实验二 数字图像的空间域滤波和频域滤波
频域滤波器设计(数字图像处理实验报告)

数字图像处理作业——频域滤波器设计摘要在图像处理的过程中,消除图像的噪声干扰是一个非常重要的问题。
本文利用matlab软件,采用频域滤波的方式,对图像进行低通和高通滤波处理。
低通滤波是要保留图像中的低频分量而除去高频分量,由于图像中的边缘和噪声都对应图像傅里叶频谱中的高频部分,所以低通滤波可以除去或消弱噪声的影响并模糊边缘轮廓;高通滤波是要保留图像中的高频分量而除去低频分量,所以高通滤波可以保留较多的边缘轮廓信息。
本文使用的低通滤波器有巴特沃斯滤波器和高斯滤波器,使用的高通滤波器有巴特沃斯滤波器、高斯滤波器、Laplacian高通滤波器以及Unmask高通滤波器。
实际使用中应该根据实际图像中包含的噪声情况灵活地选取适当的滤波算法。
1、频域低通滤波器:设计低通滤波器包括 butterworth and Gaussian (选择合适的半径,计算功率谱比),平滑测试图像test1和2。
实验原理分析根据卷积定理,两个空间函数的卷积可以通过计算两个傅立叶变换函数的乘积的逆变换得到,如果f(x, y)和h(x, y)分别代表图像和空间滤波器,F(u, v)和H(u, v)分别为响应的傅立叶变换(H(u, v)又称为传递函数),那么我们可以利用卷积定理来进行频域滤波。
在频域空间,图像的信息表现为不同频率分量的组合。
如果能让某个范围内的分量或某些频率的分量受到抑制,而让其他分量不受影响,就可以改变输出图的频率分布,达到不同的增强目的。
频域空间的增强方法的步骤:(1)将图像从图像空间转换到频域空间;(2)在频域空间对图像进行增强;(3)将增强后的图像再从频域空间转换到图像空间。
低通滤波是要保留图像中的低频分量而除去高频分量。
图像中的边缘和噪声都对应图像傅里叶频谱中的高频部分,所以低通滤波可以除去或消弱噪声的影响并模糊边缘轮廓。
理想低通滤波器具有传递函数:其中D0为制定的非负数,D(u,v)为点(u,v)到滤波器中心的距离。
数字图像处理实验二:图像的频域处理

实验二、图像的频域处理一、实验类型:综合性实验二、实验目的1. 掌握二维傅里叶变换的原理。
2. 掌握二维傅里叶变换的性质。
三、实验设备:安装有MATLAB 软件的计算机四、实验原理傅里叶变换在图像增强、图像分析、图像恢复和图像压缩等方面扮演着重要的角色。
在计算机上使用傅里叶变换常常涉及到该变换的另一种形式——离散傅里叶变换(DFT )。
使用这种形式的傅里叶变换主要有以下两方面的理由:·DFT 的输入和输出都是离散的,这使得计算机处理更加方便;·求解DFT 问题有快速算法,即快速傅里叶变换(FFT )。
MATLAB 函数fft,fft2 和fftn 可以实现傅里叶变换算法,分别用来计算1 维DFT、2 维DFT 和n 维DFT。
函数ifft,ifft2 和ifftn 用来计算逆DFT。
下面结合一个例子进行演示。
五、实验内容部分一选择一幅图像,对其进行离散傅立叶变换,观察离散傅立叶频谱,并演示二维离散傅立叶变换的主要性质(如平移性、旋转性)。
六、实验步骤与结果(1)创建一个矩阵f,代表一个二值图像。
f=zeros(60,60); %创建一个60行,60列的零矩阵f(10:48,26:34)=1; %使矩阵f的10到48行,26到34列交叉部分置1 imshow(f,'InitialMagnification','fit')/imshow(f,'notruesize'); %显示得到二值图像f,如图所示:(2 )用以下命令计算f 的DFT 并可视化。
F=fft2(f); %对f图像进行傅立叶正变换F2=log(abs(F)); %对F变换得到傅立叶频谱,再用对数变换更好得显示图像imshow(F2,[-1,5],'InitialMagnification','fit'); %显示图像colormap(jet);colorbar %用彩色绘制网线,用彩条信号得到没有0 填充的离散傅里叶变换,如图所示:(3)为了获取傅里叶变换的更佳的取样数据,计算F 的DFT 时给它进行0 填充。
实验一图像的直方图均衡,数字图像的空间域滤波

实验一、图像的直方图均衡一、实验目的1、理解直方图均衡的原理与作用;2、掌握统计图像直方图的方法;3掌握图像直方图均衡的方法。
二、实验原理在实际应用中,希望能够有目的地增强某个灰度区间的图像,即能够人为地修正直方图的形状,使之与期望的形状相匹配,这就是直方图规定化的基本思想。
换句话说,希望可以人为地改变直方图形状,使之成为某个特定的形状,直方图规定化就是针对上述要求提出来的一种增强技术,它可以按照预先设定的某个形状来调整图像的直方图。
直方图规定化是在运用均衡化原理的基础上,通过建立原始图像和期望图像之间的关系,选择地控制直方图,使原始图像的直方图变成规定的形状,从而弥补了直方图均衡不具备交互作用的特性。
三、实验步骤1、利用matlab图像处理工具箱提供的函数进行均衡处理;程序如下:clcIM=imread('imag.jpg');figure,imshow(IM);imwrite(rgb2gray(IM),'Gray.bmp');%将彩色图片灰度化并保存figure,subplot(2,1,1),imshow('gray.bmp')IM=rgb2gray(IM); %转换为灰度图subplot(2,1,2),imhist(IM); %画出直方图figure,IM2=histeq(IM);%利用函数图像均值subplot(2,1,1),imshow(IM2); %显示均值后图片subplot(2,1,2),imhist(IM2); %显示处理后的直方图处理结果:原始图片:用系统函数均衡后结果:均值后:2、自己设计程序实现图像的直方图均衡;自己设计的均值代码:%读入图片:clcIM=imread('imag.jpg');figure,imshow(IM)imwrite(rgb2gray(IM),'Gray.bmp');%将彩色图片灰度化并保存figure,subplot(2,1,1),imshow('gray.bmp')IM=rgb2gray(IM); %灰度化后的数据存入数组%直方图均衡化S1=zeros(1,256);for i=1:256for j=1:iS1(i)=GP(j)+S1(i); %计算SkendendS2=round((S1*256)+0.5); %将Sk归到相近级的灰度for i=1:256GPeq(i)=sum(GP(find(S2==i))); %计算现有每个灰度级出现的概率endfigure,subplot(2,1,1),bar(0:255,GPeq,'b') %显示均衡化后的直方图title('均衡化后的直方图')xlabel('灰度值')ylabel('出现概率')%四,图像均衡化PA=IM;for i=0:255PA(find(IM==i))=S2(i+1); %将各个像素归一化后的灰度值赋给这个像素endsubplot(2,1,2),imshow(PA) %显示均衡化后的图像title('均衡化后图像')imwrite(PA,'PA.bmp');3、画出均衡后的图像直方图;处理后4、比较上述两种处理方法的不同。
空间域滤波和频率域处理的特点

空间域滤波和频率域处理的特点1.引言空间域滤波和频率域处理是数字图像处理中常用的两种图像增强技术。
它们通过对图像进行数学变换和滤波操作来改善图像质量。
本文将介绍空间域滤波和频率域处理的特点,并比较它们之间的异同。
2.空间域滤波空间域滤波是一种直接在空间域内对图像像素进行处理的方法。
它基于图像的局部像素值来进行滤波操作,常见的空间域滤波器包括均值滤波器、中值滤波器和高斯滤波器等。
2.1均值滤波器均值滤波器是最简单的空间域滤波器之一。
它通过计算像素周围邻域的平均值来实现滤波操作。
均值滤波器能够有效地去除图像中的噪声,但对图像细节和边缘保留较差。
2.2中值滤波器中值滤波器是一种非线性的空间域滤波器。
它通过计算像素周围邻域的中值来实现滤波操作。
中值滤波器能够在去除噪声的同时保持图像细节和边缘,对于椒盐噪声有较好的效果。
2.3高斯滤波器高斯滤波器是一种线性的空间域滤波器。
它通过对像素周围邻域进行加权平均来实现滤波操作。
高斯滤波器能够平滑图像并保留图像细节,它的滤波核可以通过调整方差来控制滤波效果。
3.频率域处理频率域处理是一种将图像从空间域转换到频率域进行处理的方法。
它通过对图像进行傅里叶变换或小波变换等操作,将图像表示为频率分量的集合,然后对频率分量进行处理。
3.1傅里叶变换傅里叶变换是一种将信号从时域转换到频域的数学变换。
在图像处理中,可以应用二维傅里叶变换将图像从空间域转换到频率域。
在频率域中,图像的低频分量对应于图像的整体结构,高频分量对应于图像的细节和边缘。
3.2小波变换小波变换是一种基于小波函数的时频分析方法。
它能够在频率和时间上同时提供图像的信息,对于图像的边缘和纹理特征有较好的表达能力。
小波变换在图像压缩和特征提取等方面具有广泛应用。
4.空间域滤波与频率域处理的对比空间域滤波和频率域处理都可以用来改善图像质量,但它们有着不同的特点和适用场景。
4.1处理方式空间域滤波是直接对图像像素进行处理,操作简单直接,适用于小规模图像的处理。
空域滤波和频域滤波的关系

空域滤波和频域滤波的关系空域滤波是指对图像的像素进行直接操作,通过改变像素的数值来达到滤波的目的。
常见的空域滤波方法包括均值滤波、中值滤波和高斯滤波等。
这些方法主要是通过对像素周围的邻域进行计算,然后用计算结果替代中心像素的值,从而达到平滑图像、去噪或者增强图像细节等效果。
空域滤波是一种直观简单的滤波方法,易于理解和实现。
频域滤波则是将图像从空域转换到频域进行滤波处理。
频域滤波基于图像的频谱特性,通过对图像的频率分量进行调整来实现滤波效果。
频域滤波的基本原理是将图像进行傅里叶变换,将图像从空间域转换到频率域,然后在频率域对图像进行滤波处理,最后再将图像进行傅里叶反变换,将图像从频率域转换回空间域。
常见的频域滤波方法包括低通滤波、高通滤波和带通滤波等。
频域滤波可以有效地去除图像中的噪声、增强图像的细节和边缘等。
空域滤波和频域滤波是两种不同的滤波方法,它们在滤波原理和实现方式上存在一定的差异。
空域滤波是直接对图像像素进行操作,易于理解和实现,但在处理复杂图像时会存在一定的局限性。
频域滤波则是将图像转换到频率域进行处理,可以更加灵活地调整图像的频率特性,适用于处理复杂图像和去除特定频率的噪声。
虽然空域滤波和频域滤波有着不同的原理和实现方式,但它们之间并不是相互独立的。
事实上,这两种滤波方法是可以相互转换和组合的。
在一些实际应用中,我们可以将频域滤波和空域滤波结合起来,通过先对图像进行傅里叶变换,然后在频率域对图像进行滤波处理,最后再将图像进行傅里叶反变换,将图像从频率域转换回空间域。
这种组合使用的方法可以充分发挥两种滤波方法的优势,既可以处理复杂图像,又能够简化计算和提高效率。
空域滤波和频域滤波是数字图像处理中常用的滤波方法。
空域滤波直接对图像像素进行操作,简单直观;频域滤波则是将图像转换到频率域进行处理,更加灵活精确。
虽然它们有着不同的原理和实现方式,但可以相互转换和组合使用,以提高图像处理的效果和质量。
频域滤波器设计(数字图像处理实验报告)

数字图像处理作业——频域滤波器设计摘要在图像处理的过程中,消除图像的噪声干扰是一个非常重要的问题。
本文利用matlab软件,采用频域滤波的方式,对图像进行低通和高通滤波处理。
低通滤波是要保留图像中的低频分量而除去高频分量,由于图像中的边缘和噪声都对应图像傅里叶频谱中的高频部分,所以低通滤波可以除去或消弱噪声的影响并模糊边缘轮廓;高通滤波是要保留图像中的高频分量而除去低频分量,所以高通滤波可以保留较多的边缘轮廓信息。
本文使用的低通滤波器有巴特沃斯滤波器和高斯滤波器,使用的高通滤波器有巴特沃斯滤波器、高斯滤波器、Laplacian高通滤波器以及Unmask高通滤波器。
实际应用中应该根据实际图像中包含的噪声情况灵活地选取适当的滤波算法。
1、频域低通滤波器:设计低通滤波器包括 butterworth and Gaussian (选择合适的半径,计算功率谱比),平滑测试图像test1和2。
实验原理分析根据卷积定理,两个空间函数的卷积可以通过计算两个傅立叶变换函数的乘积的逆变换得到,如果f(x, y)和h(x, y)分别代表图像与空间滤波器,F(u, v)和H(u, v)分别为响应的傅立叶变换(H(u, v)又称为传递函数),那么我们可以利用卷积定理来进行频域滤波。
在频域空间,图像的信息表现为不同频率分量的组合。
如果能让某个范围内的分量或某些频率的分量受到抑制,而让其他分量不受影响,就可以改变输出图的频率分布,达到不同的增强目的。
频域空间的增强方法的步骤:(1)将图像从图像空间转换到频域空间;(2)在频域空间对图像进行增强;(3)将增强后的图像再从频域空间转换到图像空间。
低通滤波是要保留图像中的低频分量而除去高频分量。
图像中的边缘和噪声都对应图像傅里叶频谱中的高频部分,所以低通滤波可以除去或消弱噪声的影响并模糊边缘轮廓。
理想低通滤波器具有传递函数:其中D0为制定的非负数,D(u,v)为点(u,v)到滤波器中心的距离。
数字图像处理技术-图像增强--空域、频域滤波

实验五图像增强--空域、频域滤波课程名称:数字图像处理技术实验日期:2015-11-03 成绩:班级:姓名:学号:一、实验目的1.了解图像空域滤波、频域滤波的基本操作;2.掌握噪声模拟和图像滤波函数的使用方法3. 实现彩色图像的增强。
二、实验内容1. (基础题)制作自己的GUI用户界面,实现图像在空域中的均值滤波、中值滤波、锐化滤波;(提高题)定义自己的过滤器实现锐化滤波。
2. (基础题)在GUI中,实现图像的频域滤波:低通滤波、高通滤波。
3. (基础题)在GUI中,实现彩色图像增强:伪彩色增强、假彩色增强、真彩色增强。
三、实验代码function pushbutton1_Callback(hObject, eventdata, handles)% hObject handle to pushbutton1 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)clear;figureA=imread('1.jpg');B=rgb2gray(A);h1=ones(7,7)/49;B2=imfilter(B,h1);h2=ones(9,9)/81;B3=imfilter(B,h2);subplot(2,2,1);imshow(B);title('灰度图像');subplot(2,2,3);imshow(B2);title('7*7均值滤波');subplot(2,2,4);imshow(B3);title('9*9均值滤波');% --- Executes on button press in pushbutton2.function pushbutton2_Callback(hObject, eventdata, handles)% hObject handle to pushbutton2 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB% handles structure with handles and user data (see GUIDATA)clear;figureA=imread('1.jpg');B=rgb2gray(A);B2=medfilt2(B,[5 5]);B3=medfilt2(B,[9 9]);subplot(2,2,1);imshow(B);title('灰度图像');subplot(2,2,3);imshow(B2);title('5*5中值滤波');subplot(2,2,4);imshow(B3);title('9*9中值滤波');% --- Executes on button press in pushbutton3.function pushbutton3_Callback(hObject, eventdata, handles)% hObject handle to pushbutton3 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) clear;figureA=imread('1.jpg');B=rgb2gray(A);h1=[1 2 1;0 0 0;-1 -2 -1];B2=imfilter(B,h1);h2=[1 0 -1;2 0 -2;1 0 -1];B3=imfilter(B,h2);subplot(2,2,1);imshow(B);title('灰度图像');subplot(2,2,3);imshow(B2);title('水平锐化');subplot(2,2,4);imshow(B3);title('竖直锐化');% --- Executes on button press in pushbutton4.function pushbutton4_Callback(hObject, eventdata, handles)% hObject handle to pushbutton4 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) clear;figureA=imread('1.jpg');f=rgb2gray(A);subplot(2,2,1);imshow(f);f=im2double(f);F=fftshift(fft2(f));[M,N]=size(F);n = 30;D0 = 40;u0=floor(M/2);v0=floor(N/2);for u=1:Mfor v=1:ND=sqrt((u-u0)^2+(v-v0)^2);H=1/(1+(D/D0)^(2*n));G(u,v)=H*F(u,v);endendg=ifft2(ifftshift(G));g=im2uint8(real(g));subplot(2,2,4);imshow(g);% --- Executes on button press in pushbutton5.function pushbutton5_Callback(hObject, eventdata, handles)% hObject handle to pushbutton5 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) clear;figureA=imread('1.jpg');f=rgb2gray(A);subplot(2,2,1);imshow(f);f=im2double(f);F=fftshift(fft2(f));[M,N]=size(F);n = 30;D0 = 40;u0=floor(M/2);v0=floor(N/2);for u=1:Mfor v=1:ND=sqrt((u-u0)^2+(v-v0)^2);H=1/(1+(D0/D)^(2*n));G(u,v)=H*F(u,v);endendg=ifft2(ifftshift(G));g=im2uint8(real(g));subplot(2,2,4);imshow(g);% --- Executes on button press in pushbutton6.function pushbutton6_Callback(hObject, eventdata, handles)% hObject handle to pushbutton6 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) clear;figureA=imread('1.jpg');B=rgb2gray(A);subplot(1,2,1);imshow(B);title('灰度图像');Y=floor(B/64);[M,N]=size(Y);for i=1:Mfor j=1:Nswitch Y(i,j)case 0Y1(i,j,1:3)=[0 0 255];case 1Y1(i,j,1:3)=[200 0 200];case 2Y1(i,j,1:3)=[255 150 0];case 3Y1(i,j,1:3)=[255 255 0];otherwiseY1(i,j,1:3)=[255 255 255];endendendsubplot(1,2,2);imshow(Y1);% --- Executes on button press in pushbutton7.function pushbutton7_Callback(hObject, eventdata, handles)% hObject handle to pushbutton7 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) clear;figureA=imread('1.jpg');f=rgb2gray(A);subplot(1,2,1);imshow(f);title('灰度图像');[M,N]=size(f);L=255;f=double(f);f1=floor(f/64);R=f1;G=f1;B=f1;for i=1:Mfor j=1:Nswitch f1(i,j)case 0R(i,j)=0;G(i,j)=4*f(i,j);B(i,j)=L;case 1R(i,j)=0;G(i,j)=L;B(i,j)=-4*f(i,j)+2*L;case 2R(i,j)=4*f(i,j)-2*L;G(i,j)=L;B(i,j)=0;case 3R(i,j)=L;G(i,j)=-4*f(i,j)+4*L;B(i,j)=0;endendendg(:,:,1)=R;g(:,:,2)=G;g(:,:,3)=B;g=uint8(g);subplot(1,2,2);imshow(g);% --- Executes on button press in pushbutton8.function pushbutton8_Callback(hObject, eventdata, handles)% hObject handle to pushbutton8 (see GCBO)% eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) clear;figureRGB=imread('1.jpg');RGB = im2double(RGB);R = RGB(:, :, 1);G = RGB(:, :, 2);B = RGB(:, :, 3);subplot(1,2,1),imshow(RGB)title('原始图像');c=R.*1.26d=G.*1.03e=B.*1.15enhance=cat(3, c, d, e);subplot(1,2,2),imshow(enhance)title('RGB手动增强的图像')四、实验结果截图五、实验体会经过很长时间学会应用这些东西。
数字图像处理实验二报告(图像滤波器)

实验报告课程名称数字图像处理实验名称图像滤波器姓名学号 20120712 专业班级数媒1202 实验日期 2014 年 10 月 16日成绩指导教师一、实验目的1.继续熟悉仿真工具MATLAB2.巩固图像读取与显示的方法3.掌握给图像添加噪声的方法4.掌握图像空间域的滤波方法5.掌握图像频率域的滤波方法二、实验原理图像的平滑有模糊图像和消除噪声的功能。
图像锐化则是使模糊的图像变清晰,增强图像的边缘细节。
对图的处理像既可以在频率域内进行,又可在空间域进行(一般为模版卷积方式)。
从信号频谱角度来讲,信号缓慢变化的部分(大面积背景区和灰度变化缓慢的区域)在频域表现为低频,迅速变化的部分(图像边缘、跳跃以及噪声等灰度变化剧烈的区域)则表现为高频。
因此,通过低通滤波来实现图像的平滑,而高通滤波可以实现图像的锐化。
三、实验环境Windows XP/ Windows 7Matlab 7.0.1/ Matlab R2008四、实验内容与步骤1.空间平滑域操作读取并显示一幅灰度图像,对原图像分别添加高斯噪声和椒盐噪声,并显示添加噪声之后的图像:调整高斯噪声和椒盐噪声的参数,比较不同参数之间噪声的区别;进行平滑操作,观察、记录并比较实验结果;针对两幅含有噪声的图像,采用中值滤波方法进行平滑处理,观察并记录实验结果,并将之与上一步实验结果相比较,得出结论。
2.空间锐化操作读取并显示一幅灰度图像,分别采用Prewitt水平/垂直边缘检测算子,Sobel水平/垂直边缘检测算子对原图像进行锐化操作,比较实验结果;采用拉普拉斯模板进行锐化处理,与上一步骤实验结果相比较。
3.图形的频域处理1)利用循环语句,自己构建理想低通滤波器;对一幅弧度图像进行傅里叶变换,显示其频谱图;对一幅灰度图像作频率域理想低通滤波,调整滤波器半径,观察并记录不同结果,分析原因;2)利用循环语句,自己构建理想高通滤波器;对同一幅灰度图像作频率域理想高通滤波,调整滤波器半径,观察并记录不同结果,分析原因;五、实验结果与分析(可提供屏幕抓图)1.添加高斯噪声与椒盐噪声:结论:高斯噪声的参数越大,图像变得越模糊,亮度也越亮。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二数字图像的空间域滤波和频域滤波实验二数字图像的空间域滤波和频域滤波一(实验目的1. 掌握图像滤波的基本定义及目的;2. 理解空间域滤波的基本原理及方法;3. 掌握进行图像的空域滤波的方法。
4. 掌握傅立叶变换及逆变换的基本原理方法;5. 理解频域滤波的基本原理及方法;6. 掌握进行图像的频域滤波的方法。
二(实验内容1. 平滑空间滤波:a) 读出eight.tif这幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一张图显示在同一图像窗口中;(提示:imnoise)b) 对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果,要求在同一窗口中显示;(提示:fspecial、imfilter或filter2)c) 使用函数imfilter时,分别采用不同的填充方法(或边界选项,如零填充、’replicate’、’symmetric’、’circular’)进行低通滤波,显示处理后的图像d) 运用for循环,将加有椒盐噪声的图像进行10次,20次均值滤波,查看其特点,显示均值处理后的图像;(提示:利用fspecial函数的’average’类型生成均值滤波器)e) 对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处理,要求在同一窗口中显示结果。
(提示:medfilt2)f) 自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后的图像;2. 锐化空间滤波a) 读出blurry_moon.tif这幅图像,采用3×3的拉普拉斯算子w = [ 1, 1, 1; 1 – 8 1; 1, 1, 1]对其进行滤波;b) 编写函数w = genlaplacian(n),自动产生任一奇数尺寸n的拉普拉斯算子,如5×5的拉普拉斯算子w = [ 1 1 1 1 11 1 1 1 11 1 -24 1 11 1 1 1 11 1 1 1 1]c) 分别采用5×5,9×9,15×15和25×25大小的拉普拉斯算子对1blurry_moon.tif进行锐化滤波,并利用式2完成图像的锐化增强,观察其有gxyfxyfxy(,)(,)(,),,,何不同,要求在同一窗口中显示;d) 采用不同的梯度算子对blurry_moon.tif进行锐化滤波,并比较其效果e) 自己设计锐化空间滤波器,并将其对噪声图像进行处理,显示处理后的图像;3. 傅立叶变换a) 读出woman.tif这幅图像,对其进行快速傅立叶变换,分别显示其幅度图像和相位图像(提示:fft2, abs, angle)b) 仅对相位部分进行傅立叶反变换后查看结果图像(提示:记傅立叶变换的相位a,利用ifft2对exp(a*i)进行反变换) c) 仅对幅度部分进行傅立叶反变换后查看结果图像 d) 将图像的傅立叶变换F置为其共轭后进行反变换,比较新生成ju,()图像与原始图像的差异(提示:复数的共轭FuFue()|()|,,ju,()为) FuFue()|()|,4. 平滑频域滤波a) 设计理想低通滤波器、巴特沃斯低通滤波器和高斯低通滤波器,截至频率自选,分别给出各种滤波器的透视图; b) 读出test_pattern.tif这幅图像,分别采用理想低通滤波器、巴特沃斯低通滤波器和高斯低通滤波器对其进行滤波(截至频率自选),再做反变换,观察不同的截止频率下采用不同低通滤波器得到的图像与原图像的区别,特别注意振铃效应。
(提示:1)在频x+y率域滤波同样要注意到填充问题;2)注意到(-1);)5. 锐化频域滤波a) 设计理想高通滤波器、巴特沃斯高通滤波器和高斯高通滤波器,截至频率自选,分别给出各种滤波器的透视图; b) 读出test_pattern.tif这幅图像,分别采用理想高通滤波器、巴特沃斯高通滤波器和高斯高通滤波器对其进行滤波(截至频率自选),再做反变换,观察不同的截止频率下采用不同高通滤波器得到的图像与原图像的区别。
2提示:设图像大小为M×N(M行N列),下列代码可实现矩阵X和Yx = 0:M-1;y = 0:N-1;X = x' * ones(1, N);Y = ones(M,1) * y; x+y此时(f(x,y)(-1))可以采用如下代码实现f(x,y).*(-1)^(X+Y)一般频域滤波器的原点在矩形中心,即[floor(M/2), floor(N/2)],此时平方距离D的计算可以由下列代码实现D=sqrt((U- floor(M/2)).^2+(V- floor(N/2)).^2); %这里将X,Y用U和V代替附:实验报告格式(由以下几个部分组成)1. 实验目的2. 实验内容描述3. 实验原理算法分析4. 实验步骤5. 实验结果分析与结论6. 参考文献3总黄酮生物总黄酮是指黄酮类化合物,是一大类天然产物,广泛存在于植物界,是许多中草药的有效成分。
在自然界中最常见的是黄酮和黄酮醇,其它包括双氢黄(醇)、异黄酮、双黄酮、黄烷醇、查尔酮、橙酮、花色苷及新黄酮类等。
简介近年来,由于自由基生命科学的进展,使具有很强的抗氧化和消除自由基作用的类黄酮受到空前的重视。
类黄酮参与了磷酸与花生四烯酸的代谢、蛋白质的磷酸化、钙离子的转移、自由基的清除、抗氧化活力的增强、氧化还原作用、螯合作用和基因的表达。
它们对健康的好处有:( 1 ) 抗炎症 ( 2 ) 抗过敏 ( 3 ) 抑制细菌 ( 4 ) 抑制寄生虫 ( 5 ) 抑制病毒 ( 6 ) 防治肝病 ( 7 ) 防治血管疾病( 8 ) 防治血管栓塞 ( 9 ) 防治心与脑血管疾病 ( 10 ) 抗肿瘤 ( 11 ) 抗化学毒物等。
天然来源的生物黄酮分子量小,能被人体迅速吸收,能通过血脑屏障,能时入脂肪组织,进而体现出如下功能:消除疲劳、保护血管、防动脉硬化、扩张毛细血管、疏通微循环、活化大脑及其他脏器细胞的功能、抗脂肪氧化、抗衰老。
近年来国内外对茶多酚、银杏类黄酮等的药理和营养性的广泛深入的研究和临床试验,证实类黄酮既是药理因子,又是重要的营养因子为一种新发现的营养素,对人体具有重要的生理保健功效。
目前,很多著名的抗氧化剂和自由基清除剂都是类黄酮。
例如,茶叶提取物和银杏提取物。
葛根总黄酮在国内外研究和应用也已有多年,其防治动脉硬化、治偏瘫、防止大脑萎缩、降血脂、降血压、防治糖尿病、突发性耳聋乃至醒酒等不乏数例较多的临床报告。
从法国松树皮和葡萄籽中提取的总黄酮 " 碧萝藏 "-- (英文称 PYCNOGENOL )在欧洲以不同的商品名实际行销应用25 年之久,并被美国 FDA 认可为食用黄酮类营养保健品,所报告的保健作用相当广泛,内用称之为 " 类维生素 " 或抗自由基营养素,外用称之为 " 皮肤维生素" 。
进一步的研究发现碧萝藏的抗氧化作用比 VE 强 50 倍,比 VC 强 20 倍,而且能通过血脑屏障到达脑部,防治中枢神经系统的疾病,尤其对皮肤的保健、年轻化及血管的健康抗炎作用特别显著。
在欧洲碧萝藏已作为保健药物,在美国作为膳食补充品(相当于我国的保健食品),风行一时。
随着对生物总黄酮与人类营养关系研究的深入,不远的将来可能证明黄酮类化合物是人类必需的微营养素或者是必需的食物因子。
性状:片剂。
功能主治与用法用量功能主治:本品具有增加脑血流量及冠脉血流量的作用,可用于缓解高血压症状(颈项强痛)、治疗心绞痛及突发性耳聋,有一定疗效。
用法及用量:口服:每片含总黄酮,,,,,每次,片,,日,次。
不良反应与注意不良反应和注意:目前,暂没有发现任何不良反应.4洛伐他丁【中文名称】: 洛伐他丁【英文名称】: Lovastatin【化学名称】:(S)-2-甲基丁酸-(1S,3S,7S,8S,8aR)-1,2,3,7,8,8a-六氢-3,7-二甲基-8-[2-(2R,4R)-4-羟基-6氧代-2-四氢吡喃基]-乙基]-1-萘酯【化学结构式】:洛伐他丁结构式【作用与用途】洛伐他丁胃肠吸收后,很快水解成开环羟酸,为催化胆固醇合成的早期限速酶(HMG,coA还原酶)的竞争性抑制剂。
可降低血浆总胆固醇、低密度脂蛋白和极低密度脂蛋白的胆固醇含量。
亦可中度增加高密度脂蛋白胆固醇和降低血浆甘油三酯。
可有效降低无并发症及良好控制的糖尿病人的高胆固醇血症,包括了胰岛素依赖性及非胰岛素依赖性糖尿病。
【用法用量】口服:一般始服剂量为每日 20mg,晚餐时1次顿服,轻度至中度高胆固醇血症的病人,可以从10mg开始服用。
最大量可至每日80mg。
【注意事项】?病人既往有肝脏病史者应慎用本药,活动性肝脏病者禁用。
?副反应多为短暂性的:胃肠胀气、腹泻、便秘、恶心、消化不良、头痛、肌肉疼痛、皮疹、失眠等。
?洛伐他丁与香豆素抗凝剂同时使用时,部分病人凝血酶原时间延长。
使用抗凝剂的病人,洛伐他丁治疗前后均应检查凝血酶原时间,并按使用香豆素抗凝剂时推荐的间期监测。
5他汀类药物他汀类药物(statins)是羟甲基戊二酰辅酶A(HMG-CoA)还原酶抑制剂,此类药物通过竞争性抑制内源性胆固醇合成限速酶(HMG-CoA)还原酶,阻断细胞内羟甲戊酸代谢途径,使细胞内胆固醇合成减少,从而反馈性刺激细胞膜表面(主要为肝细胞)低密度脂蛋白(low density lipoprotein,LDL)受体数量和活性增加、使血清胆固醇清除增加、水平降低。
他汀类药物还可抑制肝脏合成载脂蛋白B-100,从而减少富含甘油三酯AV、脂蛋白的合成和分泌。
他汀类药物分为天然化合物(如洛伐他丁、辛伐他汀、普伐他汀、美伐他汀)和完全人工合成化合物(如氟伐他汀、阿托伐他汀、西立伐他汀、罗伐他汀、pitavastatin)是最为经典和有效的降脂药物,广泛应用于高脂血症的治疗。
他汀类药物除具有调节血脂作用外,在急性冠状动脉综合征患者中早期应用能够抑制血管内皮的炎症反应,稳定粥样斑块,改善血管内皮功能。
延缓动脉粥样硬化(AS)程度、抗炎、保护神经和抗血栓等作用。
结构比较辛伐他汀(Simvastatin)是洛伐他汀(Lovastatin)的甲基化衍化物。
美伐他汀(Mevastatin,又称康百汀,Compactin)药效弱而不良反应多,未用于临床。
目前主要用于制备它的羟基化衍化物普伐他汀(Pravastatin)。
体内过程洛伐他汀和辛伐他汀口服后要在肝脏内将结构中的其内酯环打开才能转化成活性物质。
相对于洛伐他汀和辛伐他汀,普伐他汀本身为开环羟酸结构,在人体内无需转化即可直接发挥药理作用,且该结构具有亲水性,不易弥散至其他组织细胞,极少影响其他外周细胞内的胆固醇合成。
除氟伐他汀外,本类药物吸收不完全。