形心、质心与重心
平面图形的形心计算公式

平面图形的形心计算公式
形心的公式:
c=[∫a(ρdA)]、ρA=[∫a(dA)]、A=Sy、A
Yc=[∫a(ρydA)]、ρA=[∫a(ydA)]、A=S、A
质心的公式:
Rc=m1r1+m2r2+m3r3+。
∑m
形心:
面的形心就是截面图形的几何中心,质心是针对实物体而言的,而形
心是针对抽象几何体而言
的,对于密度均匀的实物体,质心和形心重合。
质心:
质量中心简称质心,指物质系统上被认为质量集中于此的一个假想点。
与重心不同的是,质心
不一定要在有重力场的系统中。
扩展资料:
质心:物体质量中心。
重心:物体重力中心。
重力G=mg,其中m是物体
质量,g为一常数。
重心和质心一般情况下是重合的。
判断形心的位置:
当截面具有两个对称轴时,二者的交点就是该截面的形心。
据此,可
以很方便的确定圆形、圆环形、正方形。
的形一个对称轴的截面,其形心
一定在其对称轴上,具体在对称轴上的哪一点,则需计算才能确定。
我们把均匀平面薄片的重心叫做这平面薄片所占的平面图形的形心。
质心——精选推荐

质心mass,centre of质量中心或称质心,指物质系统上被认为质量集中于此的一个假想点。
与重心不同的是,质心不一定要在有重力场的系统中。
值得注意的是,除非重力场是均匀的,否则同一物质系统的质心与重心不通常在同一假想点上。
在一个N维空间中的质量中心,坐标系计算公式为:X表示某一坐标轴mi 表示物质系统中,某i质点的质量xi 表示物质系统中,某i质点的坐标。
质点系质量分布的平均位置。
质量中心的简称。
它同作用于质点系上的力系无关。
设n个质点组成的质点系,其各质点的质量分别为m1,m2,…,mn。
若用r1 ,r2,…,rn分别表示质点系中各质点相对某固定点的矢径,rc 表示质心的矢径,则有rc=Image:质心1.jpgmiri /Image:质心1.jpgmi。
当物体具有连续分布的质量时,质心C的矢径rc=Image:质心2.jpgρrdτ/Image:质心2.jpgρdτ,式中ρ为体(或面、线)密度;dτ为相当于ρ的体(或面、线)元;积分在具有分布密度ρ的整个物质体(或面、线)上进行。
由牛顿运动定律或质点系的动量定理,可推导出质心运动定理:质心的运动和一个位于质心的质点的运动相同,该质点的质量等于质点系的总质量,而该质点上的作用力则等于作用于质点系上的所有外力平移到这一点后的矢量和。
由这个定理可推知:①质点系的内力不能影响质心的运动。
②若质点系所受外力的主矢始终为零,则其质心作匀速直线运动或保持静止状态。
③若作用于质点系上外力的主矢在某一轴上的投影始终为零,则质心在该轴上的坐标匀速变化或保持不变。
质点系的任何运动一般都可分解为质心的平动和相对于质心的运动。
质点系相对某一静止坐标系的动能等于质心的动能和质点系相对随质心作平动的参考系运动的动能之和。
质心位置在工程上有重要意义,例如要使起重机保持稳定,其质心位置应满足一定条件;飞机、轮船、车辆等的运动稳定性也与质心位置密切相关;此外,若高速转动飞轮的质心不在转动轴线上,则会引起剧烈振动而影响机器正常工作和寿命。
重心 几何术语

重心几何术语
重心是指物体的质量所集中的点,也称为重心或质心。
重心在物理学和工程学中十分重要,因为它决定了物体在受力作用下的稳定性和平衡状态。
在几何学中,重心可以通过计算物体各个部分的质量和位置来确定。
对于均匀分布质量的物体,重心位于物体的几何中心。
在三维空间中,重心可以由三个坐标值确定。
重心还可以用于描述二维图形的位置。
对于平面图形而言,重心通常是通过计算图形各个点的坐标平均值来确定的。
重心在几何学中还有其他一些相关术语和概念,如:
1. 重心距离:指从某个点到物体的重心的距离。
2. 划分比例:指将一个线段或一个图形按照一定比例分割,并且分割点与重心之间的比例关系。
3. 重心轴:指以重心为中心的旋转轴,如果物体绕重心轴旋转,可以保持平衡。
重心在建筑、机械设计等领域具有重要的应用价值,能够帮助人们分析和设计结构的稳定性、平衡性等特性。
形心重心的理论计算公式

形心重心的理论计算公式式中V=∑Vi。
在均质重力场中,均质物体的重心、质心和形心的位置重合。
五、均质等厚薄板的重心(平面组合图形形心)公式:令式中的∑A i.x i=A.x c=S y;∑A i.y i=A.y c=S x则S y、S x分别称为平面图形对y轴和x轴的静矩或截面一次矩。
六、物体重心位置的求法工程中,几种常见的求物体重心的方法简介如下:1、对称法凡是具有对称面、对称轴或对称中心的简单形状的均质物体,其重心一定在它的对称面、对称轴和对称中心上。
对称法求重心的应用见下图。
2、试验法对于形状复杂,不便于利用公式计算的物体,常用试验法确定其重心位置,常用的试验法有悬挂法和称重法。
(1)、悬挂法利用二力平衡公理,将物体用绳悬挂两次,重心必定在两次绳延长线的交点上。
悬挂法确定物体的重心方法见图(2)、称重法对于体积庞大或形状复杂的零件以及由许多构件所组成的机械,常用称重法来测定其重心的位置。
例如,用称重法来测定连杆重心位置。
如图。
设连杆的重力为G ,重心C点与连杆左端的点相距为Xc,量出两支点的距离L,由磅秤读出B端的约束力F B,则由∑M A(F)=0 F B.L-G.x c=0x c=F B.L/G(3)、分割法:工程中的零部件往往是由几个简单基本图形组合而成的,在计算它们的形心时,可先将其分割为几块基本图形,利用查表法查出每块图形的形心位置与面积,然后利用形心计算公式求出整体的形心位置。
此法称为分割法。
下面是平面图形的形心坐标公式:(4)、负面积法:仍然用分割法的公式,只不过去掉部分的面积用负值。
3、查表法在工程手册中,可以查出常用的基本几何形体的形心位置计算公式。
下面列出了几个常用的图形的形心位置计算公式和面积公式。
四、求平面图形的形心举例例1 热轧不等边角钢的横截面近似简化图形如图所示,求该截面形心的位置。
解:方法一(分割法):根据图形的组合情况,可将该截面分割成两个矩形Ⅰ,Ⅱ,C1和C2分别为两个矩形的形心。
材料力学 第2章 力系简化

而合力的作用点即平行力系的中心:
n
xC
lim
n
Fi xi
i 1 n
l
q( x) xdx
0 l
lim
n
i 1
Fi
0 q(x)dx
分布力对点A之矩
分布力包围的面积
结论:分布力的合力的大小等于分布力载荷图的面积,合
力的作用线通过载荷图的形心。
2.2 物体的重心、质心和形心
例2-5 如图所示,已知q、l, 求分布力对A点之矩。
2.2 物体的重心、质心和形心
xC
ΣFi xi ΣFi
,yC
ΣFi yi ΣFi
,zC
ΣFi zi ΣFi
3、平行力系中心的性质
平行力系的中心位置只与各平行力的大小和作用点的 位置有关,与平行力的方向无关。
2.2 物体的重心、质心和形心
二、物体的重心、质心和形心
1、重心
n个小体积ΔVi
坐标xi、yi、zi
(2)实验测定方法 悬挂法
称重法
l
A
C
B
xC G
FNB
二力平衡 两次悬挂
2.2 物体的重心、质心和形心
三、分布力
工程上存在大量分布力的情况,通常需要确定这些分布力
的合力的大小及其合力作用线的位置。对于图示的线分布力,
可以视为由无穷个集中力所构成的平行力系,
其合力的大小:FR
l
q ( x)dx
0
FP1 450kN,FP2 200kN
F1 300kN ,F2 70kN
求:
(1)力系向点 O 简化的结果;
(2)力系简化的最终结果。
2.1 力系简化
解:(1)确定简化中心为O点
参数方程的形心坐标公式

参数方程的形心坐标公式形心,也称作质心或重心,是指一个平面图形或三维空间图形的重心位置,即该图形的所有质点的平均位置。
在几何学中,求解形心坐标是一个重要的问题,可以通过参数方程来计算。
参数方程是一种表示曲线或曲面的方程,其中自变量通常表示为参数。
在二维平面上,一个曲线的参数方程可以表示为x = f(t), y = g(t),其中t是参数,f(t)和g(t)是关于t的函数。
同样,在三维空间中,一个曲面的参数方程可以表示为x = f(u, v), y = g(u, v), z = h(u, v),其中u和v是参数,f(u, v), g(u, v)和h(u, v)是关于u和v 的函数。
对于一个平面图形的形心,可以使用参数方程的形心坐标公式来计算。
对于一个曲线,形心坐标公式可以表示为:x̄= (1/L) ∫[a,b] x(t)ρ(t)dtȳ= (1/L) ∫[a,b] y(t)ρ(t)dt其中L是曲线的弧长,[a,b]是参数t的取值范围,x(t)和y(t)分别是曲线上点的x坐标和y坐标的函数,ρ(t)是曲线上点的单位质量。
同样地,对于一个曲面,形心坐标公式可以表示为:x̄ = (1/S) ∬[D] x(u, v)ρ(u, v)dAȳ = (1/S) ∬[D] y(u, v)ρ(u, v)dAz̄ = (1/S) ∬[D] z(u, v)ρ(u, v)dA其中S是曲面的面积,[D]是参数u和v所确定的曲面上的区域,x(u, v),y(u, v)和z(u, v)分别是曲面上点的x坐标、y坐标和z坐标的函数,ρ(u, v)是曲面上点的单位质量,dA是曲面上的面积元素。
形心坐标公式的推导可以通过对参数t、u和v进行积分来得到。
在计算形心时,需要确定曲线或曲面上每个点的密度分布,即单位质量。
通常情况下,可以假设质量均匀分布在曲线或曲面上,即单位质量在整个曲线或曲面上是恒定的。
形心坐标公式的应用非常广泛。
在工程学中,形心坐标公式可以用于计算物体的质心位置,从而确定物体的平衡状态。
重心和质心的关系

重心和质心是两个在物理学和工程学中常用的概念,它们都与物体的质量和空间位置有关,但有不同的特性和用途。
首先,质心是物体所有质量分布的平均位置。
它通过将每个点的质量乘以它到参考点的距离,然后将所有这些结果相加,最后除以总质量来得出。
质心对于理解物体的动力学(如重力、动量等)非常重要,因为所有的质量都以质心为中心进行旋转。
另一方面,重心是三维对象内部所有点重力的集结点。
与质心不同,重心只考虑物体的质量分布,而不考虑物体的旋转运动。
重心是决定物体翻转和平衡的关键因素。
在应用上,理解重心和质心的关系可以帮助工程师更好地设计和分析各种结构和系统,例如建筑结构、机械系统等。
同时,对于物理学家来说,理解这些概念是理解和描述物质的基本相互作用的关键部分,例如重力和惯性。
总的来说,质心和重心都是描述物体质量分布和重力的有用工具。
它们在某些情况下可以相同,但在其他情况下会有所不同。
例如,对于一个均匀分布的球体来说,质心和重心都在球心;但对于一个不规则形状的物体来说,质心和重心的位置可能会有所不同。
《重心和形心》课件

在这份PPT课件中,我们将探讨重心和形心的概念、计算方法以及应用。这 两个概念不仅在物理领域中扮演关键角色,也在各个设计和优化领域中发挥 作用。
什么是重心和形心?
1 重心
物体所受重力的集中点,也是物体平衡的关键点。
2 形心
物体所有小部分形状、质量加权后得到的点,也是物体对应的简化物体的重心。
形心
• 物体质心位移估计 • 物流、仓储布局优化 • 结构设计优化
总结
1 重心和形心的重要
性
重心和形心都是描述物 体重量分布的重要点。
2 计算重心和形心要
考虑的因素
计算重心和形心需要应用
范围
重心和形心的应用涉及 到各个领域的设计和优 化。
如何计算重心和形心?
1 重心
2 形心
若物体均匀,则重心位于物体中心。若物 体不均匀,则可以通过挂钟实验或测量法 计算重心位置。
若物体有规则形状,则可以使用公式计算 形心位置。若物体没有规则形状,则可以 通过分割成若干个规则形状再计算每个形 状的形心位置后加权平均得到。
重心和形心的应用
重心
• 汽车平衡设计 • 物体挂钩位置确定 • 反击点位置确定
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、形心
形心是几何构形的中心,没有物理含义,是对几何构形上所有点的位置的一种等
效,设形心位置为c r r ,则计算公式如下
c rdv r V =⎰
r r 或i
ci x dv x V
=⎰
2、质心
质心是用来等效物体质量分布的一个几何点,由计算物体动量引出,这里假设物体密度为常数
m m d d d vdv rdv m r V r dt dt dt
ρρρ====⎰⎰p r r r r m rdv r V ⇒=⎰r r 或i mi x dv x V
=⎰ 可见,当物体质量分布均匀时质心与形心重合。
若物体密度并非常数,则 m rdv r dv
ρρ⇒=⎰⎰r r 3、重心
重心是用来等效物体重力作用的一个几何点,由计算物体对坐标原点的重力矩引出,这里假设物体密度为常数
()o g g g g M g r i dv g rdv i gVr i ρρρ=⨯=⨯=⨯⎰⎰r r r r r r
g rdv r V ⇒=⎰r r
可见在重力场中,对于质量分布均匀的物体,重心、质心、形心三者重合。