板受拉,船底受压 C.甲板受压,船底受压 D.甲板受压,船底受拉
第5章 检测题
(Qt) 调整值
调整值约为10Pi%
四、保证船舶总纵强度满足要求的措施
2. 在安排货物重量沿船舶纵向分布时,还应考虑的因素: (1)货物装卸过程中 (2)中途港装卸货物后 (3)油水分布及据不同的船舶布置形式,合理地选配和使用油水
船型
装载状态 纵向变形 油水分配及使用
3.剪切变形与弯曲变形
中垂变形:Sagging 当船舶中部重力大于浮力而首尾部浮力大于重力时的船体弯曲变形。
此时甲板受压,船底受拉。 当波谷在船中时,中垂变形最大。
3.剪切变形与弯曲变形
波浪中航行的弯矩变形:
当波长=船长 中拱船船中位于波峰,中拱加大 中垂船船中位于波谷,中垂加大
19
4、扭转强度Torsion strength
中机船 空载 中机船 满载 尾机船 空载 尾机船 满载 中尾机船 空、满载
中垂 中拱 中拱 中垂 中拱
尽量配于首尾,先用 中部
尽量配于中部,先用 首尾
尽量配于中部,先用 首尾
尽量配于首尾,先用 中部
尽量配于中部,先用 首尾
第二节、保证船舶局部强度
船舶局部强度条件的概念 局部强度(local strength): 船体结构具有抵抗在局部外力作用下产生的局部极度变形或损坏的
一、表示船体局部强度的指标
一、表示船体局部强度的指标
3、车辆甲板负荷 车辆甲板载荷指在舱盖、甲板或舱内装载车辆或使用车辆装卸 货物时,甲板、舱盖或内底板允许承受的以特定车轮数目为前 提的车辆及所载货物的总重量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学要求
1.掌握船舶强度的概念和种类; 2.理解船舶产生纵向变形的原因、拱垂变形与弯矩的关系; 3.掌握利用纵强度曲线图、载荷弯矩许用力矩表进行船体纵强度校核 的方法以及船体纵向变形的经验校核方法; 4.了解船体布置对船体纵向受力的影响; 5.掌握改善和保证船舶纵向强度的具体做法。 6.掌握船舶局部强度的校核方法和保证船舶局部强度不受损伤的措施。 学时:4学时
船舶必须满足局部强度条件。
第二节、保证船舶局部强度
一、表示船体局部强度的指标 1、均布载荷 均布载荷是指船舶不同载货部位单位面积允许承受的最大重 量,单位为KPa 2、集中载荷 集中载荷是指某一特定面积上允许承受的最大重量,单位为 KN。这一特定面积是指向该区域下的承重构件(如甲板纵桁) 施加集中压力的骨材(如横梁)之间的面积。
例题
解: 底舱的许用负荷:Pd1=0.72×Hd1=0.72×8=5.76 m3/t =7.06×Hd1=7.06×8=56.51 kPa 二层舱的许用负荷:Pd2=0.72×Hd2=0.72×3.5=2.52 m3/t =7.06×Hd2=7.06×3.5=24.72 kPa
例题
底舱的实际负荷: P1=H11/SF11+ H12/SF12 =4/1.6+2.5/0.9=5.27 m3/t =51.7 kPa 二层舱的实际负荷: P2=H2/SF2 =2/0.45=4.41 m3/t =43.56 kPa 底舱:因为P1<Pd1,满足局部强度要求; 二层舱:因为P2>Pd2,不满足局部强度要求
3.剪切变形与弯曲变形
中垂变形:Sagging 当船舶中部重力大于浮力而首尾部浮力大于重力时的船体弯曲变形。 此时甲板受压,船底受拉。 当波谷在船中时,中垂变形最大。
3.剪切变形与弯曲变形
波浪中航行的弯矩变形:
当波长=船长
中拱船船中位于波峰,中拱加大 中垂船船中位于波谷,中垂加大
19
甲板剖面模数wd和舱底板剖面模数wb
弯曲应力
Ix wd Zd
Ix wb Zb
Z d Z b wd wb
1、船中实际静水弯矩校核和强度曲线图
Ml—空船重量对船中所取的重量弯矩,特定船舶为一个特定值。 Mb—正浮时的浮力对船中所取的弯矩,为平均吃水的函数。 Σ|PiXi|—载荷对中弯矩,总载重量的各个组成部分对船中所取的 力矩。(9.81KN.m)
重点与难点
重点 船舶总纵强度的表示和校核方法; 船舶局部强度的表示和校核方法; 保证船舶总纵强度和局部强度的措施。 难点 船舶总纵强度的表示和校核方法; 船舶局部强度的表示和校核方法。
第五章、保证船舶强度
船体强度:Strength of ship。 船体结构在规定外力作用下具有抵抗发生极度变形和损坏的 能力。 船体强度的分类: 总强度:纵向强度、扭转强度、横向强度 局部强度 对于营运船舶:主要考虑纵向强度和局部强度。 1. 船舶横向强度一般都满足要求,无需校核。 2. 扭转强度是针对大开口舱口船舶,如集装箱船(问:集装箱 船设置双层船壳的目的) 3. 如此总强度主要考虑纵向强度,故称总纵强度
Pd 9.81
' i 1 n
H ci SFi
kPa
式中: Hci——自下而上第i层货物之货堆高度(m) 3 SF ——该层货物的积载因数(m /t) i 2) 计算确定拟装部位的拟装货物重量∑P’以及货物底部所跨过的 骨材间距数目n 3)确认满足船体局部强度条件:
Pd' Pd
G3 B3 B2
G1 B1
7
一、总纵强度概述
1.船体受力及其分布:如图5 -1
1、船体受力及其分布
2.横剖面上的切力和弯矩
切力和弯矩分布曲线:如图5 -2
2.横剖面上的切力和弯矩
剪力:Shear force 在数值上,纵向各横剖面上的剪力等于该剖面首向或尾 向一侧所受重力和浮力的差值。 当剖面船尾一侧的船体所受的重力大于浮力时,剖面上 的切力为正;反之为负。 经验表明,剪力绝对值的最大值一般出现在距船舶首尾 1/4船长处。船舶首尾端和船中附近,剪力为零。
1、船中实际静水弯矩校核和强度曲线图
营运中的船舶: 甲板剖面模数每年扣除腐蚀量:0.4%--0.6% 5年以下取下限 10年以上取上限
2、强度曲线的使用
强度曲线图 如图5-5
纵坐标∑︱PiXi︱为总载重量 的各个组成部分对船中所取 的力矩的绝对值之和。
横坐标为平均型吃水。
2、强度曲线图的使用
4、扭转强度Torsion strength
1)概念 2)产生扭转变形的原因 ·船体斜置于波浪:影响最大 ·船舶横摇 ·装卸货物 集装箱船和固体散货船:舱口宽大、无中间甲板,扭转强度应予以 强固(双层船壳)
5.改善船体强度的策略
1)船舶设计建造方面:合理选择结构材料、尺寸和布局。 2)货物积载方面:保证货物及其它载重沿纵向分布的合理性。
船舶总纵弯曲变形的判断
三、船舶总体布置对总纵弯曲变形的影响:
1.中机船 特点:重载:中拱变形较大 压载:轻微中拱或中垂 措施:货物:中区多装,中途少卸 油水:装时先中部,后首尾;用时相反 深舱:尽量不空
三、船舶总体布置对总纵弯曲变形的影响
2.尾机船 特点: 重载:大型船有中垂;普通船有轻微中拱或中垂 压载: 中拱变形较大 措施: 压载:中区为主,不单独使用首尾 油水:装时先中部,后首尾;用时相反 深舱:中部压载
P' n P
式中,pd和P分别为该部位的均布载荷和集中载荷
三、船体局部强度条件的校核步骤:
2、集装箱船 1)根据船舶资料查取具体装载位置集装箱底座上的堆积负荷Ps 2)根据积载计划计算确定堆装在该底座上的各层集装箱重量之 和Pc n
PC Pi
i 1
(t )
式中: Pi——自下而上第i层集装箱的总重量(t) 3)比较。若Pc<=Ps,则该底座局部结构的安全有保证
堆积负荷
二、确定均布载荷的经验方法 (缺乏资料时用)
1、上甲板
Pd 9.81H C C
9.81H C
kPa
式中: Hc——甲板设计堆货高度,重结构船取1.5m,轻结构 船取1.2m; γc——船舶设计时选用的货物装载率,即舱内货物重量与舱容的 比率,(t/m3) μ——该船的设计舱容系数,(m3/t)。
第一节 保证船舶的总纵强度
一、总纵强度概述 纵向强度(Longitudinal strength of ship) 船体结构所具有的抵御因重力和浮力沿纵向分布不一致 而造成的极度变形或损坏的能力。
一、总纵强度概述
整体平衡 纵向各舱不平衡
G6 B6
GR BR
G5 B5
G
G4 B B4
一、表示船体局部强度的指标
一、表示船体局部强度的指标
3、车辆甲板负荷 车辆甲板载荷指在舱盖、甲板或舱内装载车辆或使用车辆装卸 货物时,甲板、舱盖或内底板允许承受的以特定车轮数目为前 提的车辆及所载货物的总重量。 4、堆积负荷 堆积负荷是指集装箱船的甲板、舱盖或舱底上不同的20‘或40’ 集装箱底座所能承受的最大重量。
步骤
(1)在dm处作垂直于横坐标的垂直线 (2)计算∑︱PiXi︱,作垂直于纵坐标的水平线 (3)上述垂直线与水平线相交于一点。据此判断船体变形的方 向和范围。点划线 虚线 实线 点划线和虚线之间:有利范围 虚线和实线之间:允许范围 实线之外:危险范围 点划线左上方:中拱范围 点划线右下方:中垂范围
2.横剖面上的切力和弯矩
弯矩:Bending moment。 重力对剖面所取的力矩大于浮力对剖面所取的力矩,M(x)为 (+);反之M(x)为(-)。 当首尾部重力大于浮力而中部浮力大于重力时,所出现的弯曲变形 称为中拱。此时对应的弯矩曲线为正。反之为负。 弯矩绝对值的最大值一般出现在船中处。(此时对应点的剪力为
二、确定均布载荷的经验方法 (缺乏资料时用)
2、中间甲板和舱底
Pd 9.81H d c
kPa
式中: Hd—二层舱或底舱的高度(m) γc—设计装载率,无资料时可取γc=0.72t/m3
三、船体局部强度条件的校核步骤:
1、杂货船 1)计算确定单位面积的实际负荷量Pd
四、保证满足船舶局部强度条件的措施
1)考虑船龄 2)加横跨骨材的衬垫 3)舱盖上不装重货 4)注意局部强度的校核
例题:
某轮No.2货舱二层舱拟装钢板(SF=0.45 m3/t),堆高2 m,底舱先 装一层钢管(SF=1.6 m3/t ),堆高4 m,再装一层箱货(SF=0.9 m3/t ),堆高2.5 m。已知二层舱高3.5 m,底舱舱高8 m。试校核 该舱的局部强度。
二、船体总纵强度校核
1、船中实际静水弯矩校核和强度曲线图 (1)依据 我国《钢质海船入级与建造规范》(1989年以前版本)要求船 中处的甲板剖面模数不小于根据静水弯矩和波浪附加弯矩计算 的临界值。
Wd—船中处的甲板剖面模数,特定船舶为一个确定值。(船体 横剖面水平中和轴的面积惯性矩除以剖面内计算点到该中和轴 的距离所得的值) [σc]—材料的合成许用应力(拉力),取155MPa。 Mw—《规范》规定的波浪弯矩,特定船舶为一个特定值。 M’s—船中处的静水弯矩。
3.剪切变形与弯曲变形
弯曲变形:船体受到弯矩作用使其纵向构件产生的弯曲变形。 弯曲应力:船体构件单位横剖面面积上所受到的弯矩。
3.剪切变形与弯曲变形
拱垂变形:船体发生的总纵弯曲变形。 中拱变形:Hogging 当船舶首尾部重力大于浮力而中部浮力大于重力时的船体弯曲变形。 此时甲板受拉,船底受压。 当波峰在船中时,中拱变形最大。