数字图像的空间域滤波和频域滤波

合集下载

测绘技术中的图像去噪和增强技巧

测绘技术中的图像去噪和增强技巧

测绘技术中的图像去噪和增强技巧图像去噪和增强是测绘技术中重要的一环。

随着科技的不断发展,图像采集设备的精度和灵敏度不断提高,但在实际应用中,图像中常常包含有噪声、模糊以及其他干扰因素,这些因素会影响图像的质量和准确性。

因此,提高图像的质量和清晰度,进行图像去噪和增强是测绘工作者必须面对的问题。

图像去噪是指通过一系列算法和方法,减少或消除图像中的噪声干扰。

在测绘技术中,图像去噪是十分关键的一项工作。

测绘图像中的噪声主要有模拟噪声和数字化噪声两类。

其中,模拟噪声是在图像采集和传输过程中产生的,包括了由于环境因素、光照等原因引起的噪声;数字化噪声则是由于图像传感器或数字化设备的非线性响应引起的。

在图像去噪的算法中,常用的有空间域滤波和频域滤波两种方法。

空间域滤波主要通过对图像像素周围进行统计分析,去除掉图像中的噪声,例如中值滤波、均值滤波等。

而频域滤波则是通过对图像进行傅里叶变换,将噪声从频域传输到空域,然后通过低通滤波去除噪声。

这些算法和方法能够有效地消除图像中的噪声,提高图像的质量和清晰度,从而减少误差和提高测绘数据的准确性。

另一方面,图像增强是指通过一系列的算法和方法,改善图像的质量和清晰度。

在测绘技术中,图像增强是为了更好地观察和分析图像中的地物和信息,提高测绘数据的可视化效果和解释能力。

图像增强的方法可以分为直方图均衡化、对比度增强和细节增强等。

直方图均衡化是一种常用的图像增强方法,通过将图像的灰度级分布均匀化,使得图像的对比度和亮度得到改善。

对比度增强是通过调整图像中的亮度差和灰度级之间的差异来改善图像,例如线性变换、非线性映射等。

细节增强是通过对图像中的细节进行突出和强化,例如锐化滤波、边缘增强等。

这些图像增强方法能够提升图像的可视化效果,使得图像更加清晰、鲜明,便于测绘数据的解释和分析。

除了上述常规的图像去噪和增强方法,近年来,基于深度学习的图像去噪和增强技术也取得了显著的进展。

深度学习是一种基于神经网络的机器学习方法,通过学习大量的数据,自动学习和提取图像中的特征和模式,从而实现图像的去噪和增强。

数字图像处理空间域滤波实验报告

数字图像处理空间域滤波实验报告

一.实验目的1.掌握图像滤波的基本定义及目的;2.理解空间域滤波的基本原理及方法;3.掌握进行图像的空域滤波的方法。

4.掌握傅立叶变换及逆变换的基本原理方法;5.理解频域滤波的基本原理及方法;6.掌握进行图像的频域滤波的方法。

二.实验结果与分析1.平滑空间滤波:a)读出eight.tif这幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一张图显示在同一图像窗口中;(提示:imnoise)b)对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果,要求在同一窗口中显示;(提示:fspecial、imfilter或filter2)c)使用函数imfilter时,分别采用不同的填充方法(或边界选项,如零填充、’replicate’、’symmetric’、’circular’)进行低通滤波,显示处理后的图像采用不同的填充方式,效果略有不同。

d)运用for循环,将加有椒盐噪声的图像进行10次,20次均值滤波,查看其特点,显示均值处理后的图像;(提示:利用fspecial 函数的’average’类型生成均值滤波器)e)对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处理,要求在同一窗口中显示结果。

(提示:medfilt2)中值滤波后的图像比均值滤波后的图像更加平滑。

f)自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后的图像;滤波后图像变得平滑。

2.锐化空间滤波a)读出blurry_moon.tif这幅图像,采用3×3的拉普拉斯算子w =[ 1, 1, 1; 1 – 8 1; 1, 1, 1]对其进行滤波;观察原图与拉普拉斯掩模滤波后的图像,滤波后的图像不再那么平滑,使图像产生锐化效果。

b)编写函数w = genlaplacian(n),自动产生任一奇数尺寸n的拉普拉斯算子,如5×5的拉普拉斯算子w = [ 1 1 1 1 11 1 1 1 11 1 -24 1 11 1 1 1 11 1 1 1 1]本函数见文件夹下genlaplacian.m文件。

空间域滤波和频率域处理的特点

空间域滤波和频率域处理的特点

空间域滤波和频率域处理的特点1.引言空间域滤波和频率域处理是数字图像处理中常用的两种图像增强技术。

它们通过对图像进行数学变换和滤波操作来改善图像质量。

本文将介绍空间域滤波和频率域处理的特点,并比较它们之间的异同。

2.空间域滤波空间域滤波是一种直接在空间域内对图像像素进行处理的方法。

它基于图像的局部像素值来进行滤波操作,常见的空间域滤波器包括均值滤波器、中值滤波器和高斯滤波器等。

2.1均值滤波器均值滤波器是最简单的空间域滤波器之一。

它通过计算像素周围邻域的平均值来实现滤波操作。

均值滤波器能够有效地去除图像中的噪声,但对图像细节和边缘保留较差。

2.2中值滤波器中值滤波器是一种非线性的空间域滤波器。

它通过计算像素周围邻域的中值来实现滤波操作。

中值滤波器能够在去除噪声的同时保持图像细节和边缘,对于椒盐噪声有较好的效果。

2.3高斯滤波器高斯滤波器是一种线性的空间域滤波器。

它通过对像素周围邻域进行加权平均来实现滤波操作。

高斯滤波器能够平滑图像并保留图像细节,它的滤波核可以通过调整方差来控制滤波效果。

3.频率域处理频率域处理是一种将图像从空间域转换到频率域进行处理的方法。

它通过对图像进行傅里叶变换或小波变换等操作,将图像表示为频率分量的集合,然后对频率分量进行处理。

3.1傅里叶变换傅里叶变换是一种将信号从时域转换到频域的数学变换。

在图像处理中,可以应用二维傅里叶变换将图像从空间域转换到频率域。

在频率域中,图像的低频分量对应于图像的整体结构,高频分量对应于图像的细节和边缘。

3.2小波变换小波变换是一种基于小波函数的时频分析方法。

它能够在频率和时间上同时提供图像的信息,对于图像的边缘和纹理特征有较好的表达能力。

小波变换在图像压缩和特征提取等方面具有广泛应用。

4.空间域滤波与频率域处理的对比空间域滤波和频率域处理都可以用来改善图像质量,但它们有着不同的特点和适用场景。

4.1处理方式空间域滤波是直接对图像像素进行处理,操作简单直接,适用于小规模图像的处理。

数字图像处理中的图像滤波研究

数字图像处理中的图像滤波研究

数字图像处理中的图像滤波研究一、引言图像滤波是数字图像处理中的重要技术之一,用于改善图像的质量和增强图像的特定特征。

图像滤波可以去除图像中的噪声和不必要的细节,从而提高图像的视觉效果和信息传输性能。

本文将深入探讨数字图像处理中的图像滤波研究。

二、图像滤波的基本原理图像滤波是通过对图像进行局部加权平均或差值运算,改变图像的灰度分布和空间响应,从而实现图像的模糊、锐化、增强等效果。

图像滤波主要包括线性滤波和非线性滤波两种方法。

2.1 线性滤波线性滤波是指通过卷积操作实现的滤波方法。

常见的线性滤波器包括均值滤波器、高斯滤波器和中值滤波器等。

均值滤波器通过对图像区域内像素值进行平均,从而实现图像的模糊效果;高斯滤波器则通过对图像区域内像素值进行加权平均,从而实现图像的模糊和去噪效果;中值滤波器则通过选取区域内像素值的中值,从而实现图像的去噪效果。

2.2 非线性滤波非线性滤波是指通过对图像像素值进行排序和比较,选择滤波器的操作方法。

常见的非线性滤波器包括基于排序统计的滤波器、自适应滤波器和边缘保留滤波器等。

基于排序统计的滤波器通过对图像像素值进行排序,并选择特定位置的像素值进行滤波,从而实现图像的锐化和边缘增强效果;自适应滤波器则通过根据图像局部统计特性改变滤波器参数,从而实现图像的自适应处理;边缘保留滤波器则通过保留图像边缘信息的方式进行滤波,从而实现图像的去噪效果。

三、图像滤波的应用图像滤波在各个领域都有广泛的应用。

3.1 图像去噪图像去噪是图像滤波的一大应用领域。

通过应用不同的滤波器和滤波方法,可以去除图像中的椒盐噪声、高斯噪声等不同类型的噪声,提高图像的质量和清晰度。

3.2 图像增强图像增强是通过滤波方法改善图像的对比度、边缘和细节,从而使图像更加鲜明和清晰。

常见的图像增强方法包括直方图均衡化、区域增强和多尺度增强等。

3.3 图像特征提取图像滤波还可以应用于图像特征提取。

通过选择合适的滤波器和滤波算法,可以有效地提取图像中的边缘、纹理和角点等特征,为后续图像处理和分析提供基础。

空域滤波和频域滤波的关系

空域滤波和频域滤波的关系

空域滤波和频域滤波的关系空域滤波是指对图像的像素进行直接操作,通过改变像素的数值来达到滤波的目的。

常见的空域滤波方法包括均值滤波、中值滤波和高斯滤波等。

这些方法主要是通过对像素周围的邻域进行计算,然后用计算结果替代中心像素的值,从而达到平滑图像、去噪或者增强图像细节等效果。

空域滤波是一种直观简单的滤波方法,易于理解和实现。

频域滤波则是将图像从空域转换到频域进行滤波处理。

频域滤波基于图像的频谱特性,通过对图像的频率分量进行调整来实现滤波效果。

频域滤波的基本原理是将图像进行傅里叶变换,将图像从空间域转换到频率域,然后在频率域对图像进行滤波处理,最后再将图像进行傅里叶反变换,将图像从频率域转换回空间域。

常见的频域滤波方法包括低通滤波、高通滤波和带通滤波等。

频域滤波可以有效地去除图像中的噪声、增强图像的细节和边缘等。

空域滤波和频域滤波是两种不同的滤波方法,它们在滤波原理和实现方式上存在一定的差异。

空域滤波是直接对图像像素进行操作,易于理解和实现,但在处理复杂图像时会存在一定的局限性。

频域滤波则是将图像转换到频率域进行处理,可以更加灵活地调整图像的频率特性,适用于处理复杂图像和去除特定频率的噪声。

虽然空域滤波和频域滤波有着不同的原理和实现方式,但它们之间并不是相互独立的。

事实上,这两种滤波方法是可以相互转换和组合的。

在一些实际应用中,我们可以将频域滤波和空域滤波结合起来,通过先对图像进行傅里叶变换,然后在频率域对图像进行滤波处理,最后再将图像进行傅里叶反变换,将图像从频率域转换回空间域。

这种组合使用的方法可以充分发挥两种滤波方法的优势,既可以处理复杂图像,又能够简化计算和提高效率。

空域滤波和频域滤波是数字图像处理中常用的滤波方法。

空域滤波直接对图像像素进行操作,简单直观;频域滤波则是将图像转换到频率域进行处理,更加灵活精确。

虽然它们有着不同的原理和实现方式,但可以相互转换和组合使用,以提高图像处理的效果和质量。

数字图像处理的基本方法

数字图像处理的基本方法

一、图像的预处理技术图像处理按输入结果可以分为两类,即输入输出都是一副图像和输入一张图像输出不再是图像的数据。

图像处理是个很广泛的概念,有时候我们仅仅需要对一幅图像做一些简单的处理,即按照我们的需求将它加工称我们想要得效果的图像,比如图像的降噪和增强、灰度变换等等。

更多时候我们想要从一幅图像中获取更高级的结果,比如图像中的目标检测与识别。

如果我们将输出图像中更高级的结果视为目的的话,那么我们可以把输入输出都是一幅图像看作是整个处理流程中的预处理。

下面我们将谈到一些重要的预处理技术。

(一)图像增强与去噪图像的增强是一个主观的结果,原来的图像按照我们的需求被处理成我们想要的效果,比如说模糊、锐化、灰度变换等等。

图像的去噪则是尽可能让图像恢复到被噪声污染前的样子。

衡量标准是可以度量的。

不管是图像的增强与去噪,都是基于滤波操作的。

1.滤波器的设计方法滤波操作是图像处理的一个基本操作,滤波又可分为空间滤波和频域滤波。

空间滤波是用一个空间模板在图像每个像素点处进行卷积,卷积的结果就是滤波后的图像。

频域滤波则是在频率域看待一幅图像,使用快速傅里叶变换将图像变换到频域,得到图像的频谱。

我们可以在频域用函数来保留或减弱/去除相应频率分量,再变换回空间域,得到频域滤波的结果。

而空间滤波和频域滤波有着一定的联系。

频域滤波也可以指导空间模板的设计,卷积定理是二者连接的桥梁。

(1)频域滤波使用二维离散傅里叶变换(DFT )变换到频域:∑∑-=+--==10)//(210),(),(N y N vy M ux i M x e y x f v u F π使用二维离散傅里叶反变换(IDFT )变换到空间域:∑∑-=-=+=1010)//(2),(1),(M u N v N vy M ux i e v u F MN y x f π在实际应用中,由于该过程时间复杂度过高,会使用快速傅里叶变换(FFT )来加速这个过程。

现在我们可以在频域的角度看待这些图像了。

数字图像增强的几种常见方法

数字图像增强的几种常见方法

数字图像增强的几种常见方法数字图像增强是图像处理领域中的一项重要任务,它旨在改善图像的质量和可视化效果。

在数字图像增强中,有几种常见的方法被广泛应用,包括直方图均衡化、滤波和增强算法、多尺度变换和基于机器学习的方法。

直方图均衡化是一种常见的图像增强方法。

它通过对图像的像素值进行重新分布,以扩展图像的动态范围,从而增强图像的对比度和细节。

直方图均衡化的基本思想是通过将图像像素的累积分布函数映射为均匀分布来调整像素的亮度值。

这种方法特别适用于对比度较低的图像,能够使图像的细节更清晰,并提升图像的质量。

滤波和增强算法也是数字图像增强的常见方法之一。

滤波可以去除图像中的噪声,平滑图像并提高图像的质量。

常见的滤波算法包括均值滤波、中值滤波和高斯滤波等。

这些算法通过对图像进行空间域或频域的滤波处理来改善图像的质量。

增强算法也可以用于提高图像的可视化效果。

例如,锐化算法可以增强图像的边缘和细节,使图像更加清晰。

对比度拉伸算法可以扩展图像的动态范围,增强图像的对比度。

这些算法可以根据不同的图像特征和需求进行选择和组合,以实现更好的图像增强效果。

多尺度变换是另一种常见的图像增强方法。

多尺度变换将图像转换为不同尺度的表示形式,利用图像在不同尺度上的信息来增强图像的质量和对比度。

常见的多尺度变换方法包括小波变换和金字塔变换。

这些方法在图像增强中广泛应用,并在图像去噪、边缘检测等领域取得了良好的效果。

除了传统的增强方法,基于机器学习的方法也在数字图像增强中得到了广泛的应用。

这些方法利用机器学习算法从大量的图像数据中学习图像的增强模型,然后使用该模型对新的图像进行增强。

通过学习大量数据得到的模型可以更准确地理解图像中的内容和结构,并提供更好的增强效果。

综上所述,数字图像增强的几种常见方法包括直方图均衡化、滤波和增强算法、多尺度变换和基于机器学习的方法。

这些方法可以根据图像的特点和需求进行选择和组合,以实现图像的质量和可视化效果的改善。

简述空域处理方法和频域处理方法的区别

简述空域处理方法和频域处理方法的区别

空域处理方法和频域处理方法是数字图像处理中常见的两种基本处理方法,它们在处理图像时有着不同的特点和适用范围。

下面将从原理、应用和效果等方面对两种处理方法进行简要介绍,并对它们的区别进行分析。

一、空域处理方法1. 原理:空域处理是直接对图像的像素进行操作,常见的空域处理包括图像增强、平滑、锐化、边缘检测等。

这些处理方法直接针对图像的原始像素进行操作,通过像素之间的关系来改变图像的外观和质量。

2. 应用:空域处理方法广泛应用于图像的预处理和后期处理中,能够有效改善图像的质量,增强图像的细节和对比度,以及减轻图像的噪声。

3. 效果:空域处理方法对图像的局部特征和细节有很好的保护和增强作用,能够有效地改善图像的视觉效果,提升图像的清晰度和质量。

二、频域处理方法1. 原理:频域处理是通过对图像的频率分量进行操作,常见的频域处理包括傅立叶变换、滤波、频域增强等。

这些处理方法将图像从空间域转换到频率域进行处理,再通过逆变换得到处理后的图像。

2. 应用:频域处理方法常用于图像的信号处理、模糊去除、图像压缩等方面,能够有效处理图像中的周期性信息和干扰信号。

3. 效果:频域处理方法能够在频率域对图像进行精细化处理,提高图像的清晰度和对比度,对于一些特定的图像处理任务有着独特的优势。

三、空域处理方法和频域处理方法的区别1. 原理不同:空域处理方法直接对图像像素进行操作,而频域处理方法是通过对图像进行频率分析和变换来实现图像的处理。

2. 应用范围不同:空域处理方法适用于对图像的局部特征和细节进行处理,而频域处理方法适用于信号处理和频率信息的分析。

3. 效果特点不同:空域处理方法能更好地保护和增强图像的细节和对比度,频域处理方法能更好地处理图像中的周期性信息和干扰信号。

空域处理方法和频域处理方法是数字图像处理中常用的两种处理方法,它们在原理、应用和效果等方面有着不同的特点和适用范围。

在实际应用中,可以根据图像的特点和处理需求选择合适的方法,以获得更好的处理效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字图像的空间域滤波和频域滤波三、实验过程1. 平滑空间滤波:1) 读出一幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一张图显示在同一图像窗口中。

椒盐噪声:def salt_pepperNoise(src):dst = src.copy()num = 1000 # 1000个噪声点ndim = np.ndim(src)row, col = np.shape(src)[0:2]for i in range(num):x = np.random.randint(0, row) # 随机生成噪声点位置y = np.random.randint(0, col)indicator = np.random.randint(0, 2)# 灰度图像if ndim == 2:if indicator == 0:dst[x, y] = 0else:dst[x, y] = 255# 彩色图像elif ndim == 3:if indicator == 0:dst[x, y, :] = 0else:dst[x, y, :] = 255return dst高斯噪声:def addGaussianNoise(image,sigma):mean = 0.0row, col ,ch= image.shapegauss = np.random.normal(mean, sigma, (row, col,ch))gauss = gauss.reshape(row, col,ch)noisy = image + gaussreturn noisy.astype(np.uint8)2) 对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果,要求在同一窗口中显示。

加入椒盐噪声后图像的滤波:img1 =cv2.imread("D:\\mote.jpg",0)img=img1[100:300]src =salt_pepperNoise(img)cv2.imshow("origin",src)dst = cv2.blur(src,(3,3)) #均值滤波模板cv2.imshow("blur",dst)dst1 = cv2.medianBlur(src,5) #中值滤波cv2.imshow("medianBlur",dst1)dst2 = cv2.GaussianBlur(src,(3,3),0) #高斯滤波cv2.imshow("GaussianBlur",dst2)cv2.waitKey(0)cv2.destroyAllWindows()3) 进行低通滤波,显示处理后的图像。

import cv2import numpy as npdef function(img):h,w=img.shapenewimg=np.zeros((h,w),np.uint8)img2=np.fft.fft2(img)fshift = np.fft.fftshift(img2)st=fshift.copy()h,w=fshift.shapesh=h/2sw=w/2r=40for i in range(h):for j in range(w):if ((sh - i) * (sh - i) + (sw - j) * (sw - j)) <= r * r: newimg[i, j] = 255tmp = 1else:tmp = 0st[i, j] = tmp * fshift[i, j]sl=np.fft.ifftshift(st)x2=np.fft.ifft2(sl)x3=np.uint8(np.real(x2))return newimg,x3img=cv2.imread('D:\\mote.jpg',0)img1,img2=function(img)cv2.imshow("image",img)cv2.imshow("low pass filtering",img2)cv2.waitKey(0)4) 显示均值处理后的图像。

代码:import cv2import matplotlib.pyplot as pltimg = cv2.imread('D:\\mote.jpg',0) #直接读为灰度图像blur = cv2.blur(img,(3,5))#模板大小3*5plt.subplot(1,2,1),plt.imshow(img,'gray')#默认彩色,另一种彩色bgr plt.title('img')plt.xticks([]), plt.yticks([])plt.subplot(1,2,2),plt.imshow(blur,'gray')plt.title('blur')plt.xticks([]), plt.yticks([])plt.show()5) 对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处理,要求在同一窗口中显示结果。

代码:import cv2import matplotlib.pyplot as pltimg = cv2.imread('D:/img/salt.jpg',0) #直接读为灰度图像blur = cv2.blur(img,(3,5))#模板大小3*5mid =cv2.medianBlur(img,5)plt.subplot(1,2,1),plt.imshow(mid,'gray')plt.title('medianBlur')plt.xticks([]), plt.yticks([])plt.subplot(1,2,2),plt.imshow(blur,'gray')plt.title('blur')plt.xticks([]), plt.yticks([])plt.show()2. 锐化空间滤波1) 读出一幅图像,采用3×3的拉普拉斯算子w = [ 1, 1, 1; 1 –8 1; 1, 1,1]对其进行滤波。

# 定义函数,实现拉普拉斯算子def Laplace(src):template = np.ones((3, 3), dtype=np.float32) # 模板template[1, 1] = -8.0addBorder = cv2.copyMakeBorder(src, 1, 1, 1, 1, cv2.BORDER_REFLECT_101) row, col = src.shapedst = np.zeros((row, col), dtype=np.int16)for i in range(row):for j in range(col):temp = addBorder [i:i+3, j:j+3]dst[i, j] = np.sum(template*temp)return dst2) 编写函数w = genlaplacian(n),自动产生任一奇数尺寸n的拉普拉斯算子,如5×5的拉普拉斯算子w = [ 1 1 1 1 11 1 1 1 11 1 -24 1 11 1 1 1 11 1 1 1 1]import numpy as npimport pandas as pdimport cv2from scipy import ndimagekernel_5x5=np.array([[1,1,1,1,1],[1,1,1,1,1],[1,1,-24,1,1],[1,1,1,1,1,],[1,1,1,1,1]])img = cv2.imread("D:\\mote.jpg", 0)k5 = ndimage.convolve(img, kernel_5x5)cv2.imshow("5x5", k5)cv2.waitKey()cv2.destroyAllWindows()3) 分别采用5×5,9×9,15×15和25×25大小的拉普拉斯算子对blurry_moon.tif进行锐化滤波,并利用式完成图像的锐化增强,观察其有何不同,要求在同一窗口中显示。

代码:import cv2img=blurred = cv2.imread("D:\\mote.jpg",0)#5×5,9×9,15×15和25×25blurred1 =cv2.GaussianBlur(img, (5,5), 0)blurred2 =cv2.GaussianBlur(img, (9,9), 0)blurred3 =cv2.GaussianBlur(img, (15,15), 0)blurred4 =cv2.GaussianBlur(img, (25,25), 0)img5x5 = img - blurred1img9x9 = img - blurred2img15x15 = img - blurred3img25x25 = img - blurred4cv2.imshow("5x5",img5x5 )cv2.imshow("9x9",img9x9 )cv2.imshow("15x15",img15x15)cv2.imshow("25x25",img25x25 )cv2.waitKey(0)随着属性值的增大,图像锐化增强4) 采用不同的梯度算子对blurry_moon.tif进行锐化滤波,并比较其效果。

代码:import numpy as npimport cv2src = cv2.imread("D:\\mote.jpg",0)#sobel算法x =cv2.Sobel(src,cv2.CV_16S,1,0)y =cv2.Sobel(src,cv2.CV_16S,0,1)absX =cv2.convertScaleAbs(x)absY =cv2.convertScaleAbs(y)dst =cv2.addWeighted(absX,0.5,absY,0.5,0)cv2.imshow('Sobel',dst)#拉布拉斯算子lap =placian(src,cv2.CV_16S,3)dst1 =cv2.convertScaleAbs(lap)cv2.imshow("Laplacian",dst1)#Canny算子can =cv2.Canny(src,30,120)s= src-cansrc1 =cv2.GaussianBlur(s,(3,3),0)cv2.imshow("can",src1 )cv2.waitKey(0)3. 傅立叶变换1)读出woman.tif这幅图像,对其进行快速傅立叶变换,分别显示其幅度图像和相位图像。

相关文档
最新文档