发动机热管理系统及其优化

合集下载

热管理在发动机中的应用

热管理在发动机中的应用

热管理在发动机中的应用发动机作为汽车的核心部分,其性能的优化和提升对于整个汽车的性能以及环保问题的解决都具有非常重要的意义。

而对于发动机的热管理也是一项重要的技术,可以有效地增强发动机的效率和寿命。

那么,下文将详细探讨热管理在发动机中的应用。

一、发动机中的热管理原理热管理是指对发动机运转过程中产生的余热进行合理的处理和利用,使其参与到发动机的行驶过程中,从而提高发动机的效率和寿命。

具体来说,通过对发动机的冷却和加热进行控制,达到保持发动机在工作温度范围内的目的。

发动机的工作温度一般在100摄氏度至120摄氏度之间,如果低于这个温度范围,发动机就会出现“积碳”的现象,导致发动机动力下降,燃油消耗增加。

反之,如果高于这个温度范围,那么就会造成发动机过热,进而影响到发动机的寿命。

二、1. 液冷技术液冷技术是一种比较常见的热管理技术,涉及发动机的散热器、水管、水泵、水箱等部件。

通过水循环的方式,将发动机中产生的余热有效地带走,达到保持发动机工作温度在规定范围内的目的。

液冷技术具有散热效果好、稳定性高、使用寿命长等优点,对于高性能发动机的散热来说尤为重要。

2. 换热技术换热技术包括了两种主要的处理方式:一种是空气换热,另一种是液体换热。

空气换热指的是通过进气系统和排气系统中的散热器来对发动机的余热进行处理,从而保证发动机能够在合适的温度范围内运转。

而液体换热则是通过发动机之间的液体循环来完成,液体会流经发动机中的散热器或者换热器进而达到热量转移的目的。

无论是哪种方式,换热技术都能够保证发动机在适当的温度范围内工作,并提高发动机的效率和寿命。

3. 热电偶技术热电偶技术是利用热电偶检测发动机的温度变化并将其反馈给控制系统,通过控制水循环或者风扇的运转速度来调节发动机的工作温度。

该技术具有响应速度快、反馈准确、控制精度高等优点,可以在多种使用环境下更好地适应发动机的温度控制需求。

三、结语热管理技术在发动机的应用中具有非常重要的地位,不仅能够有效地提高发动机的效率和寿命,还能降低排放量,开发更为节能的汽车技术。

内燃机热力循环改进与优化

内燃机热力循环改进与优化

内燃机热力循环改进与优化内燃机作为一种非常常见的动力设备,在现代社会得到了广泛的应用。

其中,汽车发动机是内燃机的最常见的应用,应用得也最为广泛。

然而,内燃机在运作过程中的一些问题也越发明显,比如不够经济、不够环保等。

这时,我们就需要对内燃机的热力循环进行优化和改进,来为实现更好的经济性和环保性提供支持。

内燃机的基本热力循环内燃机的基本热力循环是由吸气、压缩、燃烧和排气四个过程组成的。

具体来说,吸气过程是指进气阀开启,汽缸内气体向外流动的过程,此时,气体的压力较低,温度较低;压缩过程是指气体被压缩,由于压缩时功率是向气体输入的,所以气体压力和温度都会升高;燃烧过程是指混合气在火花塞点火时的燃烧过程;排气过程则是指排气门开启,用传动装置将汽缸内气体排出气缸的过程。

内燃机热力循环改进把内燃机的热力循环进行优化和改进,首先需要注意的是降低能量消耗和提高燃烧的效率。

为实现这一目标,下面我们将通过实操分析几个常见的改进方法,来更好地了解内燃机热力循环的改进和优化。

1.提高气门的效率气门效率是指汽缸内流动的气体与进出气门之间的能量损失。

为了提高气门的效率,我们通常会把气门改为比原来更大的进口气门,这样,气门既适合进气也适合排气,所以,气门效率就能获得一定的提升。

2.重组燃料系统在内燃机中,燃料的成分和混合比例会直接影响燃烧效率。

因此,通过升级燃料系统的方式,可以使内燃机的燃烧效率提高并降低对环境的影响。

在这个过程中,我们可以考虑采用分子量较小、挥发性较强的燃料,以及在进气管道中装配燃油压力传感器以减少雾化喷雾器的喷雾量。

3.优化气缸设计具体而言,优化气缸的设计,有利于减少气缸中出现的热断裂、膨胀及其他问题,从而得到更好的发动机性能表现。

首先,在气缸设计中,我们可以采用各种模拟计算和实验方法来尽可能减少摩擦损失;另外,采用更松散的气缸轴承,以减少因高温和高压等因素而导致的轴承磨损。

结语内燃机热力循环的改进和优化是当下非常需要的一项技术。

航空发动机热管理系统的设计与研究

航空发动机热管理系统的设计与研究

航空发动机热管理系统的设计与研究航空发动机作为重要的航空设备之一,其热管理系统的设计和研究具有极高的重要性。

本文将从发动机的热管理需求、热管理系统的组成以及研究进展等三个方面,对航空发动机热管理系统的设计和研究进行探讨。

一、航空发动机热管理需求航空发动机的工作过程中,会产生大量的热能,因此需要进行有效的热管理。

其主要热管理需求包括以下几个方面:1.发动机温度控制温度是影响发动机性能和寿命的重要因素之一。

对于发动机的燃烧室、叶轮、轴承等零部件,均有相应的温度限制。

因此,需要对发动机的温度进行精确的控制,以保证其在可接受范围内运行。

2.燃烧室冷却燃烧室是发动机工作的核心部件,其中燃烧产生的高温气体会对其产生破坏性影响。

因此,在发动机工作过程中,需要对燃烧室进行有效的冷却,以延长其使用寿命。

3.润滑油冷却航空发动机中,润滑油的冷却对于其性能和寿命同样具有重要的影响。

润滑油冷却不足会导致发动机运行温度过高,从而影响其性能和寿命。

二、航空发动机热管理系统的组成航空发动机的热管理系统主要由以下几个部分组成:1.空气压气机出口进气导管空气压气机出口进气导管负责将压气机出口的高温气体引入发动机外部的热交换器。

2.燃烧室燃烧室是发动机的主要部件之一,其内部的温度极高,因此需要对其进行有效的冷却。

3.燃气轮机进气导管燃气轮机进气导管负责将大气进气引导到燃气轮机内部。

4.热交换器热交换器是发动机热管理系统的关键部件之一,其主要功能是将压气机出口的高温气体与燃气轮机的大气进气进行热交换,以实现有效的热管理。

5.润滑油冷却器润滑油冷却器负责将润滑油冷却后,回输到发动机内部进行润滑。

三、航空发动机热管理系统的研究进展近年来,针对航空发动机热管理系统的研究已经取得了不少进展。

以下是其中几项重要研究成果:1.传热优化一些学者通过对热交换器的传热机理和传热性能进行分析和优化,提高了热交换器的传热效率和性能。

2.机电一体化设计针对发动机热管理系统中存在的一些机械和电子部件的独立设计问题,一些研究者提出了机电一体化的设计方案。

某车型机舱热管理仿真分析及优化

某车型机舱热管理仿真分析及优化
东风 C AE 学 会获 奖论 文选 登 l 某车型机舱热管理仿真分析及优化
d o i : 1 0 . 3 9 6 %. i s s n . 1 0 0 5 - 2 5 5 0 . 2 0 1 4 . 0 5 . 0 1 2
收稿 日期 :2 0 1 4 — 0 9 — 0 1
某车型机舱热管理仿真分析及优化
( Do n g  ̄n g Mo t o r Co r p o r a t i o n T e c h n i c a l Ce n t e r , Wu h a n , 4 3 0 0 7 0 , Ch i n a )
Ab s t r a c t : Th i s pa pe r a n a l y s e s t h e lo f w ie f l d a nd t e m pe r a t u r e ie f l d i n a v e h i c l e u nd e r h oo d

Hale Waihona Puke 因此必 须采取 有效 地措 施来进 行 汽车 发动
5 6
汽车科技 ,Au T O S Cl _ T E CH 2 0 1 4 年第5 期
机舱热管 理的分析 设计 。
拟 ,其惯性 阻力系数和粘性阻 力系数通过试验 数据
拟合而来 ,同时冷凝器 及散热器换热量设 定为【 占 J 定
肖 能 ,王小 碧 ,史建鹏 ( 尔风汽车公司技术巾心 ,武汉 4 3 0 0 7 0)
摘 要 :本文采用C F D 仿 真分析方 法对汽车 发动机舱 内流场和温场进 行仿真分 析 ,考虑
热刈‘ 流 热辐射 的影 响 ,并与试验结 果进 行对 比,误差控制 在 1 0 %以内 ,满 足发动机舱热管 理 I 程设 计的需求 ;并在此 基础上提 出冷却模块 中置与偏置两 种改进 厅案 .通过对 比选 效

混动汽车的发动机热管理与节能技术

混动汽车的发动机热管理与节能技术

混动汽车的发动机热管理与节能技术随着环保意识的提升,混动汽车在市场上的销量越来越多。

混动汽车作为一种融合了传统燃油发动机和电动机的新型动力系统,其发动机热管理与节能技术显得尤为重要。

本文将探讨混动汽车发动机热管理的关键问题,并介绍几种常见的节能技术。

一、混动汽车的发动机热管理问题发动机热管理是指对发动机工作温度进行有效控制和调节的技术手段。

在混动汽车中,由于同时存在燃油发动机和电动机,发动机热量的分配和利用就显得尤为复杂。

首先,混动汽车的燃油发动机和电动机的热量分配需要平衡。

燃油发动机在工作时会产生大量热量,而电动机则可以通过回收制动能量等方式将一部分热量转化为电能,从而减轻发动机的负荷。

如何合理分配两种动力来源的热量,以提高能源利用率,是发动机热管理的重要问题之一。

其次,混动汽车的发动机冷却系统需要精确控制。

冷却系统的作用是将发动机产生的过多热量散发出去,以保证发动机正常运行。

传统汽车的发动机冷却系统通常采用水冷方式,而混动汽车由于燃油发动机和电动机的复杂性,需要更加精细的温控技术,确保两者的工作温度都在合适的范围内,提高热能的利用效率。

最后,混动汽车的发动机热回收技术需要进一步提升。

燃油发动机在工作时会产生很多废热,而传统汽车往往将这部分废热直接散发到大气中。

混动汽车可以通过热回收技术将这些废热重新利用起来,用于加热驾驶舱、启动辅助设备等,从而降低额外能源的消耗,提高整车的能源利用率。

二、混动汽车的发动机热管理与节能技术1. 循环冷却系统循环冷却系统是一种能够在发动机工作周期中根据需要改变冷却介质流动路径的技术。

这种系统可以根据发动机负荷情况和温度需求,智能地调整冷却液的循环路径,确保发动机在不同工况下的运行温度在合适范围内。

2. 废热利用技术废热利用技术是指将发动机产生的废热重新利用起来,以提高整车的能源利用率。

目前常见的废热利用方式包括利用废热加热驾驶舱、座椅和制动液等,以及用废热提供辅助动力,如启动辅助发电机。

探析汽机热力系统运行的优化

探析汽机热力系统运行的优化

探析汽机热力系统运行的优化引言我国目前使用的汽轮机组仍以煤炭为主要能源,不仅能源消耗居高不下,而且污染物的排放量大,机组能效有限,这与当下的社会需求不符。

产生这种情况的主要原因是我国目前使用的汽轮机组中有相当一部分过于老旧,热力系统运行故障频发,令原本就不高的机组性能更难以发挥。

因此,就需要对汽机的热力系统进行优化。

一、汽机热力系统的运行优化1、优化改进汽机本体(1)冷却蒸汽管的优化改进汽机的高中压缸之间存在冷却蒸汽管,但前人的试验已经证实,该管段没有实际作用,反而会导致不必要的能量损失,较新出厂的汽轮机组已经取消了该构件,但旧式的汽轮机组中该构件依然存在。

因此,有必要在优化改进时取消该蒸汽管,降低工质能量损失,这样一来不仅提高能效,而且对上下缸的运行温差有很明显的改善作用。

(2)放汽管的优化改进在1号和2号两个高压导汽管之间存在放汽管,但是由于这两个高压导汽管的距离非常近,所以内部并不会积聚其太多的蒸汽,即使主汽门关闭,高压缸调节级的后面也安有疏水阀,可以将这少量蒸汽及时排除出去。

因此,该放汽管同样可以取消,以抑制阀门内漏,降低蒸汽损失。

(3)汽封间隙的优化改进调节级动叶的叶根和叶顶存在汽封间隙,在传统的机组里,该汽封间隙为2. 5毫米左右,为了进一步令调节级的效率得到提升,该间隙可缩短为1. 2毫米。

不过汽封间隙减小,动静摩擦的发生几率有增高的可能,但实测可知该改进措施未对机组的正常运作产生危害,所以可以实行。

(4)阻汽片间隙的优化改进高压缸的内外缸夹层部位安有挡汽环,此处镶嵌有径向的阻汽片,为了优化汽机,该阻汽片的间隙需要严格控制。

具体来说应控制在4毫米,上下波动区间不得超过0.5毫米,这样才能控制夹层部位的蒸汽流动。

2、机组能效的优化在进行汽机热力系统机组的能效优化时,可以通过删减设备疏水管和缩小汽封间隙和阻汽间隙进行优化改进。

首先,在汽机的多个高压导汽管之间存在着一定数量的疏水管。

但是,由于系统高压导汽管距离较近,内部几乎不会聚集大量蒸汽。

先进的热管理系统优化发动机温控的关键技术

先进的热管理系统优化发动机温控的关键技术

先进的热管理系统优化发动机温控的关键技术随着汽车行业的不断发展,发动机的性能和效率要求也越来越高。

在发动机运行过程中,温度管理是至关重要的一项技术,它对于发动机的性能、寿命和排放控制有着重要的影响。

为了满足这一需求,先进的热管理系统被广泛应用于汽车发动机中,以优化发动机的温控性能。

本文将介绍几项关键的技术,包括液冷散热器、风扇控制、温度传感器和热管理算法等。

一、液冷散热器液冷散热器是发动机冷却系统中的核心组件,它通过将发动机产生的热量传递给循环冷却液,并通过冷却液循环来实现发动机的降温。

先进的液冷散热器采用了先进的材料和设计,以提高散热效能。

例如,采用高导热材料制造的散热片可以提高散热面积和热传导效率;同时,优化的管道设计和流体动力学特性可以提高冷却液的流动性能,实现更好的散热效果。

二、风扇控制风扇是发动机温控系统中另一个重要的组成部分。

它通过将外界冷空气吹向发动机,实现发动机的降温。

先进的风扇控制技术可以根据发动机的温度、负载和运行状态等因素自动调节风扇的转速。

例如,在发动机运行较热时,风扇可以以较高的转速运转,以增加进气量和降低温度。

而在发动机运行较冷时,风扇可以以较低的转速运转,以减少能耗和噪音。

三、温度传感器温度传感器是发动机温控系统中的关键部件,它可以实时监测发动机的温度变化,并将数据传输给控制单元。

这些数据可以用于调节液冷散热器和风扇的工作状态,以实现发动机温度的精确控制。

目前,先进的温度传感器采用了高精度的传感技术,可以在极端条件下提供可靠的温度数据,并具有快速响应和稳定性的特点。

四、热管理算法热管理算法是发动机温控系统中的核心技术,它通过对温度传感器和其他传感器的数据进行分析和处理,来实现发动机温度的智能调节。

先进的热管理算法可以根据发动机的工况、环境条件和驾驶习惯等因素,实现温度的精确控制和优化。

例如,在发动机怠速或低负载运行时,热管理算法可以降低液冷散热器和风扇的工作强度,以减少能耗和噪音;而在高负载或高温环境下,热管理算法可以自动增加散热和冷却的效果,以保障发动机的正常工作。

基于CFD的汽车发动机舱热管理及优化

基于CFD的汽车发动机舱热管理及优化

基于CFD的汽车发动机舱热管理及优化谢暴;陶其铭【摘要】为了研究汽车发动机舱热管理,设计出与整车开发流程相匹配的发动机舱热管理工作的模拟分析流程。

基于“计算流体力学”CFD软件中的STAR-CCM+,分析了某车型发动机舱的冷流场,提出其前端进气格栅的优化方案。

该优化方案使流经散热器与冷凝器的风量分别提升7.0%和9.6%。

获得了优化的发动机舱的温度分布云图及热平衡温度。

针对风险部件进行舱内热害仿真分析,得到目标监测点温度满足许用温度要求。

水温试验模拟仿真分析中的整车热平衡,仿真精度≥85%,舱内热害仿真精度≥95%。

结果表明:应用该流程具有较高的计算效率和可靠性。

%A simulation analysis process of nacel e thermal management was designed to investigate the thermal management in cabin of a developing automobile considering lfow match. An optimization scheme of the front air intake gril e was made by the nacel e cold lfow ifeld analysis to a model automobile based on the STAR-CCM+of the CFD (Computational Fluid Dynamics) software. The optimal scheme increased air volume by 7.0%for radiator and by 9.6%for condenser. The thermal equilibrium temperatures and the temperature distributions in the cloud for the optimal scheme were obtained to analyze the thermal pol ution in an automobile cabin. The target temperature for risk parts was obtained by cabin thermal damage simulation to monitor the satisfy requirement of al owable temperature. The thermal equilibrium simulation results for an automobile were veriifed by water experiments with an accuracy of 85%or higher. The cabin thermal damage has an accuracy of 95%or more.Therefore, the design process has a high computing efifciency and a high reliability.【期刊名称】《汽车安全与节能学报》【年(卷),期】2016(007)001【总页数】8页(P115-122)【关键词】汽车发动机舱;热害;热管理;CFD软件;冷流场;热平衡【作者】谢暴;陶其铭【作者单位】安徽职业技术学院机械工程系,合肥230011,中国;江淮汽车股份有限公司,合肥230022,中国【正文语种】中文【中图分类】TH123Dynamics); cold flow field; heat balance现代汽车采用的低车身、小型化的流线型设计趋向[1],使得发动机舱内空间狭小、零部件安放位置紧凑;而增压+缸内喷、分层燃烧、双离合变速器(dual clutch transmission,DCT)等众多新技术在汽车上的应用,也使机舱内附件增多且产生较大的工作热量;从而易形成过热的发动机舱环境[2]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2热管理系统部件优化
冷却水套冷却液流量、压力以及合理的流场分布都直接影响发动机的冷却效果。发动机通过水套将热传递给了冷却系统,水套设计是否合理是关系到发动机冷却效果的最关键因素。合理的水套结构首先要保证水套壁厚的均匀性,壁面由于水套壁面厚度的不合理分布所造成的发动机某些区域热应力过大的情况发生;其次,要保证水套型腔的合理性,使得冷却液在水套中能够正常流动,不会出现流动的死角,造成发动机某些部位过热;除此之外要保证发动机各个部位的分水量要合理,发动机各气缸燃烧室的壁面温度尽量一致。改进发动机冷却水套结构,寻求合适的流场分布,可以改善发动机的热负荷和热应力,防止发动机部件损坏,提高发动机零部件的使用寿命、发动机功率及燃油经济性。Couetouse H.等人在1984年提出了分流式系统的设计,即汽缸盖和汽缸体有不同的冷却回路,适合气缸盖和汽缸体具有不同的温度。这是由于较低的气缸盖温度有利于进气和改善排放,而较高的气缸体温度则有利于降低摩擦损失,改善燃油经济性。分流式冷却水套系统的优势在于使发动机各部分在最优的温度设定点工作,达到较高的冷却效率。实验结果表明,将流向气缸盖的冷却液温度降为50℃,而流向气缸体的冷却液温度为80℃,可使压缩比从9提高到12,能够实现部分负荷状态节油5%、怠速节油7%、满负荷时的功率输出提高10%的目标。Clough M.J.早在1992年提出了“精确冷却”的概念,即利用最少的冷却以达到最佳的温度分配。精确冷却系统的设计关键在于确定冷却水套的尺寸,选择匹配的冷却水泵,保证系统的散热能力能够满足发动机低速大负荷时关键区域工作温度的需求。研究表明,采用精确冷却系统,在发动机整个工作转速范围,冷却液流量可下降40%。精确冷却的潜在优势在于加快暖机速度、减少热应力和热量损失。降低摩擦系数和冷却水泵功率消耗,提高平均有效压力和抗爆性。Clough对四气门汽油机的气缸体和气缸盖进行改造,实现精确冷却,使得水套容积减少64%,水泵功率消耗减少54%,暖机时间也减少18%。无论是精确冷却系统还是分流式冷却系统,都要求对发动机冷却水套进行必要的改进以优化冷却液流动。从设计和使用角度看,分流式冷却和精确冷却相结合具有很好的发展前景,有利于形成理想的发动机温度分布,满足发动机对未来冷却系统的需求。
3.发动机热管理系统优化
3.1热管理系统智能化控制
风扇传统的冷却系统中采用机械驱动的冷却风扇,风扇由发动机曲轴通过皮带驱动,冷却风量取决于发动机转速并与发动机的转速成正比,而非发动机实际运行时冷却量,无法对通过散热器的空气流量进行精确控制,从而难以使发动机在最佳的温度下工作,导致排放过高,燃料经济性和发动机性能变差。除此以外传统冷却风扇冷却调节的灵敏度不高,功率损失也很大,耗功严重,比如风扇消耗的功率可以达到发动机总功率输出的10%。为了解决这个问题就出现了自控电动风扇,电控风扇的转速能够根据冷却液温度和空气调节循环参数来调节,通过传感器和计算机芯片根据实际的发动机温度控制运行,提供最佳的冷却介质流量和风扇转速,综合调节冷却能力,减少了在低温时发动机的传热损失、功率损失、和过度磨损,抑制了发动机过热的发生,降低了噪声和燃料消耗。冷却风扇由传统控制方式转化为智能控制方式,散热风扇的冷却能力随着发动机散热的需要而自动精确地调节,提高了发动机的预热速度,有效的防止水温过热或过冷,使其始终保持最佳工作温度,而且避免了能源的大量浪费,其中减少风扇功率消耗90%,节省燃油10%。另外,为提高冷却风扇的效率,用塑料翼形风扇取代圆弧形直叶片冷却风扇;采用翼形断面塑料和流线型风罩,在风扇气流入口形成流线形气流,可提高风扇的液力效率。综合各项措施最终使电动风扇的效率达到85%。
Klett等用石墨泡沫材料做成一个22.9cm x 17.78cm x 15.27cm的换热器(散热器),安装在588kW的V8赛车发动机上,替代原有的68.6cm x 48.3cm x7.6cm散热器。在车速为290km/h,水温99.4℃的稳定工况条件下,冷却水流量仅为57.5L/min,风扇空气流量仅是原来的2.3%。其整体传热系数要比传统的散热器提高10倍以上。因此对于横截面积为48cm x 69cm 的汽车散热器,在具有相同的散热量的情况下,其尺寸可以减少到20cm x 20cm 。这样就可以减少散热器的体积、质量和费用,从而提高燃油效率。
水泵传统的机械驱动式冷却水泵由曲轴通过V带或齿轮驱动,运行速度与发动机转速成正比,冷却介质流量取决于发动机转速。许多研究显示,传统水泵水量仅在5%的时间内正确,无法对通过散热器的冷却介质的流量进行精确控制,从而难以使发动机在最佳的温度下工作,导致燃料经济性和发动机性能不佳。而电控水泵由电机驱动,可以对流量进行独立控制。电控水泵由于不用曲轴驱动,安装位置比较灵活,可以优化水泵水利特性设计,同时由于不用齿轮或者带轮带动,减少了V带及齿轮对水泵轴承的循环侧向负载力,降低了驱动损失。电控水泵根据发动机冷却要求而不是速度来供给冷却流量,避免了部分负荷及高速情况下的过冷状态,减少了不必要的功率消耗。国内郭新民等对装载机冷却系统控制装置进行了研究,利用单片机根据冷却水温度的变化调节电磁比例溢流阀的溢流量以实现冷却水泵转速的自动调节。结果表明,低温预热时,该控制装饰可使预热时间减少50%,提高了暖机速度,预热阶段节约燃油43%。1999年Valeo公司提出了在发动机配置新型电子调节系统,来改善发动机的冷却性能。它实现了水泵和缸里的分离,泵的流量和通风装置都通过发动机的ECU来进行调整和控制,便于水泵的安装,而且远离缸体这一热源后,水泵可以用塑料制成,既降低了成本,又减轻了水泵的重量,达到了水泵的转速随水温的变化而变化,进一步降低了传热损失和机械损失,降低了污染和油耗的目计理论,通过改变叶轮形状、提高表面光洁度,能使发动机冷却水泵的效率提高到75%。日本尼桑公司基于这一理论制造出了一种水泵,通过减小会泵的结构尺寸,该公司又通过增加叶片数目、改进叶片曲线设计,使水泵最大效率达到了75%。
节温器节温器功用是根据冷却水温度的高低自动调节进入散热器的水量,改变水的循环范围,以调节冷却系的散热能力,保证发动机在合适的温度范围内工作。节温器是内燃机冷却系统中控制冷却液流动路径的关键零部件,但是目前绝大多数的节温器都采用石蜡作为感温介质,其存在“相应延迟”和“滞回特性”,无法满足冷却系统精确控制的要求,致使发动机的燃油消耗增加,使用寿命缩短。为了进一步的提高发动机的冷却效率,电控节温器应运而生。电控节温器的控制系统有传感器、电机和控制模块组成,可以根据冷却液温度或者发动机部件温度来控制冷却液流量。当发动机运转时,控制单元根据传感器信号得出的计算值对温度调节单元加载电压,通过对加载电压大小的控制来控制石蜡的溶解速度,进而有效精确快速的控制大小循环的开度,使发动机各个部件始终处于最佳的温度范围,以提高燃油的燃烧效率,增加进气量,减少磨损,延长发动机的使用寿命。1997年,美国Oakland大学的X-ZHOU和B.CAHLON等人引入带迟滞的延时差分方程来描述节温器在发动机冷却系统工作过程中的动态特性,并且给出了该模型数值解的算法。2002〜2006年,美国Clemson大学John R.Wagner等人开展了发动机冷却系统智能节温器的研究。他们釆用伺服电机驱动齿轮和螺杆,然后再将螺杆的旋转运动转化成活塞(阀芯)的伸缩运动,从而实现对冷却液大小循环通道的切换。2009年,T.Mitchell等人比较了在暖机工况下4种不同类型的节温器布置方式对发动机冷却系统性能的影响。他们在釆用石蜡节温器、电动两通阀、电动三通阀和不安装节温器4种情况下分别进行了发动机暖机实验。他们的研究认为:釆用电动三通阀这种形式,在发动机暖机时间和燃油经济性方面的性能最好。2004年,清华大学罗建曦,张扬军等人分析了节温器对发动机动态性能的影响,他们指出:节温器的非线性动态特性与系统延迟效应相互作用,导致发动机热系统动态特性复杂。当节温器延迟时间短、温度偏移量小、节温器振荡弱时,发动机进口温度波动小,稳定所需时间短,调节效果好。
3.3热管理系统材料多元化
目前,热管理系统材料比较单一,散热器材料通常为铜、铝及、铝合金,冷却介质主要是水和乙二醇混合物。传统散热器的设计方法已经趋近极限,因此急需一种全新高效的冷却理念来实现冷却性能的改善。
3.3.1 纳米流体
纳米流体是一种工程传热流体,通过在传统传热流体(水、乙二醇混合物和机油)中分散纳米金属微粒形成。阿尔贡(Argonne)国家实验室正在研制一种纳米微粒来提高发动机冷却液及机油的导热特性。测试结果显示,可提高40%的导热率。Leong等采用纳米流体作为发动机的冷却液研究发现,总传热系数和传热率比仅用基液乙二醇有较大提高,在散热器空气侧和冷却液侧的雷诺数分别为6000和5000时,加入2%的铜纳米粒子使散热器传热增强了3.8%,由此可估计空散热器的空气迎风面积减少18.7%。与此同时,纳米流体在发动机冷却系统的应用可以将重型汽车的冷却系统的尺寸和重量减小10%,因此发动机的燃烧效率将会提高5%。采用纳米流体还可以使用承受较高温度的冷却液,减少热损失。这种高温散热器的应用将散热器的尺寸减小30%,由此可以减小空气流动阻力、减少冷却液的流动损失以及驱动风扇的损失,可以节省约10%的油耗。图4给出了不同纳米流体(金属微粒和氧化物微粒)导热率比值k/k。(k。为乙二醇导热率)和纳米微粒体积比的关系。
3.3.2 石墨泡沫材料
奥克里奇国家实验室(ORNL-0ak Ridge National Laboratory)开发出一种独特的石墨泡沫材料,可以极大提高传热系数。这种石墨泡沫材料密度为0.2~0.6g/cm³,导热率为40-187/m.K。因为泡沫为蜂窝状的网状结构,接触表面很大(>4㎡/g),用石墨泡沫材料做成的散热器其整体传热系数要比传统的散热器提高10倍以上。
应用发动机热管理系统技术,可以有效的将发动机中所涉及到的传热系统当作一个大的综合系统进行考虑并得到发动机各个热流系统的精确的边界参数,从而对各个热流系统的温度进行精确的控制,可以保证关键部件和系统安全高效运行,控制和优化热量传递过程,减小冷却系统的尺寸和功率消耗,合理利用热能,降低废热排放,提高能源利用效率,减少环境污染。发动机热管理与传统发动机的冷却系统有着显著区别。从发动机冷却到发动机热管理,不仅是技术上的进步,更是管理、设计思想的突破。发动机热管理技术已成为发动机节能、降低排放、提高动力性、可靠性及发动机寿命的重要措施。
相关文档
最新文档