高考理科数学专题十一概率与统计第三十五讲离散型随机变量的分布列、期望与方差

合集下载

离散型随机变量的分布列与期望和方差

离散型随机变量的分布列与期望和方差

离散型随机变量的分布列与期望和方差考点一:离散型随机变量的分布列 若离散型随机变量X 的分布列为(1)均值:称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量 (2)方差:称D (X )=∑ni =1 (x i -E (X ))2p i 为随机变量X 的方差,其算术平方根()X D 为随机变量X 的标准差.(3)均值与方差的性质 1.E(aX +b)=aE(X)+b. 2.D(aX +b)=a2D(X)(a ,b 为常数). 考点二:超几何分布在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -kN -MC n N,k=0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *,如果随机变量X 的分布列具有下表形式,考点三:二项分布二项分布;在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率. 基础练习1.在某公司的两次投标工作中,每次中标可以获利14万元,没有中标损失成本费8000元.若每次中标的概率为0.7,每次投标相互独立,设公司这两次投标盈利为X 万元,则EX =( ) A .18.12B .18.22C .19.12D .19.222.设服从二项分布B (n ,p )的随机变量X 的期望与方差分别是10和8,则n ,p 的值分别是( ) A .B .C .D .3.已知X 的分布列为X ﹣1 0 1 P且Y =aX +3,E (Y )=,则a 为( ) A .1B .2C .3D .44.设随机变量X ∼N(1,δ2),且P(X>2)=51,则P(0<X<1)=___.5.已知离散型随机变量x 的取值为0,1,2,且()()(),2,1,410b x p a x p x p ======若()1=X E ,则 ()=X D .6.若随机变量,且,,则当 .(用数字作答)7.已知随机变量X 满足(23)7E X +=,(23)16D X +=,则下列选项正确的是( ) A .7()2E X =,13()2D X = B .()2E X =,()4D X = C .()2E X =,()8D X = D .7()4E X =,()8D X = 超几何分布VS 二项分布1.“莞马”活动中的α机器人一度成为新闻热点,为检测其质量,从一生产流水线上抽取20件该产品,其中合格产品有15件,不合格的产品有5件.(1)现从这20件产品中任意抽取2件,记不合格的产品数为X ,求X 的分布列及数学期望;(2)用频率估计概率,现从流水线中任意抽取三个机器人,记ξ为合格机器人与不合格机器人的件数差的绝对值,求ξ的分布列及数学期望.2.某经销商从沿海城市水产养殖厂购进一批某海鱼,随机抽取50~(,)X B n p 52EX =54DX =(1)P X ==条作为样本进行统计,按海鱼重量(克)得到如图的频率分布直方图:(1)若经销商购进这批海鱼100千克,试估计这批海鱼有多少条(同一组中的数据用该区间的中点值作代表);(2)根据市场行情,该海鱼按重量可分为三个等级,如下表:若经销商以这50条海鱼的样本数据来估计这批海鱼的总体数据,视频率为概率.现从这批海鱼中随机抽取3条,记抽到二等品的条数为X ,求x 的分布列和数学期望.3.假设某种人寿保险规定,投保人没活过65岁,保险公司要赔偿10万元;若投保人活过65岁,则保险公司不赔偿,但要给投保人一次性支付4万元已知购买此种人寿保险的每个投保人能活过65岁的概率都为0.9,随机抽取4个投保人,设其中活过65岁的人数为X ,保险公司支出给这4人的总金额为Y 万元(参考数据:40.90.6561=) (1)指出X 服从的分布并写出Y 与X 的关系; (2)求(22)≥P Y .(结果保留3位小数)考点四:正太分布1.已知随机变量ξ服从正态分布)9,5(N ,若)2()2(-<=+>c p c p ξξ,则c 的值为( )A .4B .5C .6D .72.已知随机变量服从正态分布即,且,若随机变量,则( )A .0.3413B .0.3174C .0.1587D .0.15863.已知随机变量X ∼N (2,1),其正态分布密度曲线如图所示,若向长方形OABC 中随机投掷1点,则该点恰好落在阴影部分的概率为( )A .0.1359B .0.7282C .0.8641D .0.932054.某市高三年级第二次质量检测的数学成绩X 近似服从正态分布N (82,σ2),且P (74<X <82)=0.42.已知我市某校有800人参加此次考试,据此估计该校数学成绩不低于90分的人数为( ) A .64B .81C .100D .1215.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下图频率分布直方图:(1)求这500件产品质量指标值的样本平均值x 和样本方差2s (同一组的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标Z 服从正态分布2(,)N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s .X 2~(,)X N μσ()0.6826P X μσμσ-<≤+=~(5,1)X N (6)P X ≥=①利用该正态分布,求(187.8212.2)P Z <<;②某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用①的结果,求()E X .12.2≈.若2(,)Z N μσ~,则()0.6826P Z μσμσ-<<+=,(22)P Z μσμσ-<<+0.9544=.。

高考数学总复习 11.1离散型随机变量的分布列、期望与方差课件 人教版

高考数学总复习 11.1离散型随机变量的分布列、期望与方差课件 人教版

2.设离散型随机变量ξ的分布列为:
ξ P
1 a
2 1 2 )
b 1 6
11 若 Eξ= ,则 3a+b=( 6 A.2 B.4
C.5
D.6
1 1 1 解析:由分布列的性质得 a+ + =1,解得 a= , 2 6 3 1 1 1 11 所以 Eξ=1×3+2×2+b×6= 6 , 解得 b=3, 所以 3a+b =4,故选 B.
答案:D
4.一射手对靶射击,直到第一次命中或子弹打完终止射
击,若该射手每次射击命中的概率为 0.6 ,现有 4 颗子弹,则 剩余子弹数目的ξ的期望为______. 解析:由题意知ξ可取0,1,2,3,此时P(ξ=0)=0.43, P(ξ=1)=0.6×0.42
P(ξ=2)=0.6×0.4,P(ξ=3)=0.6
注意: (1)随机变量实际上是用变量对试验结果的一种刻画,是 试验结果(即样本点)与实数之间的一个对应关系,这与函数概 念本质上是相同的.不同的是,在函数概念中,函数f(x)的自
变量是实数 x ,但在随机变量的概念中,随机变量的自变量 ξ
所取的值代表的不是数,而是试验结果(即样本点).
(2)概率论是以随机现象为研究对象的,相应地,不论自 变量ξ还是因变量P(ξ=xi),它们取到某个“值”都是带有偶 然性的,是不确定的.在试验之前不能断言随机变量取什么 值,即具有随机性.但在大量重复试验中随机变量又能按一
第一讲 离散型随机变量的分布列、期
望与方差
考点
考纲要求 1.了解随机变量的意义;明确 什么是离散型随机变量 2.理解离散型随机变量及其分 布列的概念;了解分布列、均 值对于刻画随机现象的重要性 3.理解二项分布、几何分布及 其推导过程,并能进行简单应 用4.能计算简单的离散型随机 变量的概率,分布列以及均值

离散型随机变量的分布列、期望、方差-复习指导

离散型随机变量的分布列、期望、方差-复习指导

离散型随机变量的分布列、期望、方差复习指导学习要求:了解随机变量,离散型随机变量的意义,会求简单的离散型随机变量,掌握离散型随机变量的分布列,会求出期望、方差。

知识总结:一、离散型随机变量的分布列1.随机变量:如果一个随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,可以按一定次序列出的随机变量叫做离散型随机变量,常用ξ,等希腊字母表示2.离散型随机变量的分布列:若离散型随机变量ξ的一切可能取值为:a1, a2, ……, a n, ……, 相应取这些值的概率为:p1,P2,……, P n, ……,则称下表:为离散型随机变量ξ的概率分布列,简称ξ的分布列。

离散型随机变量的分布列具有的两个性质:①P i0(i=1,2,……,n,……) ②P1+P2+……+P n+……=1 一种典型的离散型随机变量的分布列:二项分布:设重复独立地进行n次随机试验A,在每一次试验中,P(A)=P(0<P<1),ξ为n次试验中A 发生的次数,则ξ的分布列为:称ξ服从二项分布,记作ξ~B(n,P)注:是二项展开式[P+(1-P)]n=++……++……+中的第k+1项。

P1+P2+……+P n=++……+=[P+(1-P)]n=1。

二、离散型随机变量的期望与方差1.期望:设离散型随机变量ξ的分布列是:ξa1a2……a n……p p1p2……p n……称a1p1+a2p2+……+a n p n+……为ξ的数学期望,简称期望,记作Eξ。

期望的性质:①若=aξ+b (a,b均为常数), 则E=aEξ+b。

②E(ξ1+ξ2)=Eξ1+Eξ2。

③若ξ~B(n, p), 则Eξ=np注:期望Eξ是反映随机变量ξ集中趋势的指标,也反映了ξ取值的平均水平。

2.方差:设离散型随机变量ξ的分布列是ξa1a2……a n……p p1p2……p n……称(a1-Eξ)2p1+(a2-Eξ)2p2+……+(a n-Eξ)2p n+……为随机变量ξ的均方差,简称方差,记作Dξ。

新高考数学总复习专题十一离散型随机变量及其分布列、均值与方差课件

新高考数学总复习专题十一离散型随机变量及其分布列、均值与方差课件

解析 (1)X的所有可能取值为-1,0,1.
P(X=-1)=(1-α)β, P(X=0)=αβ+(1-α)(1-β),
P(X=1)=α(1-β). 所以X的散布列为
X
-1
0
1
P
(1-α)β
αβ+(1-α)(1-β)
α(1-β)
(2)(i)证明:由(1)得a=0.4,b=0.5,c=0.1. 因此pi=0.4pi-1+0.5pi+0.1pi+1,故0.1(pi+1-pi)=0.4(pi-pi-1), 即pi+1-pi=4(pi-pi-1).又因为p1-p0=p1≠0, 所以{pi+1-pi}(i=0,1,2,…,7)是公比为4,首项为p1的等比数列.
Cnk N M
,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N
CnN
+M},r=min{n,M}.如果随机变量X的散布列具有上式的情势,那么称随机
变量X服从超几何散布.
4.离散型随机变量的均值与方差
1)均值定义:一般地,若离散型随机变量X的散布列为
X
x1
若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n. 因此EY=2n×0.4+(1 200-2n)×0.4+(800-2n)×0.2=(640-0.4n)元. 当200≤n<300时, 若最高气温不低于20,则Y=6n-4n=2n; 若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n. 因此EY=2n×(0.4+0.4)+(800-2n)×0.2=(160+1.2n)元. 所以n=300时,Y的数学期望到达最大值,最大值为520元.

高三数学离散型随机变量的期望值和方差

高三数学离散型随机变量的期望值和方差

高三数学离散型随机变量的期望值和方差离散型随机变量的期望值和方差一、基本知识概要:1、期望的定义:一般地,若离散型随机变量ξ的分布列为ξx1x2x3...xn...PP1P2P3...Pn...则称Eξ=x1P1+x2P2+x3P3+...+xnPn+...为ξ的数学期望或平均数、均值,简称期望。

它反映了:离散型随机变量取值的平均水平。

若η=aξ+b(a、b为常数),则η也是随机变量,且Eη=aEξ+b。

E(c)= c特别地,若ξ~B(n,P),则Eξ=nP2、方差、标准差定义:Dξ=(x1-Eξ)2・P1+(x2-Eξ)2・P2+...+(xn-Eξ)2・Pn+...称为随机变量ξ的方差。

Dξ的算术平方根=δξ叫做随机变量的标准差。

随机变量的方差与标准差都反映了:随机变量取值的稳定与波动、集中与离散的程度。

且有D(aξ+b)=a2Dξ,可以证明Dξ=Eξ2- (Eξ)2。

若ξ~B(n,p),则Dξ=npq,其中q=1-p.3、特别注意:在计算离散型随机变量的期望和方差时,首先要搞清其分布特征及分布列,然后要准确应用公式,特别是充分利用性质解题,能避免繁琐的运算过程,提高运算速度和准确度。

二、例题:例1、(1)下面说法中正确的是()A.离散型随机变量ξ的期望Eξ反映了ξ取值的概率的平均值。

B.离散型随机变量ξ的方差Dξ反映了ξ取值的平均水平。

C.离散型随机变量ξ的期望Eξ反映了ξ取值的平均水平。

D.离散型随机变量ξ的方差Dξ反映了ξ取值的概率的平均值。

解:选C说明:此题考查离散型随机变量ξ的期望、方差的概念。

(2)、(2001年高考题)一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出两个,则其中含红球个数的数学期望是。

解:含红球个数ξ的Eξ=0×+1×+2×=1.2说明:近两年的高考试题与《考试说明》中的"了解......,会......"的要求一致,此部分以重点知识的基本题型和内容为主,突出应用性和实践性及综合性。

知识讲解_高考总复习:离散型随机变量及其分布列、均值与方差

知识讲解_高考总复习:离散型随机变量及其分布列、均值与方差

高考总复习:离散型随机变量及其分布列、期望与方差【考纲要求】一、离散型随机变量及其分布列(1)理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;(2)理解超几何分布及其导出过程,并能进行简单的应用。

二、离散型随机变量的均值与方差(1)理解取有限个值的离散型随机变量均值、方差的概念;(2)能计算简单离散型随机变量的均值、方差,并能解决一些实际问题。

【知识网络】【考点梳理】考点一、离散型随机变量及其分布列一、离散型随机变量的概念随着试验结果变化而变化的变量称为随机变量,常用字母X,Y,,ξη,……表示。

所有取值可以一一列出的随机变量,称为离散型随机变量。

要点诠释:1.所谓随机变量,就是试验结果和实数之间的一个对应关系。

这与函数概念在本质上是相同的,不同的是函数的自变量是实数,而随机变量的自变量是试验结果。

2.如果随机变量可能取的值为有限个,则我们能够把其结果一一列举出来。

3.随机变量是随机试验的结果数量化,变量的取值对应随机试验的某一个随机事件,在学习中,要注意随机变量与以前所学的变量的区别与联系。

二、离散型随机变量的分布列及性质1.一般地,若离散型随机变量X 可能取的不同值为12,i nx x x x ,,,,X 取每一个值(=1,2,,)i x i n 的概率(=)=i i P X x p ,则表称为离散型随机变量X 的概率分布列,简称为X 的分布列,有时为了表达简单,也用等式(=)=,=1,2,,i i P X x p i n 表示X 的分布列。

2.离散型随机变量的分布列的性质 ①i p ≥0(=1,2,,i n ); ②1=1ni i p =∑。

要点诠释:求离散型随机变量的分布列时,首先确定随机变量的极值,求出离散型随机变量的每一个值对应的概率,最后列成表格。

1.分布列可由三种形式,即表格、等式和图象表示。

在分布列的表格表示中,结构为2行n+1列,第1行表示随机变量的取值,第2行是对应的变量的概率。

2023年高考数学(理科)一轮复习—— 离散型随机变量的均值与方差

2023年高考数学(理科)一轮复习—— 离散型随机变量的均值与方差

P(X=100)=21×14×14=312,
∴X 的分布列为
X 20 40 50 70 100
P
3 8
9 32
1 8
3 16
1 32
∴E(X)=20×38+40×392+50×18+70×136+100×312=1465.
索引
考点二 二项分布的均值与方差
例2 (2021·东北三省三校联考)随着经济的发展,轿车已成为人们上班代步的一 种重要工具.现将某人三年以来每周开车从家到公司的时间之和统计如图所示.
第十一章 计数原理、概率、随机变量及其分布
考试要求 1.理解取有限个值的离散型随机变量的均值、方差的概念;2.能计算 简单离散型随机变量的均值、方差,并能解决一些简单实际问题.
内容 索引
知识诊断 基础夯实
考点突破 题型剖析
分层训练 巩固提升
知识诊断 基础夯实
ZHISHIZHENDUANJICHUHANGSHI
话费,求 X 的分布列与数学期望.
索引
解 ①由题意知 P(ξ<μ)=P(ξ≥μ)=12,获赠话费 X 的可能取值为 20,40,50,
70,100, P(X=20)=12×34=38,P(X=40)=21×34×34=392,
P(X=50)=12×14=18,P(X=70)=21×34×14+12×14×43=136,
索引
P(X=4)=1304=1080100. 故 X 的分布列为
X0
1
2
3
4
P
2 401 10 000
1 029 2 500
1 323 5 000
189 2 500
81 10 000
故 E(X)=0×120400010+1×12 052090+2×15 302030+3×2158090+4×1080100 =65或E(X)=4×130=65.

11.5 离散型随机变量的概率分布、期望、方差

11.5  离散型随机变量的概率分布、期望、方差
1 5 2 1 505 2 50
分布,其中N=50,M=5,n=2.于是出现次品的
CC 概率为P(X≥1)=P(X=1)+P(X=2) C 2 2 2
C 5 C 505 9 2 47 , 即出现次品的概率 2 C 50 49 245 245 为 47 . 245
3.已知随机变量X的概率分布为 X P -1 1 2 0 1 3 1 1 6
2 1 C1 C C 1 5 2 8 因为P( B) , 3 C10 3
1 2 所以P( A) 1 P( B) 1 . 3 3
(2)由意得,X有可能的取值为2,3,4,5.
1 1 2 C2 C C C 1 P ( X 2) 2 2 3 2 2 ; C10 30 1 1 2 C2 C C C 2 4 2 4 2 P ( X 3) ; 3 C10 15 2 2 C6 C12 C1 C 3 6 2 P ( X 4) ; 3 C10 10 2 2 C8 C12 C1 C 8 8 2 P ( X 5) . 3 C10 10
分布列中相应取值的概率累加得到.

(1)方法一
“一次取出的3个小球上的数字
3 1 1 1 C C C C 互不相同”的事件记为A,则 P ( A) 5 2 2 2 2 . 3 C10 3 方法二 “一次取出的3个小球上的数字互不相同”的
事件记为A,“一次取出的3个小球上有两个数字相 同”的事件记为B,则事件A和事件B是互斥事件,
[2分]
X P
20 0.12
22 0.18
24 0.20
26 0.20
28 0.18
30 0.12
[6分]
∴E(X)=20×0.12+22×0.18+24×0.20+26×0.20 +28×0.18+30×0.12=25(km). 32×0.18+52×0.12=9.64. (2)由已知Y=3X-3(X>3,X∈Z), ∴E(Y)=E(3X-3)=3E(X)-3 =3×25-3=72(元), [12分] [8分] [10分]
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三十五讲离散型随机变量的分布列、期望与方差、选择题该群体的 10位成员中使用移动支付的人数, DX 2.4,P(X 4) P(X 6),则 p =(2018 浙江)设 0 p 1,随机变量 的分布列是则当 p 在 (0,1)内增大时,若 0 p 1 p 2 1,则2随机抽取 i i 1,2 个球放入甲盒中.二、填空题5.(2017 新课标Ⅱ)一批产品的二等品率为 0.02 ,从这批产品中每次随机取一件,有放回地抽取100次,专题十概率与统计 1. (2018 全国卷Ⅲ ) 某群体中的每位成员使用移动支付的概率都为 p ,各成员的支付方式相互独立,X 为 A .0.7B .0.6C . 0.4D .0.32. 3. A . D( )减小C . D( )先减小后增大2017浙江)已知随机变量 i 满足 P( 1) B .D .p i D( D( , P()增大 ) 先增大后减小 i 0) p i , i =1, 2.4. A .E( 1)<E( 2),D( 1)<D( 2) C .E( 1)>E( 2),D( 1) <D( 2)B . D . E( 1)< E( E( 1)> E( 2), 2),D( D( 1)>D( 1)>D( 2014 浙江)已知甲盒中仅有 1 个球且为红球,乙盒中有 m 个红球和 n 个篮球2) 2) m 3,n 3 从乙盒中a)放入 i 个球后,甲盒中含有红球的个数记为 i i 1,2 ; b)放入 i 个球后,从甲盒中取 1 个球是红球的概率记为 p i i 1,2 .则 A . p 1 p 2,E 1 E 2 B . p 1 p 2,E E 2 C . p 1 p 2,E 1 E 2D . p 1 p 2,EE 2表示抽到的二等品件数,则DX = .6.(2016 年四川 )同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在 2次试验中成功次数X 的均值是 .17.(2014 浙江)随机变量的取值为 0,1,2,若P 0 ,E 1,则D __.5三、解答题8.(2018 北京)电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.(1)从电影公司收集的电影中随机选取 1 部,求这部电影是获得好评的第四类电影的概率;(2)从第四类电影和第五类电影中各随机选取 1部,估计恰有 1 部获得好评的概率;(3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“ k 1”表示第k 类电影得到人们喜欢,“ k 0”表示第 k类电影没有得到人们喜欢( k=1,2,3,4,5,6).写出方差D 1,D 2,D 3,D 4,D 5,D 6的大小关系.9.( 2018 全国卷Ⅰ) 某工厂的某种产品成箱包装,每箱 200 件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20 件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为p(0 p 1) ,且各件产品是否为不合格品相互独立.(1)记 20件产品中恰有 2 件不合格品的概率为f (p),求f ( p)的最大值点p0.(2)现对一箱产品检验了 20 件,结果恰有 2 件不合格品,以 (1)中确定的p0作为p 的值.已知每件产品的检验费用为 2 元,若有不合格品进入用户手中,则工厂要对每件不合格品支付 25 元的赔偿费用.(i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ;(ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验? 10.(2018 天津 )已知某单位甲、乙、丙三个部门的员工人数分别为 24,16,16.现采用分层抽样的方法从中抽取 7 人,进行睡眠时间的调查.(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的 7 人中有 4 人睡眠不足, 3 人睡眠充足,现从这 7 人中随机抽取 3 人做进一步的身体检查.(i )用 X 表示抽取的 3人中睡眠不.足.的员工人数,求随机变量 X 的分布列与数学期望; (ii )设 A 为事件 “抽取的 3人中, 既有睡眠充足的员工, 也有睡眠不足的员工” ,求事件 A 发生的概率.11.( 2017新课标Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶 4 元,售价每瓶 6 元,未售出的酸奶降价处理,以每瓶 2 元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最 高气温 (单位:℃ )有关.如果最高气温不低于 25,需求量为 500 瓶;如果最高气温位于区间 [20,25) ,需 求量为 300瓶;如果最高气温低于 20,需求量为 200 瓶.为了确定六月份的订购计划,统计了前三年六 月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率。

(1)求六月份这种酸奶一天的需求量 X ( 单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为 Y (单位:元),当六月份这种酸奶一天的进货量 n (单位: 瓶)为多少时, Y 的数学期望达到最大值?12.( 2017江苏)已知一个口袋有 m 个白球, n 个黑球( m ,n N *,n ≥ 2 ),这些球除颜色外全部相同. 现将口袋中的球随机的逐个取出,并放入如图所示的编号为 1,2,3,⋯, m n 的抽屉内,其中第k 次取球放入编号为 k 的抽屉( k =1, 2,3,⋯, m n ).1)试求编号为 2 的抽屉内放的是黑球的概率 p ;2)随机变量 X 表示最后一个取出的黑球所在抽屉编号的倒数, E (X )是 X 的数学期望,证明E(X) n.(m n)(n 1)13.( 2017 天津)从甲地到乙地要经过 3 个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯111的概率分别为, , .234(Ⅰ)设X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望;(Ⅱ)若有 2 辆车独立地从甲地到乙地,求这 2 辆车共遇到 1 个红灯的概率.14.(2017 山东)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的现有 6名男志愿者A1 ,A2 ,A3,A4 ,A5,作用,A 6 和 4 名女志愿者B 1, B 2 , B 3, B 4 ,从中随机抽取 5人接受甲种心理暗示,另 5人接受乙种心理暗示.Ⅰ)求接受甲种心理暗示的志愿者中包含 A 1但不包含Ⅱ)用 X 表示接受乙种心理暗示的女志愿者人数,求15.( 2017 北京)为了研究一种新药的疗效,选 100 名患者随机分成两组,每组各 50 名,一组服药,另组不服药.一段时间后,记录了两组患者的生理指标 x 和 y 的数据,并制成下图,其中 “*表”示服药者,+表”示未服药者.Ⅰ)从服药的 50 名患者中随机选出一人,求此人指标 y 的值小于 60 的概率;Ⅱ) 从图中 A ,B ,C ,D 四人中随机选出两人,记 为选出的两人中指标 x 的值大于 1.7 的人数,求的分布列和数学期望 E ( ) ;(Ⅲ) 试判断这 100名患者中服药者指标 y 数据的方差与未服药者指标 y 数据的方差的大小. (只需写出结 论)16.(2016 年全国 I )某公司计划购买 2 台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机 器时,可以额外购买这种零件作为备件,每个 200 元.在机器使用期间,如果备件不足再购买,则每个500 元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了 100 台这种机器在三年使 用期内更换的易损零件数,得下面柱状图:B 1的频率。

X 的分布列与数学期望 EX .以这 100 台机器更换的易损零件数的频率代替 1 台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n表示购买 2 台机器的同时购买的易损零件数 .(I )求X 的分布列;(II )若要求P(X ≤ n)≥ 0.5 ,确定n的最小值;(III )以购买易损零件所需费用的期望值为决策依据,在n 19与n 20之中选其一,应选用哪个?17.( 2015 福建)某银行规定,一张银行卡若在一天内出现 3 次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择 1 个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(Ⅰ)求当天小王的该银行卡被锁定的概率;(Ⅱ)设当天小王用该银行卡尝试密码次数为X ,求X 的分布列和数学期望.18.(2015 山东)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数” (如 137,359,567 等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数” 中随机抽取 1 个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被 5 整除,参加者得 0 分;若能被 5 整除,但不能被 10 整除,得1分;若能被 10 整除,得 1 分.(Ⅰ)写出所有个位数字是 5 的“三位递增数” ;(Ⅱ)若甲参加活动,求甲得分X 的分布列和数学期望EX .19.( 2015四川)某市A, B两所中学的学生组队参加辩论赛,A中学推荐了 3名男生, 2名女生,B 中学推荐了 3 名男生, 4 名女生,两校推荐的学生一起参加集训,由于集训后队员的水平相当,从参加集训的男生中随机抽取 3 人,女生中随机抽取 3 人组成代表队.(1)求A中学至少有 1 名学生入选代表队的概率;(2)某场比赛前,从代表队的 6 名队员中随机抽取 4 人参赛,设X 表示参赛的男生人数,求X 得分布列和数学期望.20.(2014新课标 1)从某企业生产的某种产品中抽取500 件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这 500件产品质量指标值的样本平均数x 和样本方差s2(同一组数据用该区间的中点值作代表);(Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z 服从正态分布N( , 2),其中近似为样本平均数x,2近似为样本方差s2.( i)利用该正态分布,求P(187.8 Z 212.2);( ii)某用户从该企业购买了 100件这种产品,记X 表示这 100件产品中质量指标值位于区间(187.8, 212.2)的产品件数,利用( i )的结果,求EX .附:150 ≈12.2.若Z~N( , 2),则P(Z )=0.6826,P( 2 Z 2 )=0.9544 .21.(2014 山东)乒乓球台面被球网分成甲、乙两部分.如图,甲上有两个不相交的区域A,B ,乙被划分为两个不相交的区域C, D .某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C 上记 3 分,在D 上记 1 分,其它情况记 0 分.对落点在A 上的来球,队员小明回球的落点在C 上1 1 1的概率为,在D上的概率为;对落点在B上的来球,小明回球的落点在C上的概率为,在D 上2 3 53的概率为3.假设共有两次来球且落在A,B 上各一次,小明的两次回球互不影响.求:5(Ⅰ)小明两次回球的落点中恰有一次的落点在乙上的概率;(Ⅱ)两次回球结束后,小明得分之和的分布列与数学期望.22.(2014 辽宁)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(Ⅰ)求在未来连续 3天里,有连续 2天的日销售量都不低于 100个且另一天的日销售量低于50 个的概率;(Ⅱ)用X表示在未来 3天里日销售量不低于 100个的天数,求随机变量 X的分布列,期望E (X)及方差D(X).23.( 2014广东)随机观测生产某种零件的某工厂 25 名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45, 29,43,31,36,49,34,33,43,38,42, 32,34,46, 39,36,根据上述数据得到样本的频率分布表如下:分组频数频率[25,30 ] 3 0.12(30,35 ] 5 0.20(35,40 ] 8 0.32(40,45] n1 f1(45,50 ] n2f2(1)确定样本频率分布表中n1,n2, f1和f2 的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取 4 人,至少有 1 人的日加工零件数落在区间( 30,35]的概率.24.( 2014安徽)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完 5 局仍未出现连胜,则21 判定获胜局数多者赢得比赛,假设每局甲获胜的概率为2,乙获胜的概率为1,各局比赛结果相互独立.33(Ⅰ)求甲在 4 局以内(含 4 局)赢得比赛的概率;(Ⅱ)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).25.(2013 新课标 1)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检频验,这 4 件产品中优质品的件数记为 n.如果 n=3,再从这批产品中任取 4 件作检验,若都为优质品,则这批产品通过检验;如果 n=4,再从这批产品中任取 1 件作检验,若为优质品,则这批产品通过检验;其他情况下,4各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率; (2)已知每件产品检验费用为 100 元,凡抽取的每件产品都需要检验, 对这批产品作质量检验所需的费 用记为 X (单位:元),求 X 的分布列及数学期望.26.(2013北京)下图是某市 3月 1日至 14日的空气质量指数趋势图, 空气质量指数小于 100表示空气质量优 良,空气质量指数大于 200表示空气重度污染, 某人随机选择 3月 1日至 3月 13日中的某一天到达该市, 并停留 2 天(Ⅰ)求此人到达当日空气重度污染的概率(Ⅱ)设 X 是此人停留期间空气质量优良的天数,求 X 的分布列与数学期望. (Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)27.( 2012新课标)某花店每天以每枝 5 元的价格从农场购进若干枝玫瑰花, 然后以每枝 10元的价格出售. 如 果当天卖不完,剩下的玫瑰花作垃圾处理.(Ⅰ)若花店一天购进 16朵玫瑰花, 求当天的利润 y (单位:元)关于当天需求量 n (单位:枝, n N ) 的函数解析式;(Ⅱ)花店记录了 100 天玫瑰花的日需求量(单位:枝) ,整理得下表:日需求量 n 1415 16 17 18 19 20 频数10201616151310以 100 天记录的各需求量的频率作为各需求量发生的概率.(ⅰ)若花店一天购进 16 枝玫瑰花, X 表示当天的利润(单位:元) ,求 X 的分布列、数学期望及方 差;(ⅱ)若花店计划一天购进 16 枝或 17 枝玫瑰花,你认为应购进 16 枝还是 17 枝?请说明理由.这批产品都不能通过检验.假设这批产品的优质品率为150%,即取出的产品是优质品的概率都为1,且3,命中得 1 分,没有命中28.(2012 山东)现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为42分;向乙靶射击两次,每次命中的概率是 2,每命中一次得 2分,没命中得 0分.该射手每次射击的结3 果相互独立.假设该射手完成以上三次射击.(Ⅰ)求该射手恰好命中一次的概率;(Ⅱ)求该射手的总得分 X 的分布列及数学期望 EX .29.(2012 福建)受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障 的时间有关,某轿车制造厂生产甲、乙两种品牌轿车,保修期均为 2 年,现从该厂已售出的两种品牌轿 车中各随机抽取 50 辆,统计数据如下:将频率视为概率,解答下列问题:(I )从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率; ( II )若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为 X 1 ,生产一辆乙品牌轿车的利润为X 2 ,分别求 X 1, X 2 的分布列;(III )该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌的轿车,若从经 济效益的角度考虑,你认为应该生产哪种品牌的轿车?说明理由.30.(2011 北京)以下茎叶图记录了甲、乙两组个四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以 X 表示.乙组 X 8 9 0 Ⅰ)如果 X=8,求乙组同学植树棵树的平均数和方差;Ⅱ)如果 X=9 ,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树学期望.甲组 9 9 1 1Y 的分布列和数2 1 2 2 2(注:方差s2x1 x x2 x K x n x ,其中x 为x1 ,x2 ,⋯⋯x n 的平均数)n31.(2011 江西)某饮料公司招聘了一名员工,现对其进行一项测试,以使确定工资级别,公司准备了两种不同的饮料共 8 杯,其颜色完全相同,并且其中 4 杯为 A 饮料,另外 4 杯为 B饮料, 一品尝后,从 8 杯饮料中选出 4杯 A 饮料,若 4杯都选对,则月工资定为 3500 元, 则月工资定为 2800 元,否则月工资定为 2100 元,令 X 表示此人选对 A 饮料的杯数, 两种饮料没有鉴别能力.1)求 X 的分布列;2)求此员工月工资的期望.公司要求此员工一 若 4 杯选对 3 杯, 假设此人。

相关文档
最新文档