第二章 吸附作用与多相催化

合集下载

催化原理-吸附作用..

催化原理-吸附作用..

M+ X-
0K, 完美晶体
Frenkel defects
一个弗朗克缺陷是由一间隙离子(原子)和一个 缺位所组成的。是由晶格中的离子(原子)偏离了 正常位置而迁移到晶格间隙所造成的。

"for
his studies of chemical processes on solid surfaces".
Modern surface chemistry – fuel cells, artificial fertilizers and clean exhaust The Nobel Prize in Chemistry for 2007 is awarded for groundbreaking studies in surface chemistry. This science is important for the chemical industry and can help us to understand such varied processes as why iron rusts, how fuel cells function and how the catalysts in our cars work. Chemical reactions on catalytic surfaces play a vital role in many industrial operations, such as the production of artificial fertilizers. Surface chemistry can even explain the destruction of the ozone layer, as vital steps in the reaction actually take place on the surfaces of small crystals of ice in the stratosphere. The semiconductor industry is yet another area that depends on knowledge of surface chemistry.

第02章 吸附作用与多相催化

第02章 吸附作用与多相催化
Basic types of catalytic fixed-bed reactors. (a) Adiabatic fixed-bed reactor; (b) multitubular fixed-bed reactor.
2.1.2多相催化反应的机理和步骤
多相催化反应中的吸附、表面反应和脱附过程
多相催化反应过程的步骤:
外扩散
①反应物从气流扩散到固体催化剂表面(外扩散 传质过程 →内扩散); (吸附);
内扩散 ②反应物分子在催化剂表面活性位上发生化学吸附作用形成表面物种 化学吸附 ③吸附态反应物分子(表面物种)在活性位上发生化学反应形成吸附态
产物分子(表面反应); ④吸附态产物分子从催化剂表面脱附形成气相产物(脱附);
表面反应
表面化学过程
脱 附 ⑤气相产物从固体催化剂表面扩散到气体 (液体)中(内扩散→外扩散)
2.1.3多相催化反应中的物理过程
外扩散和内扩散
外扩散
反应物分子从流体 体相通过附在气、 固边界层的静止气 膜(或液膜)到达 颗粒外表面,或者 产物分子从颗粒外 表面通过静止层进 入流体体相的过程, 称为外扩散过程。

表面反应的成功进行,要求原子态吸附分子,其化学 吸附不能太强,也不能太弱。

太强则不利于它们在催化剂表面上的迁移、接触;太
弱则会在进行表面反应之前脱附流失。

一般关联催化反应速率与吸附强度的曲线,呈现“火
山型”。
3、产物的脱附

脱附是吸附的逆过程,因此,遵循与吸附相同的规律。 产物的吸附不能太强。
配位数小于固体内原子的配位数;
每个表面原子受到一种内向的净作用力,将扩散到其附近
的气体分子吸附并形成化学键。

第二章吸附与催化

第二章吸附与催化
DB ∝ ( T3 )3/2 / PT b. 努森(Knudsen)扩散 DK 分子与催化剂孔壁的碰撞,而且孔道的平均直径小于分子平均 自由程时出现的扩散 ( 孔径1.5 ~ 100 nm or 气压低时 ) DK ∝ ( T )1/2 ×g g— 孔半径
c.
构型扩散 DC 分子运动的直径与孔径相当时,扩散系数受孔径影响变化很大 (孔径小于1.5nm的微孔中扩散,即分子筛孔道内的扩散) DC 属于择型催化
2. 比孔容:单位质量催化剂的内孔体积
3. 孔隙率:V孔/V颗粒 4.平均孔半径:r = 2Vg/Sg 5.孔径分布: dV/dr ~ r
二、外扩散与外扩散系数 DE 1、外扩散 反应物分子穿过滞流层的过程 dn / dt = - DE dc / dt ( fick定律) 通量 = DE (Ch-Cs) Ch :均匀气流中反应物浓度 Cs :反应物在催化剂颗粒外表面的浓度 2、 外扩散速率影响因素 流体流速 介质的密度 催化剂粒径 流体的粘度
非弹性散射 — 气体分子 — 物理吸附分子 — 化学吸附分子
弹性散射
扩散
前驱 态
化学吸附态
化学吸附态
一个气体分子的吸附
2)吸附位能曲线
C
例:H2 在 Ni 上的吸附
位能 0.0 Qc 过渡态 Ea Qp 与表面的距离/nm P 物理吸附曲线P 最低点: 物理吸附热Qp 化学吸附曲线C DHH 解离能 434 KJ/mol
效率因子η η = 观测反应速度 / 本征反应速率 < 1
η 定量表达了催化剂内表面利用程度
《工业催化》作业
第一章、第二章
1. 解释如下基本概念并给出其量纲: 1). 空速。2). 接触时间. 3). TOF. 4). WHSV. 5). 选择性. 6). 堆比。7). 孔隙率。8). 比表面。9). 活化能. 10). 时空产率 2. 扩散控制和动力学控制各有何特点?如何消除内外扩散? 3. 写出几种国内外催化学术刊物名称(用原文)。 4. 解释BET方程中个参数的含义,并说明如何利用BET方程测定 催化剂比表面。 5. 教材220页习题8。

2催化剂的吸附作用(12)(精)

2催化剂的吸附作用(12)(精)

2.2 催化剂表面结构与吸附和催化性能


催化作用是在表面上进行的,为深入了解催化 作用的本质就必须了解晶体表面结构。 2.2.1 近似真实的表面结构:

从原子尺度看,催化剂表面是不均匀的。
p p 为一直线。若实验数据 当T一定时, V
符合上式,则表明吸附过程属于解离吸附,且符合 朗氏吸附模型。
三、竞争吸附的Langmuir等温式



两种物质A和B的分子在同一吸附位上吸附称为竞争吸 附。 这种吸附等温关系对于分析阻滞剂和两种反应物的表面 反应动力学十分重要。 令A的覆盖率为A,B的覆盖率为B,则表面空位
2.1 催化剂的吸附作用
多相催化过程或气固催化过程,是气体(液体)反
应物在固体催化剂表面上进行的。吸附是反应的必经步 骤,因此,化学吸附与多相催化的关系非常密切。

催化中的吸附总是化学吸附; 化学吸附本身是一复杂过程,分两步进行,即物理吸附和 化学吸附
2.1.1 物理吸附和化学吸附
物理吸附 化学吸附
一、简单的Langmuir吸附等温式

理想的化学吸附模型。

该模型假定:
(1)吸附剂表面是均匀的; (2)吸附分子之间无相互作用; (3)每个吸附分子之间占据一个吸附位, 吸附是单分子层的。

遵循Langmuir等温吸附式的吸附为理想吸附。
Langmuir等温吸附式为:

1
吸附平衡常数
Kp
气体的分压
Kp 即 (2-10) 1 Kp
吸附气体所占据的表面覆盖分率
当p很低时
Kp
1 1 当p很高时 1 1 Kp Kp
吸附等温线图
表面覆盖分率与气体分压p的关系

催化剂工程-第二章(吸附作用与多想催化)

催化剂工程-第二章(吸附作用与多想催化)

* 努森扩散系数 从气体分子运动论,
DK = 2/3 ⊽ rp
在多孔催化剂情况下,Knudson扩散系数修正为
DK,eff = DK θ / τm
式中, τm表示由平均孔径算得的弯曲因子。 根据Satlerfield的专著 DK与T1/2 * rp 成正比; 一般在10-2~ 10-5 cm2/s
r
a

Ee P P RT ƒ S e 2m KT 2m KT
r
a
ka Pƒ
σ :凝聚系数 ,即具有Ea以上能量且碰在空中心能被吸附 的分子分数 S :粘着几率。导致化学吸附的碰撞系数
4. 表面反应
火山型原则: 太强不利于它们的 表面迁移、接触; 太弱则会在进行之 前脱附流失。
1 ln aP f
f和a为经验常数,与温度和吸附物系的性质有关。
4.1 Freundlich等温式
E and θ is the relation of logarithm
E
a

E
0 a
ln
E
d

E
0 d
ln
RT
r
a

0 P E a ln f e 2m KT
这两个步骤均属于传质过程,与催化剂的宏 观结构和流体流型有关; 其扩散驱动力均为浓度 梯度dc/dx。
* 多相催化反应中的化学过程(2)(3)(4)
(2)化学吸附, (3)表面反应或转化, (4)产物分子的脱附或解吸 属于“化学过程”,涉及化学反应。与催化剂 的 表面结构、性质和反应条件有关,也叫“化学 动力学过程”
III型等温线 在整个压力范围内凹向下, 曲线没有拐点B。曲线下凹表明此种吸附 所凭借的作用力相当弱。吸附质对固体 不浸润时的吸附,如水在石墨上的吸附 即属此例。

03吸附和多相催化反应动力学

03吸附和多相催化反应动力学
第三章
吸附作用与多相催化
工业上采用的催化过程绝大部分是多相催化过程,最 常见的催化剂是固体,反应物是气体或液体. 与在某一相内进行的均相催化反应不同,多相催化反 应是在不同物相的反应物和催化剂的二相界面上进行的. .
多相催化反应包括: (1)反应物分子经过层流边界层 的外扩散; (2)在催化剂孔隙中的内扩散; (3)在催化剂表面的化学吸附; (4)表面化学反应; (5)产物在催化剂表面脱附; (6)产物在催化剂孔隙中的内扩散; (7)在层流边界层中的外扩散.
2 1 3 4 5 6 7
滞留层
催化剂颗粒
孔道
外扩散与外扩散系数:
jD = 1.66 Re −0.51 (Re < 190) jD = 0.98 Re−0.41 (Re < 190)
内扩散与内扩散系数: 容积扩散
T 3/2 DB ∞ pT
Knudsen扩散 D ∞T 1/2 r K p
DB DK D= DB + DK
B.E.T.方程及其应用 . . .
物理吸附的多分子层理论是由Brunauer,Emmett和Teller三人在1938 年提出的. 其基本假设是: 固体表面是均匀的,空白表面对所有分子的吸附机会相等,分子的 吸附或脱附,不受其它分子存在的影响; 固体表面和气体分子的作用力为van der WaaIs引力,因此在第一层 上还可进行第二层,第三层……的吸附(如下图所示),这时的吸附宛 如气体的凝聚一样.
0.95,而L—型氮加氢,出氨速度正
烯、炔烃和芳烃的吸附态
关于烯烃在金属上的缔合化学吸附,已经提出的吸附态有σ型[如 乙烯在Ni(111)面的吸附]和π型[如乙烯在Pt(100)面的吸附]两种,即
C
C

2催化化学-吸附作用教程

2催化化学-吸附作用教程
[教学重点] 1. 不同物质的吸附态 2. 吸附等温方程(包括简单的、解离吸附的和竞争吸附的 Langmuir吸附等温方程,以及非理想的吸附等方程)
[教学难点] 1. 吸附能量与覆盖度
Catalysis & Catalysts
Example Heterogeneous Catalytic Reaction Process
• The long journey for reactant molecules to
j. travel within gas phase k. cross gas-liquid phase boundary l. travel within liquid phase/stagnant layer
k
l mn
liquid phase / stagnant layer
q. be adsorbed on the site and activated r. react with other reactant molecules, either
being adsorbed on the same/neighbour sites or approaching from surface above
• 气—固相催化反应中,至少有一种反应物要吸附
在催化剂的表面上 • 吸附键的强度要适当,吸附的过强或过弱都不利
于下一步化学反应的进行。如果催化剂对反应物 吸附过强,往往形成较稳定的表面络合物;吸附 过弱,反应物分子活化不够,不利于反应 • 中等强度:足以使吸附的反应物分子中的键断裂; 使表面中间物仅有一个短暂的停留时间;产物分 子迅速脱附
porous solid
o
pore
• Product molecules must follow the same track in the reverse direction to return to gas phase

第2章吸附作用与多相催化

第2章吸附作用与多相催化

图2.5 成型催化剂颗粒的构成
图 2.6 Schematic diagrams of the pore structure of a catalyst showing (a) an interpenetrating array of different sized pores and (b) interconnection of micro-, meso- and micro-pores.
物理吸附——研究催化剂纹理组织(物化性能的测定) 例如: 催化剂及其他多孔固体比表面的测定; 孔径分布的测定; 对沸石分子筛的研究。
化学吸附——研究催化剂的活性表面和活性中心结构。
4.化学吸附的分类
⑴离解化学吸附和非离解化学吸附
非离解化学吸附(缔合性化学吸附)
H
H
H2S S
离解化学吸附
*
均裂离解吸附
区别
物理吸附
化学吸附
推动力
范德华力
化学键力
活化能 热效应 选择性
0
接近凝聚热,低 (8~20kJ/mol)放热

多数较小(~50kJ/mol) 少数为0 称非活化吸附 接近化学反应热(40~800kJ/mol) 绝大部分为放热,也有吸热
有专一性
吸附层
单层或多层
单层
速度
一般较快,但受扩散控制
低温慢,高温快
⊿T= k × ⊿R
⊿ Q=mcp ⊿T
⑵计算法
▪吸附等温线法(所求出的吸附热为微分吸附热)
当吸附量为一定时(θ =const),吸附温度和平衡吸附压力 之间的关系可以用Clausius-Clapeyron方程描述
(lnTP)
q RT2
其中:θ代表一定的覆盖度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时内表面浓度(Cx)远小于气相浓度(C0)或表面浓度(Cs),催化剂 内部没有得到充分利用,内部扩散成了控制因素,这种反应称
为内扩散控制的反应。
在多相催化反应中,物理过程和表面化学过程 交织在一起,为了得出正确的催化反应本身的 动力学规律性,首先要排除扩散所引起的影响。
三、外扩散效应的判断和消除
反应物自气流主体向催化剂外表面
= ks ⋅ Cs
Cs
=
D ⋅C0 kS ⋅L + D
=
C0
1
+
k
s ⋅L D
r
=
ks × Cs
=
ks
×
1
+
C0 ks ×
D
L
=
ks × C0 ×η
η
=
1+
1 ks ×
D
L
与无外扩散效应时相比较,两者相差η倍。因为纯
属外扩散引起,又可称为扩散因素。 η值愈小,扩散愈占优势,反之表面反应占优势。 必须考虑下面两种极端情况。
(2)在相同的实验条件下,改变反应的温度,观察反应 速率随温度的变化。
∵ ks ∝ e-E/RT, D ∝ T3/2 ∴ 降低温度造成ks值的变化比D值的变化要大得多。
若观察到因温度变化引起的反应速率变化不大,且活 化能也小于20 kJ·mol-1,则表示反应在外扩散区进行;
此时可进一步降低反应温度,使反应速率常数降得更 快些,以调节到反应速率不再受外扩散影响为止。也即, 使ks<< D/L,以达到η接近于1的目的。
动力学效能取决于以下几步的速率
反应物气相主体到达颗粒外表面 反应物从外表面进入颗粒内部
传质过程

反应物被活性位吸附,成为活性吸附态;

:吸附态起反应,生成吸附态产物;
③ :吸附态产物脱附成自由的产物。
扩散速率与表面反应速率
扩散速率比表面化学过程速率小得多,以致扩散过程 成为反应的速率控制步骤。此时从实验上观察到的显
扩散的速率可用Fick定律方程表示: D:扩散系数;
rdif
=
D(
C0
− L
Cs
)
L:扩散层厚度; C0和Cs分别为反应物在 气流主体和外表面上
的浓度。
若是简单的一级反应,则, r = ksCs
ks:单位外表面积上的
反应速率常数
由于反应受外扩散控制 r
D⋅
C0
− Cs L
对2、4两种情况,可作如下解释:
:如果反应物向固体催化剂外表面的扩散很慢,则
反应物一经扩散到外表面就被反应掉。因此,反应物在催化剂
外表面上的浓度几乎等于零,这时反应速率决定于反应物扩散
到催化剂外表面的速率,这种反应称为外扩散控制的反应。
:如果反应物很快扩散到外表面,但催化剂的微孔
直径很小,或微孔很长,则反应物不易扩散到催化剂内部,此
然是扩散过程的规律,称过程在
进行。
表面化学过程的速率比扩散速率小得多,以致扩散效 应可忽略不计,此时测得的速率方程反映了表面化学
过程的规律,称过程在
进行。
第二节 多相催化中的传质
一、外扩散和内扩散
在多相催化反应中,固体催化剂通常为多孔的,其表面
积大部分处于孔中,因此反应的主要场所是在内表面上。
反应物必须进入孔中才能与催化剂表面接触。这就要求
外扩散区
如果反应速率受线速度或搅拌速率 影响,表示线速度或搅拌速度的增加
消除外扩散 会使表面层厚度减小,从而增加反应
速率,此时说明存在外扩散效应。为 了消除外扩散效应就必须将线速度或 搅拌速度提高到反应速率不再增加。
线v速0度v
在增加原料气线速度时,若不同时 改变催化剂床层高度,则随着空速增 加,物料与催化剂的接触时间将减少 因而转化率有可能下降。为此,实验 时应固定接触时间,即同时改变催化 剂量及原料气流量,以维持相同的接 触时间,这样才能获得正确结果。
四、内扩散效应的判断和消除
C(x)
C=0
0
x
孔内反应物浓度变化示意图
当反应物分子从固体外表面通过催 化剂的孔口进入到孔道时,一部分反 应物已经在表面上发生了反应。所以 实际上反应物分子在进入孔道后就是 边扩散边反应的。
(1)反应物分子从气流中向
催化剂颗粒
催化剂表面和孔内扩散;
表 (2) 反应物分子在催化剂
(5)
面 进
内表面上吸附;
行 (3)吸附的反应物分子在催化剂
的 表面上相互作用或与气相分
(5)
化 学
子作用进行化学反应;
过 程
(4)反应产物自催化剂内表面脱附;
(5)反应产物在孔内扩散并扩
散到反应气流中去。
内孔道
C0
Cs
L
x
Cx
C0:反应物在气相中的浓度 Cs:反应物在外表面的浓度 Cx:反应物在不同孔隙深度x
的内表面上的浓度 L:界膜层的厚度
多相催化过程中反应物在不同区域的浓度分布图
1、如果C0 ≈ CS,Cx = 0,则反应在外动力学区进行; 2、如果C0 >> CS,Cx = 0,则反应在外扩散区进行; 3、如果C0 ≈ CS ≈ Cx,则反应在内动力学区进行; 4、如果C0 ≈ CS >> Cx ,则反应在内扩散区进行。
第二章 吸附作用与多相催化
第一节 多相催化的反应步骤 第二节 多相催化中的传质 第三节 多相催化中的化学过程
第一节 多相催化的反应步骤
一、多相催化反应特点
实用催化剂形貌
催化剂一般是由多种催化材料组成的功能材料
催化剂的空间尺度
二、多相催化反应过程
气 流 层
滞流层
(1)
(1) (2)
(3) (4)
一个化学物种先要经历从流体克服流体-固相间界面膜
的阻力,扩散而到达催化剂的外表面,其中大部分还要
进一步克服催化剂颗粒的内阻力而扩散到占整个催化剂
表面绝大部分的内表面上。这就是
(interphase
diffusion)和
(interparticle diffusion)或称为


二、外扩散控制的反应和内扩散控制的反应
D L
C0
=
k'C0
此式表明反应在外扩散区进 行时,表观反应速率常数为 D/L,动力学行为属于一级
反应。由于包含了扩散系数, 它的行为受扩散控制。
可以采用下列两种方法来判断和消除外扩散效应:
(1)在相同的实验条件下,观察反应物不同的流动线速 度(流动体系)或搅拌速度(静态体系)对反应速率的影响。
反应速率
η
=
1
+
1 ks ×
D
L
1、当
ks ⋅ L D
<< 1,即ks
<<
D L
,则
η接近与1,表明扩散效应可以
忽略。因此要消除外扩 散效应的话,务必要使 ks和L的数值减少,
D的数值要增大。
2、当
ks ⋅ L D
>>
1,即 k s
>>
D L ,则
( r = rdif = k s ⋅
C0 ks ⋅ L
D
=
)
相关文档
最新文档