形心重心的理论计算公式

合集下载

材料力学形心计算公式

材料力学形心计算公式

材料力学形心计算公式材料力学是研究物质的内部结构和性质以及物质受力和变形规律的一门学科。

在材料力学中,形心是一个重要的概念,它可以帮助我们更好地理解物体的受力和变形情况。

在本文中,我们将介绍材料力学中形心的概念以及形心计算公式。

首先,让我们来了解一下形心的概念。

形心是一个物体几何形状的特征点,它可以用来描述物体的质量分布情况。

对于一个平面图形而言,形心通常是指该图形在均匀质量分布下的质心位置。

而对于一个立体物体而言,形心则是指该物体在均匀质量分布下的重心位置。

形心的计算可以帮助我们分析物体受力和变形的情况,对于工程设计和科学研究具有重要意义。

接下来,让我们来介绍一些常见图形的形心计算公式。

对于一个平面图形而言,常见的形心计算公式包括矩形、三角形、梯形和圆形等。

以矩形为例,其形心的计算公式为:\[ X = \frac{b}{2} \]\[ Y = \frac{h}{2} \]其中,\( X \) 和 \( Y \) 分别表示矩形的形心坐标,\( b \) 和 \( h \) 分别表示矩形的宽度和高度。

对于三角形而言,其形心的计算公式为:\[ X = \frac{a}{3} \]\[ Y = \frac{h}{3} \]其中,\( X \) 和 \( Y \) 分别表示三角形的形心坐标,\( a \) 和 \( h \) 分别表示三角形的底边长和高度。

对于梯形和圆形,其形心的计算公式也可以通过数学推导得出。

这些形心计算公式可以帮助我们在工程设计和科学研究中更好地分析和应用形心的概念。

除了平面图形外,对于立体物体而言,形心的计算也具有重要意义。

常见的立体物体包括长方体、圆柱体和球体等。

这些立体物体的形心计算公式可以通过积分或几何推导得出,它们可以帮助我们更好地理解立体物体的质量分布情况。

在工程设计中,形心的计算可以帮助我们确定物体的受力和变形情况,从而指导工程设计和结构分析。

在科学研究中,形心的计算也可以帮助我们深入理解物体的内部结构和性质,为科学研究提供重要参考。

数学二形心坐标计算公式

数学二形心坐标计算公式

数学二形心坐标计算公式
考研二重积分中的形心计算公式是∫∫dxdxdy=重心横坐标×d的面积,∫∫dydxdy=重心纵坐标×d的面积。

质点系的质心与静矩的概念。

高等数学作为大多数业研究生考试的必考科目,其有自己固有的特点,大纲几乎不变,注重基本知识点的考察,注重学生的综合应用能力,考察学生解题的技巧。

二重积:重心:物体的重力的合力作用点称为物体的重心。

(与组成该物体的物质有关)形心:物体的几何中心。

(只与物体的几何形状和尺寸有关,与组成该物体的物质无关)。

质量中心简称质心,指物质系统上被认为质量集中于此的一个假想点。

三者之间的联系与区别:一般情况下重心和形心是不重合的,只有物体是由同一种均质材料构成时,重心和形心才重合。

形心、质心与重心

形心、质心与重心

1、形心
形心是几何构形的中心,没有物理含义,是对几何构形上所有点的位置的一种等
效,设形心位置为c r r ,则计算公式如下
c rdv r V =⎰
r r 或i
ci x dv x V
=⎰
2、质心
质心是用来等效物体质量分布的一个几何点,由计算物体动量引出,这里假设物体密度为常数
m m d d d vdv rdv m r V r dt dt dt
ρρρ====⎰⎰p r r r r m rdv r V ⇒=⎰r r 或i mi x dv x V
=⎰ 可见,当物体质量分布均匀时质心与形心重合。

若物体密度并非常数,则 m rdv r dv
ρρ⇒=⎰⎰r r 3、重心
重心是用来等效物体重力作用的一个几何点,由计算物体对坐标原点的重力矩引出,这里假设物体密度为常数
()o g g g g M g r i dv g rdv i gVr i ρρρ=⨯=⨯=⨯⎰⎰r r r r r r
g rdv r V ⇒=⎰r r
可见在重力场中,对于质量分布均匀的物体,重心、质心、形心三者重合。

形心坐标计算公式二重积分

形心坐标计算公式二重积分

形心坐标计算公式二重积分形心(centroid)是一个几何物体的重心,它是物体的形状和密度分布的综合体现。

形心坐标是用来描述形心位置的坐标值,它可以通过二重积分的方法计算得到。

二重积分是对二元函数在给定区域上的积分运算。

对于形心坐标的计算,我们可以利用二重积分的定义来求解。

设有一个平面区域D,函数f(x,y)在D上有定义。

我们可以将这个区域D划分为许多小的矩形区域,每个矩形的宽度为Δx,高度为Δy。

那么在每个小矩形区域内部,我们可以取一个任意的点(xi,yi),并计算这个点上函数值f(xi,yi)与矩形面积ΔA的乘积。

然后将每个矩形的乘积相加,即可得到整个区域D上的二重积分。

记D的面积为A,形心坐标为(X,Y),则形心坐标的计算公式为:X = (1/A) ∬[D] x*f(x,y)dxdyY = (1/A) ∬[D] y*f(x,y)dxdy其中符号∬[D]表示对区域D上的积分运算。

实际上,这个二重积分的计算可以通过对x和y分别进行积分的方式得到。

首先对x进行积分,固定y的值,得到新的函数g(y),表示在x方向上的质量或面积分布。

然后对y进行积分,将g(y)与y相乘后对y进行积分,就可以求得形心坐标X。

同样的方法可以求得形心坐标Y。

具体的计算步骤如下:1.对x进行积分,根据具体函数f(x,y)和区域D的形状选择合适的积分方法,得到新的函数g(y)。

2.对y进行积分,将g(y)与y相乘后对y进行积分,得到形心坐标X。

3.同样的方法对y进行积分,得到形心坐标Y。

需要注意的是,对于不规则的区域D和复杂的函数f(x,y),二重积分的计算可能会比较繁琐和复杂。

通常情况下,可以利用数值积分的方法来近似计算形心坐标。

总结起来,形心坐标的计算需要使用二重积分的方法,具体步骤是对函数f(x,y)进行二重积分,并根据定义和区域D的性质获得形心坐标的计算公式。

根据具体情况选择适当的积分方法,并注意处理不规则区域和复杂函数的情况。

形心、质心与重心

形心、质心与重心

1、形心
形心是几何构形的中心,没有物理含义,是对几何构形上所有点的位置的一种等
效,设形心位置为c r r ,则计算公式如下
c rdv r V =⎰
r r 或i
ci x dv x V
=⎰
2、质心
质心是用来等效物体质量分布的一个几何点,由计算物体动量引出,这里假设物体密度为常数
m m d d d vdv rdv m r V r dt dt dt
ρρρ====⎰⎰p r r r r m rdv r V ⇒=⎰r r 或i mi x dv x V
=⎰ 可见,当物体质量分布均匀时质心与形心重合。

若物体密度并非常数,则 m rdv r dv
ρρ⇒=⎰⎰r r 3、重心
重心是用来等效物体重力作用的一个几何点,由计算物体对坐标原点的重力矩引出,这里假设物体密度为常数
()o g g g g M g r i dv g rdv i gVr i ρρρ=⨯=⨯=⨯⎰⎰r r r r r r
g rdv r V ⇒=⎰r r
可见在重力场中,对于质量分布均匀的物体,重心、质心、形心三者重合。

工程力学形心计算公式

工程力学形心计算公式

工程力学形心计算公式工程力学形心计算公式是工程力学中的一个重要概念,用来描述物体的形状和质量分布对于力的作用点的影响。

在工程中,形心计算公式被广泛应用于各种结构物和力学系统的分析与设计中。

形心,也被称为重心或质心,是一个物体所有质点所在位置的平均值,可以看作是物体的几何中心。

形心计算公式通过将物体划分为无限小的质点,然后计算这些质点的位置和质量对形心的贡献,从而得到整个物体的形心位置。

对于一个均匀物体,其形心可以通过几何的方法求解。

比如,对于一个均匀的平面图形,其形心可以通过对图形进行分割,然后计算每个小区域的形心位置,并根据每个小区域的面积加权平均得到。

同样地,对于一个均匀的立体物体,可以将其分割为无数个小体积,并根据每个小体积的位置和体积加权平均求得形心位置。

然而,在大多数实际工程问题中,物体的形状和质量分布往往并不均匀,因此需要使用形心计算公式来求解。

形心计算公式根据物体的几何形状和质量分布提供了计算形心位置的方法。

常见的形心计算公式包括:1. 平面图形的形心计算:对于一个平面图形,可以使用一些特定的公式来计算其形心位置。

比如,对于一个矩形,其形心位于中心点;对于一个三角形,其形心位于三条边的交点的重心位置。

2. 立体物体的形心计算:对于一个立体物体,可以将其分割为无数个小体积,并根据每个小体积的位置和体积加权平均求得形心位置。

具体的计算方法可以根据物体的几何形状和质量分布的特点来确定。

形心计算公式的应用非常广泛。

在建筑工程中,形心计算公式可以用来确定建筑结构的荷载传递和受力分析。

在机械工程中,形心计算公式可以用来确定机械零件的平衡位置和稳定性。

在航空航天工程中,形心计算公式可以用来确定飞行器的姿态控制和稳定性。

形心计算公式是工程力学中一个重要的概念,可以用来描述物体的形状和质量分布对于力的作用点的影响。

通过使用形心计算公式,工程师可以准确地计算物体的形心位置,为工程设计和分析提供有效的方法和工具。

形心积分公式

形心积分公式

形心积分公式形心积分公式是数学中的一个重要概念,它在曲线的弧长、曲线的面积等问题中有着广泛的应用。

本文将介绍形心积分公式的定义和应用,并结合具体例子进行解析,帮助读者更好地理解和应用这一公式。

形心积分公式是指通过对曲线上的点进行加权求和,得到曲线的形心坐标的一种数学方法。

形心坐标即曲线所围成的图形的中心位置,也称为质心或重心。

形心积分公式的一般形式为:\[ X = \frac{\int_{a}^{b} x \cdot ds}{\int_{a}^{b} ds} \]\[ Y = \frac{\int_{a}^{b} y \cdot ds}{\int_{a}^{b} ds} \]其中,\( (x, y) \) 表示曲线上的点的坐标,\( ds \) 表示曲线上的一个微小线段,\( a \) 和 \( b \) 表示曲线上的起点和终点。

形心积分公式的意义在于,通过对曲线上的每个点进行加权求和,可以得到曲线形状的中心位置。

在计算形心时,我们通常将曲线分成无数个微小线段,在每个微小线段上取一点,然后对这些点进行加权求和,最终得到形心坐标。

下面我们通过一个具体的例子来说明形心积分公式的应用。

假设有一段曲线,其方程为 \( y = x^2 \),我们希望计算这段曲线的形心坐标。

我们需要对曲线进行参数化,以便进行积分计算。

令 \( x = t \),则\( y = t^2 \),其中 \( t \) 的取值范围为 \( [0, 1] \)。

将 \( x \) 和\( y \) 分别代入形心积分公式中,得到:\[ X = \frac{\int_{0}^{1} t \cdot \sqrt{1 + (dx/dt)^2} \cdot dt}{\int_{0}^{1} \sqrt{1 + (dx/dt)^2} \cdot dt} \]\[ Y = \frac{\int_{0}^{1} t^2 \cdot \sqrt{1 + (dx/dt)^2} \cdot dt}{\int_{0}^{1} \sqrt{1 + (dx/dt)^2} \cdot dt} \]其中,\( dx/dt = 1 \)。

工字钢形心位置计算公式

工字钢形心位置计算公式

工字钢形心位置计算公式
形心坐标计算公式:Dxdxdy=重心横坐标×D的面积,Dydxdy=重心纵坐标×D的面积。

形心就是截面图形的几何中心,质心是针对实物体而言的,而形心是针对抽象几何体而言的,对于密度均匀的实物体,质心和形心重合。

n维空间中一个对象X的几何中心或形心是将X分成矩相等的两部分的所有超平面的交点。

非正式地说,它是X中所有点的平均。

如果一个对象具有一致的密度,或者其形状和密度具有某种对称性足以确定几何中心,那么它的几何中心和质量中心重合,该条件是充分但不是必要的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

形心重心的理论计算公式
式中V=∑Vi。

在均质重力场中,均质物体的重心、质心和形心的位置重合。

五、均质等厚薄板的重心(平面组合图形形心)公式:
令式中的∑A i.x i=A.x c=S y;
∑A i.y i=A.y c=S x
则S y、S x分别称为平面图形对y轴和x轴的静矩或截面一次矩。

六、物体重心位置的求法工程中,几种常见的求物体重心的方法简介如下:
1、对称法
凡是具有对称面、对称轴或对称中心的简单形状的均质物体,其重心一定在它的对称面、对称轴和对称中心上。

对称法求重心的应用见下图。

2、试验法对于形状复杂,不便于利用公式计算的物体,常用试验法确定其重心位置,
常用的试验法有悬挂法和称重法。

(1)、悬挂法
利用二力平衡公理,将物体用绳悬挂两次,重心必定在两次绳延长线的交点上。

悬挂法确定物体的重心方法见图
(2)、称重法
对于体积庞大或形状复杂的零件以及由许多构件所组成的机械,常用称重法来测定
其重心的位置。

例如,用称重法来测定连杆重心位置。

如图。

设连杆的重力为G ,重心C点与连杆左端的点相距为Xc,量出两支点的距离L,由磅秤读出B端的约束力F B,
则由∑M A(F)=0 F B.L-G.x c=0
x c=F B.L/G
(3)、分割法:
工程中的零部件往往是由几个简单基本图形组合而成的,在计算它们的形心时,可先将其分割为几块基本图形,利用查表法查出每块图形的形心位置与面积,然后利用形心计算公式求出整体的形心位置。

此法称为分割法。

下面是平面图形的形心坐标公式:
(4)、负面积法:
仍然用分割法的公式,只不过去掉部分的面积用负值。

3、查表法在工程手册中,可以查出常用的基本几何形体的形心位置计算公式。

下面列出了几个常用的图形的形心位置计算公式和面积公式。

四、求平面图形的形心举例
例1 热轧不等边角钢的横截面近似简化图形如图所示,求该截面形心的位置。

解:
方法一(分割法):
根据图形的组合情况,可将该截面分割成
两个矩形Ⅰ,Ⅱ,C1和C2分别为两个矩形
的形心。

取坐标系Oxy如图所示,则矩形Ⅰ,
Ⅱ的面积和形心坐标分别为
A1=120mm×12mm=1440mm2
x1=6mm
y1=60mm
A2=(80-12)mm×12mm=816mm2
x2=12mm+(80-12)/20=46mm
y2=6mm
即所求截面形心C点的坐标为(20.5mm,40.5mm)
方法二(负面积法):
用负面积法求形心。

计算简图如图。

A1=80mm×120mm=9600mm2
x1=40mm y1=60mm
A2=-108mm×68mm=-7344mm2
x1=12mm+(80-12)mm/2=46mm
y1=12mm+(120-12)mm/2=66mm
由于将去掉部分的面积作为负值,方法二又称为负面积法。

例2 试求如图所示图形的形心。

已知R=100mm,r2=30mm,r3=17mm。

解:由于图形有对称轴,形心必在对称轴上,建立坐标系Oxy如图所示,只须求出x c,将图形看成由三部分组成,各自的面积及形心坐标分别为
(1)、半径为R的半圆面:
A1=πR2/2=π×(100mm)2/2=
15700mm2
y1=4R/(3π)=4×100mm/(3π)=
42.4mm
(2)、半径为r2的半圆面
A2=π(r2)2/2=π×(30mm)2/2=
1400mm2
y2=-4r2/(3π)=-4×30mm/(3π)
=-12.7mm
(3)、被挖掉的半径为r3的圆面:
A3=-π(r3)2=-π(17mm)2=
910mm2
y3=0
(4)、求图形的形心坐标。

由式形心公式可求得
即所求截面形心C点的坐标为(0mm,40mm)。

相关文档
最新文档