课程设计ANSYS有限元分析(最完整)
有限元分析ANSYS理论与应用第四版课程设计

有限元分析ANSYS理论与应用第四版课程设计一、选题背景有限元分析是一种数值分析方法,广泛应用于各个领域。
它通过将复杂问题离散化为简单的有限元单元,然后计算每个单元中的变量,最终得到整个结构体系的解。
有限元分析在工程领域特别受欢迎,因为它可以模拟各种复杂情况,例如热传导、机械应力、电磁场等等。
而ANSYS是目前最为流行的有限元分析软件之一,也是工业界最广泛使用的有限元分析软件之一。
因此,学习ANSYS有限元分析对于工程学生来说非常重要。
同时,深入了解ANSYS的原理和应用,可以培养学生的分析和解决实际问题的能力。
因此,在毕业设计中选择有限元分析ANSYS理论与应用第四版课程设计,是十分有意义的。
二、任务介绍此次毕业设计的主要任务是:研究有限元分析ANSYS理论与应用第四版的内容,结合自己所学的工程知识,开展一个完整的课程设计。
具体任务包括以下几个方面:1. 学习有限元分析ANSYS理论与应用第四版的内容在开始课程设计之前,首先应当充分了解有限元分析ANSYS理论与应用第四版的内容。
学习过程中需要做到以下几点:•仔细研读ANSYS有限元分析的理论原理•阅读实例并模拟实例分析•练习使用软件进行有限元分析2. 独立设计一个有限元分析问题独立设计一个有限元分析问题,通过ANSYS软件进行模拟,从而体验有限元分析的具体过程。
设计问题的具体细节应满足以下几点:•选取合适的设计问题,并设计一个相应的结构模型•通过ANSYS软件对所设计的结构模型进行有限元分析•根据分析结果,解释结构中的应力分布和变形情况3. 形成课程设计报告将独立完成的有限元分析问题的报告形成课程设计报告。
具体要求如下:•完整介绍自己所设计的有限元分析问题,包括结构模型、参数设置等•描述有限元分析的具体过程•分析并解释分析结果,并对结果进行合理的解释和评估•总结有限元分析的理论和应用,提出未来研究的方向和思考三、学习方法和途径学习ANSYS有限元分析的理论和方法有多种途径和方法。
有限元分析ANSYS简单入门教程

有限元分析ANSYS简单入门教程有限元分析(finite element analysis,简称FEA)是一种数值分析方法,广泛应用于工程设计、材料科学、地质工程、生物医学等领域。
ANSYS是一款领先的有限元分析软件,可以模拟各种复杂的结构和现象。
本文将介绍ANSYS的简单入门教程。
1.安装和启动ANSYS2. 创建新项目(Project)点击“New Project”,然后输入项目名称,选择目录和工作空间,并点击“OK”。
这样就创建了一个新的项目。
3. 建立几何模型(Geometry)在工作空间内,点击左上方的“Geometry”图标,然后选择“3D”或者“2D”,根据你的需要。
在几何模型界面中,可以使用不同的工具进行绘图,如“Line”、“Rectangle”等。
4. 定义材料(Material)在几何模型界面中,点击左下方的“Engineering Data”图标,然后选择“Add Material”。
在材料库中选择合适的材料,并输入必要的参数,如弹性模量、泊松比等。
5. 设置边界条件(Boundary Conditions)在几何模型界面中,点击左上方的“Analysis”图标,然后选择“New Analysis”并选择适合的类型。
然后,在右侧的“Boundary Conditions”面板中,设置边界条件,如约束和加载。
6. 网格划分(Meshing)在几何模型界面中,点击左上方的“Mesh”图标,然后选择“Add Mesh”来进行网格划分。
可以选择不同的网格类型和规模,并进行调整和优化。
7. 定义求解器(Solver)在工作空间内,点击左下方的“Physics”图标,然后选择“Add Physics”。
选择适合的求解器类型,并输入必要的参数。
8. 运行求解器(Run Solver)在工作空间内,点击左侧的“Solve”图标。
ANSYS会对模型进行求解,并会在界面上显示计算过程和结果。
ansys有限元分析报告02

姓名: 班级:10 机制二班 学号:1038
1、概述
图示为一个 130mm×200mm×15mm 的钢制平板,钢板上沿板的中 心线钻出三个孔(半径 12mm),钢板底部已施加约束,钢板顶 边受 300N/mm 均布拉力。忽略重力影响。材料属性:杨氏模量: 190GPa;泊松比:0.3 求:钢板的应力分布情况及变形情况(提 示可参看课本第三章实例,可采用 Plane82 单元模拟;也可三维 建模采用 Solid45 实体单元模拟,注意单位制! )
0.113e9 N。 最大应力在图中红色区域,最大应力为 最大应力在图中红色区域,最大应力为0.113e9 0.113e9N
单元类型。再修改单元类型选项(options)
� Main Menu>Preprocessor>Material Models 定义材料属性
� Main Menu>Preprocessor>Real Constants 定义的截面的厚度。
� Main Menu>Preprocessor>Mesh>MeshTool 直接用 meshtool 对模型进行自由 网格划分
0. 255 e8m 最大变形在图中红色区域,最大变形为 最大变形在图中红色区域,最大变形为0. 0.255 255ee-8 � 应力云图
Main Menu>General Posproc>Plot Results>Contour Plot>Nodal Solu 弹出对话框选择Stess>von Mises stress获取下图
� 将模型底边自由度完全约束;
Байду номын сангаас
� 顶部边加载 F = -300000 N/M
ansys有限元分析报告

ANSYS有限元分析报告1. 简介在工程设计领域,有限元分析是一种常用的数值分析方法,通过将复杂的结构划分为有限数量的单元,然后对每个单元进行力学和物理特性的计算,最终得出整个结构的响应。
ANSYS是一款流行的有限元分析软件,提供了丰富的工具和功能,可用于解决各种工程问题。
本文将介绍ANSYS有限元分析的基本步骤和流程,并以一个实际案例为例进行说明。
2. 步骤2.1 确定分析目标首先要确定分析的目标。
这可以是结构的强度分析、振动分析、热传导分析等。
根据目标的不同,还需确定所需的加载条件和边界条件。
2.2 几何建模在进行有限元分析之前,需要进行几何建模。
在ANSYS中,可以使用几何建模工具创建和编辑结构模型。
这包括定义几何形状、尺寸和位置等。
2.3 网格划分网格划分是有限元分析的关键步骤。
通过将结构划分为多个单元,可以将结构分解为有限数量的离散部分,从而进行数值计算。
在ANSYS中,可以使用网格划分工具进行自动或手动划分。
2.4 材料属性定义在进行有限元分析之前,需要定义材料的物理和力学属性。
这包括弹性模量、泊松比、密度等。
ANSYS提供了一个材料库,可以选择常见材料的预定义属性,也可以手动定义。
2.5 加载和边界条件定义在进行有限元分析之前,需要定义加载和边界条件。
加载条件可以是力、压力、温度等。
边界条件可以是支撑、固定或自由。
2.6 求解和结果分析完成前面的步骤后,可以开始求解分析模型。
ANSYS将应用数值方法来解决有限元方程组,并计算结构的响应。
一旦求解完成,可以进行结果分析,包括位移、应力、应变等。
2.7 结果验证和后处理在对结果进行分析之前,需要对结果进行验证。
可以使用已知的理论结果或实验数据进行比较,以确保分析结果的准确性。
完成验证后,可以进行后处理,生成报告或结果图表。
3. 案例分析在本案例中,将针对一个简单的悬臂梁进行有限元分析。
3.1 确定分析目标本次分析的目标是确定悬臂梁在给定加载条件下的应力分布和变形。
ansys有限元分析实用教程2篇

ansys有限元分析实用教程2篇第一篇:ansys有限元分析实用教程(上)有限元分析是一种广泛应用的数值分析方法,可用于模拟和分析各种结构和系统的受力、变形及其他物理行为。
在ansys软件平台下,有限元分析功能十分强大,能够对各种工程问题进行有效的分析和解决。
本文将介绍ansys有限元分析的基础操作和实用技巧。
一、建立模型在进行有限元分析前,首先需要建立准确的模型。
在ansys中,可以通过多种方式进行几何建模,包括手工绘制、导入CAD文件、复制现有模型等。
为了确保模型的准确性,需要注意以下几个方面:1.确定模型的几何形状,包括尺寸、几何特征等。
2.选择适当的单元类型,不同形状的单元适用于不同的工程问题。
3.注意建模过程中的单位一致性,确保模型的尺寸和材料参数等单位一致。
4.检查模型建立后的性质,包括质量、连接性和几何适应性等。
二、设置材料参数和加载条件建立模型后,需要设置材料的弹性参数和加载条件。
在ansys中,可以设置各种材料属性,包括弹性模量、泊松比、密度等。
此外,还需要设置加载条件,包括加速度、力、位移等。
在设置过程中,需要注意以下几个方面:1.根据实际情况选择材料参数和加载条件。
2.确保材料参数和加载条件设置正确。
3.考虑到不同工况下的加载条件,进行多组加载条件的设置。
三、网格划分网格划分是有限元分析中的关键步骤,它将模型分割成许多小单元进行计算。
在ansys中,可以通过手动划分、自动划分或导入外部网格等方式进行网格划分。
在进行网格划分时,需要注意以下几个方面:1.选择适当的单元类型和网格密度,确保模型计算结果的准确性。
2.考虑网格划分的效率和计算量,采用合理的网格划分策略。
3.对于复杂模型,可以采用自适应网格技术,提高计算效率和计算精度。
四、求解模型建立模型、设置材料参数和加载条件、网格划分之后,即可进行模型求解。
在ansys中,可以进行静态分析、动态分析、热分析、流体分析等多种分析类型。
塔机平衡臂有限元分析ansys课程设计

塔机平衡臂的动力学分析
塔机平衡臂的有限元模型建立 动力学方程的建立与求解 模态分析结果及解释 动力学分析在塔机设计中的应用与展望
塔机平衡臂有限元分析结果的 后处理
有限元分析结果的可视化
可视化内容:包括应力、应 变、位移等结果的可视化
可视化方法:采用ANSYS的 图形界面进行后处理,生成 云图、等值线图等
塔机平衡臂的模态分析结果:通过模态分析可以得到塔机平衡臂的固有频率和模态 振型,这些结果可用于优化塔机平衡臂的结构设计,提高其稳定性和安全性。
塔机平衡臂模态分析的意义:模态分析对于塔机平衡臂的结构设计具有重要意义,通过优 化塔机平衡臂的结构设计,可以提高其工作性能和安全性,减少振动和共振等不利影响。
塔机平衡臂有限元分析ANSYS 课程设计
汇报人:
单击输入目录标题 塔机平衡臂有限元分析概述 塔机平衡臂模型的建立 塔机平衡臂的有限元分析 塔机平衡臂有限元分析结果的后处理 ANSYS软件操作实践
添加章节标题
塔机平衡臂有限元分析概述
有限元分析的基本概念
有限元分析是一 种数值分析方法, 通过将连续的物 理系统离散化为 有限个小的单元, 建立数学模型并 求解得到系统的
根据分析结果,优化塔机平衡臂的 材料选择和材料属性,以提高其承 载能力和耐久性。
添加标题
添加标题
添加标题
添加标题
根据分析结果,优化塔机平衡臂的 尺寸和形状,以减小应力集中和疲 劳损伤。
根据分析结果,优化塔机平衡臂的 连接方式和连接强度,以确保其整 体稳定性和可靠性。
ANSYS软件操作实践
ANSYS软件的基本操作
标。
塔机平衡臂的有限元分析意义
提高塔机设计的可靠性和安全 性
优化塔机结构,降低制造成本
课程设计ANSYS有限元分析(最完整)

有限元法分析与建模课程设计报告学院:机电学院专业:机械制造及其自动化指导教师:****学生:****学号:2012011****2015-12-31摘要本文通过ANSYS10.0建立了标准光盘的离心力分析模型,采用有限元方法对高速旋转的光盘引起的应力及其应变进行分析,同时运用经典弹性力学知识来介绍ANSYS10.0中关于平面应力问题分析的基本过程和注意事项。
力求较为真实地反映光盘在光驱中实际应力和应变分布情况,为人们进行合理的标准光盘结构设计和制造工艺提供理论依据。
关键词:ANSYS10.0;光盘;应力;应变。
目录第一章引言31.1 引言3第二章问题描述52.1有限元法及其基本思想52.2 问题描述5第三章力学模型的建立和求解63.1设定分析作业名和标题63.2定义单元类型73.3定义实常数103.4定义材料属性133.5建立盘面模型153.6对盘面划分网格233.7施加位移边界283.8施加转速惯性载荷并求解31第四章结果分析334.1 旋转结果坐标系334.2查看变形344.3查看应力36总结39参考文献40第一章引言1.1 引言光盘业是我国信息化建设中发展迅速的产业之一,认真研究光盘产业的规律和发展趋势,是一件非常迫切的工作。
光盘产业发展的整体性强,宏观调控要求高,因此,对于光盘产业的总体部署、合理布局和有序发展等问题,包括节目制作、软件开发、硬件制造、节目生产、技术标准等。
在高速光盘驱动器中,光盘片会产生应力和应变,在用ANSYS分析时,要施加盘片高速旋转引起的惯性载荷,即可以施加角速度。
需要注意的是,利用ANSYS施加边界条件时,要将孔边缘节点的周向位移固定,为施加周向位移,而且还需要将节点坐标系旋转到柱坐标系下。
本文通过ANSYS10.0建立了标准光盘的离心力分析模型,采用有限元方法对高速旋转的光盘引起的应力及其应变进行分析,同时运用经典弹性力学知识来介绍ANSYS10.0中关于平面应力问题分析的基本过程和注意事项。
ANSYS分析全部结果详述

试验分析目录试验分析 (1)1.试验荷载的取值 (2)1.1重力荷载(取29.8/g m s) (2)1.2施工荷载 (2)1.3水平风荷载的计算:(10年一遇大风时) (2)2.ANSYS建模分析结果 (5)2.1工况一:(1.0恒载,重力荷载) (6)2.1.1支座反力 (6)2.1.2位移变形图 (6)2.1.3X向位移云图 (7)2.1.4Z向位移云图 (7)2.1.5Y向弯矩图 (8)2.2工况二:施工荷载位于最高台阶处(1.0恒载+1.4工作荷载) (8)2.2.1支座反力 (9)2.2.2位移变形图 (9)2.2.3X向位移云图 (10)2.2.4Z向位移云图 (10)2.2.5Y向弯矩图 (11)2.3工况三:施工荷载位于最低台阶处(1.0恒载+1.4工作荷载) (11)2.3.1支座反力 (12)2.3.2位移变形图 (12)2.3.3X向位移云图 (13)2.3.4Z向位移云图 (13)2.3.5Y向弯矩图 (14)2.4工况四:1.0恒载+风荷载等效水平荷载设计值 (14)2.4.1支座反力 (15)2.4.2位移变形图 (15)2.4.3X向位移云图 (16)2.4.4Z向位移云图 (16)2.4.5Y向弯矩图 (17)2.5 与工况四加载位置相同的水平力下左侧约束压力为零时,对应的基本风压1w 的计算值: (17)1.试验荷载的取值1.1重力荷载(取29.8/g m s =)1.2施工荷载当施工荷载位于最高台阶处时,抗倾覆最不利。
此时,施工荷载所产生力矩对于倾覆转动点H 来说,是属于倾覆力矩(如施工荷载位于另外两个台阶,则其作用属于抗倾覆力矩)。
故以此为工作时验算工况。
假定施工荷载位于最高台阶时,共有作业人员4人,每人重75Kg ,每人持有30Kg 施工材料。
此时荷载设计值4(0.750.30) 1.4 5.88N Q F k =⨯+⨯=。
1.3水平风荷载的计算:(10年一遇大风时)图1 平台风荷载体型系数图2 风荷载计算简图1)平台所受风荷载标准值,按下式确定:0w w z s z k μμβ=式中:k w —风荷载标准值(2/m kN );z β—高度Z 处的风振系数,取1.0;s μ—风荷载体型系数,按图1平台风荷载体型系数取值;z μ—风压高度变化系数,按荷载规范(GB50009-2012),按离地面高度60m 取1.56;0w —基本风压(2N /k m ),取重现期10=n 对应的风压值,金华地区为20.25N /k m 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有限元法分析与建模课程设计报告学院:机电学院专业:机械制造及其自动化指导教师:****学生:* ***学号:***********2015-12-31摘要本文通过ANSYS10.0建立了标准光盘的离心力分析模型,采用有限元方法对高速旋转的光盘引起的应力及其应变进行分析,同时运用经典弹性力学知识来介绍ANSYS10.0中关于平面应力问题分析的基本过程和注意事项。
力求较为真实地反映光盘在光驱中实际应力和应变分布情况,为人们进行合理的标准光盘结构设计和制造工艺提供理论依据。
关键词:ANSYS10.0;光盘;应力;应变。
目录第一章引言 (3)1.1 引言 (3)第二章问题描述 (4)2.1有限元法及其基本思想 (4)2.2 问题描述 (4)第三章力学模型的建立和求解 (5)3.1设定分析作业名和标题 (5)3.2定义单元类型 (6)3.3定义实常数 (9)3.4定义材料属性 (12)3.5建立盘面模型 (14)3.6对盘面划分网格 (22)3.7施加位移边界 (27)3.8施加转速惯性载荷并求解 (30)第四章结果分析 (32)4.1 旋转结果坐标系 (32)4.2查看变形 (33)4.3查看应力 (35)总结 (38)参考文献 (39)第一章引言1.1 引言光盘业是我国信息化建设中发展迅速的产业之一,认真研究光盘产业的规律和发展趋势,是一件非常迫切的工作。
光盘产业发展的整体性强,宏观调控要求高,因此,对于光盘产业的总体部署、合理布局和有序发展等问题,包括节目制作、软件开发、硬件制造、节目生产、技术标准等。
在高速光盘驱动器中,光盘片会产生应力和应变,在用ANSYS分析时,要施加盘片高速旋转引起的惯性载荷,即可以施加角速度。
需要注意的是,利用ANSYS施加边界条件时,要将内孔边缘节点的周向位移固定,为施加周向位移,而且还需要将节点坐标系旋转到柱坐标系下。
本文通过ANSYS10.0建立了标准光盘的离心力分析模型,采用有限元方法对高速旋转的光盘引起的应力及其应变进行分析,同时运用经典弹性力学知识来介绍ANSYS10.0中关于平面应力问题分析的基本过程和注意事项。
第二章 问题描述2.1有限元法及其基本思想有限元法的基本思想是将连续的求解区域离散为一组有限个、且按一定方式相互联结在一起的单元组合体。
由于单元能按不同的联结方式进行组合,且单元本身可以有不同形状,因此可以模型化几何形状复杂的求解区域。
有限元法作为数值分析方法的一个重要特点是利用在每一个单元内假设的近似函数,分片地表示全求解域上待求的未知场函数。
单元内的近似函数通常由未知场函数或其导数在单元的各个节点的数值和其插值函数表达。
这样,一个问题的有限元分析中,未知场函数或其导数在各个节点上的数值就成为新的未知量(即自由度),从而使一个连续的无限自由度问题变成离散的有限自由度问题。
一经求解出这些未知量,就可通过插值函数计算出各个单元内场函数的近似值,从而得到整个求解域上的近似解。
显然,随着单元数目的增加,即单元尺寸的缩小,或者随着单元自由度的增加及插值函数精度的提高,解的近似程度将不断改进。
如果单元是满足收敛要求的,近似解最后将收敛于精确解。
2.2 问题描述标准光盘,置于52倍速的光驱中处于最大读取速度(约为1000min r ),计算其应力分布。
标准光盘参数:外径:120mm 内孔径:15mm 厚度:1.1mm 弹性模量:a MP 4106.1⨯ 密度:33102.2m Kg ⨯第三章力学模型的建立和求解3.1设定分析作业名和标题(1)从常用菜单中选择File--Change jobname命令,将弹出Change jobname对话框,在Enter new jobname文本框中输入文字“CH01”为数据库文件名,单击OK完成文件名的修改,如图所示。
(2)从实用菜单中选择File--Change Title命令,将弹出Change Title对话框,在Enter new title文本框中输入文字“CD”为标题名,单击OK完成文件名的修改,如图所示。
(3)选取菜单路径Utility Menu/Plot /Replot,指定的标题“CD”将显示在图形窗口的左下角,如图所示。
(4)选取菜单路径Main Menu/Preference,将弹出Preference of GUI Filtering(菜单过滤参数选择)对话框,选中Structural复选框,单击OK按钮确定,如图所示。
3.2定义单元类型在进行有限元分析时,首先应根据分析问题的几何结构、分析类型和所分析的问题精度要求等,选定适合具体分析的单元类型。
本课题用选4节点四边形板单元PLANE42。
(1)从主菜单中选择Main Menu/Preprocessor/Element/Add/Edit /Delete命令,弹出Element Types(单元类型)对话框,如图所示。
(2)单击Add...按钮,将弹出Library of Element Types(单元类型库)对话框,如图所示。
(3)在左边的列表框中选择“Solid”选项,选择实体单元类型。
在右边的列表框中选择“Quad 4node 42”选项,选择4节点四边形板单元PLANE42,单击OK按钮,将PLANE42单元添加,并关闭单元类型库对话框,同时返回到第一步弹出的单元类型对话框,如图所示。
(4)单击Options…弹出如图所示的PLANE42 element type options(单元选项设置)对话框,对PLANE单元进行设置,使其可用于计算平面应力问题,如图所示。
(5)在Element behavior(单元行为方式)下拉列表框中选择Plane-stress w/thk(带有厚度的平面应力)选项。
单击OK按钮,接受选项,关闭单元选项设置对话框,返回到单元类型对话框,完成单元类型定义,如图所示。
(6)单击Close按钮,关闭单元类型对话框,结束单元类型的添加,如图所示。
3.3定义实常数本课题中选用带有厚度的平面应力行为方式的PLANE42单元,需要设置其厚度实常数。
(1)从主菜单中选择Main Menu/Preprocessor/Real Constants/Add/Edit/Delete命令,弹出Real Constants(实常数)对话框,如图所示。
(2)单击add…按钮,弹出如图所示Element Type for Real Constants (实常数单元类型)对话框,要求选择欲定义实常数的单元类型。
本课程设计中只定义了一种单元类型,在已知的单元类型列表中选择“Type 1 PLANE42”,将要为PLANE42单元类型定义实常数。
单击OK弹出Real Constant Set(实常数集)对话框,如图所示。
(3)在Thickness(厚度)文本框中输入“1.1”,单击OK,关闭实常数输入对话框,返回到实常数对话框,如图所示已经定义了一组实常数,如图所示。
(4)单击Close按钮,关闭实常数设置对话框,如图所示。
3.4定义材料属性考虑惯性力的静力分析中必须定义材料的弹性模量和密度。
具体步骤如下:(1)从主菜单中选择Main Menu/Preprocessor/Material Props/Material Models命令,将弹出Define Material Model Behavior(定义材料模型)窗口,如图所示。
(2)依次双击Structural/Linear/Elastic/Isotropic,将弹出1号材料的弹性模量EX和泊松比PRXY的定义对话框,如图所示。
(3)在对话框EX文本框中输入弹性模量EX为1.6e4,在PRXY文本框中输入泊松比0.3,单击OK按钮,关闭对话框,并返回到定义材料属性对话框,在定义材料属性会话框的左边一栏出现刚刚定义的参与号为1的材料属性,如图所示。
(4)依次双击Structural/Density弹出定义密度对话框,在DENS文本框中输入密度数值“2.2e-9”,单位为。
单击OK按钮,退出定义材料模型属性窗口,完成对材料模型属性的定义,如图所示。
3.5建立盘面模型本课程设计的模型比较简单,仅有一个平面。
需要注意的是使用PLANE系列单元时,要求模型必须位于全局XY平面内。
默认的工作平面即位于全局XY 平面内,因此可以直接在默认的工作平面内创建圆环面,为了对圆环面划分有限元网格,还需要将圆环面分成两半。
(1)从主菜单中选择Main Menu/Preprocessor/Modeling/Create/Areas/Circle/ Annulus命令,弹出Annular Circular Area(圆环面)对话框,如图所示。
(2)在WP X文本框中输入圆环面圆心的X坐标(相对于工作平面)“0”;在WP Y文本框中输入圆环面圆心的Y坐标(相对于工作平面)“0”;在Rad-1文本框中输入内孔半径“7.5”;在Rad-2文本框中输入内孔半径“60”。
单击OK按钮确认,关闭对话框。
同时ANSYS在当前工作平面的原点位置创建内径为15mm,外径为120mm的圆环面,如图所示。
(3)从实用菜单中选择Main Menu/PlotCtrls/Numbering命令,弹出Plot Numbering Controls(显示图元编号控制)对话框,如图所示。
选中Keypoint numbers(关键点编号)复选框。
单击OK按钮,使之生效,并对图形窗口进行重绘,如图所示。
图为显示图元编号控制对话框图为创建的圆环面(4)从主菜单中选择Main Menu/Modeling/Create/Lines/Lines /Straight Line命令,弹出关键点选择对话框,要求选择要创建的直线的两个端点。
用鼠标在图形窗口中选择选取关键点1、3,创建出端点为关键点1,3的直线,如图所示。
(5)单击OK按钮,关闭选择对话框,如图所示。
(6)从实用菜单中选择Utility Menu/Plot/Multi-Plots命令,在图形窗口显示所有图元,如图所示。
图为创建的盘面和切割盘面的线(7)从主菜单中选择Main Menu/Preprocessor/Modeling/Operate/Booleans/Divide/Area by Line命令,弹出面选择对话框,要求选择欲被分割的面,如图所示。
(8) 选择创建的圆环面,并单击选择对话框的OK按钮,又弹出选择对话框,要强求选择分割面的线,如图所示。
(9)选择在第(4)步中创建的线,并单击选择对话框的OK按钮,如图所示。
(10)ANSYS将进行布尔运算,将选定的面分割开来成为两个面,如图所示。
如图是被分割后的两个面3.6对盘面划分网格(1)从主菜单中选择Main Menu/Preprocessor/Meshing/MeshTool 命令,弹出Mesh Tool,单击Lines域Set按钮,点击Pick All按钮,弹出Element Sizes on Picked Lines对话框,在NDIV No. of element divisions 文本框中输入“10”单击OK按钮,如图所示。