溶胶凝胶法制备纳米薄膜材料
纳米多孔薄膜材料的制备与性能研究

纳米多孔薄膜材料的制备与性能研究随着科技的迅猛发展,纳米技术在材料科学领域扮演着重要的角色。
纳米多孔薄膜材料作为一种新型材料,具有广泛的应用前景。
这些材料不仅具备纳米尺度的特性,还具有孔隙结构的优点,因此具有较大的比表面积、高度可控的孔径和出色的分离性能。
纳米多孔薄膜材料的制备是研究的重点之一。
目前,有许多方法可用于制备纳米多孔薄膜材料,如溶胶-凝胶法、电化学沉积法和层析法等。
溶胶-凝胶法是一种常见的方法,它通过将溶胶转化为胶凝体,再通过加热和烘干的方式制备薄膜材料。
这种方法可以制备出具有较大比表面积和独特结构的纳米多孔薄膜材料。
纳米多孔薄膜材料的性能研究也是与制备同等重要的一环。
其中,比表面积和孔径大小是常见的性能指标。
由于纳米多孔薄膜材料具有较大的比表面积,因此可以提供更多的活性位点,增加反应物质与表面的接触面积,从而提高反应效率。
孔径大小对于分离和过滤等应用具有重要影响。
通过调控制备过程的参数,可以实现对孔道大小进行精确控制,从而满足不同应用的需求。
除了比表面积和孔径大小外,纳米多孔薄膜材料的物理、化学性质也是研究的热点。
例如,一些纳米多孔薄膜材料具有特殊的光学性质,可以应用于传感器和光电器件等领域。
另外,一些金属氧化物纳米多孔薄膜材料具有良好的电化学性能,可以应用于超级电容器和电池等能源器件。
纳米多孔薄膜材料在环境和能源领域的应用也是当前的研究重点。
由于其独特的孔隙结构,纳米多孔薄膜材料被广泛应用于气体分离、水处理和催化等领域。
例如,一些具有超疏水性质的多孔薄膜材料可以应用于油水分离和海水淡化等环境领域。
此外,一些具有高度选择性孔道的纳米多孔薄膜材料可以用于气体分离和有害物质的去除等应用。
虽然纳米多孔薄膜材料在各个领域都有广泛的应用前景,但是目前仍存在一些挑战。
首先,纳米多孔薄膜材料制备的过程复杂,需要精确控制制备参数,以获得期望的结构和性能。
其次,由于材料的尺寸缩小至纳米级别,控制材料的稳定性和可重现性也变得更加困难。
纳米薄膜制备资料

(Ⅰ)金属-非金属纳米复合膜的制备
当 C2H5+/Ar+<10-2 时 , 只获得组成基本上为 金属的纳米粒子膜; C2H5+/Ar+=10-1 ~ 102时,可获得不同金 属颗粒含量的膜 。
(美国IBM公司)
体积分数(volume fraction)变化
超微粉涂层材料的优越性
超微粉与表面涂层技术结合,形成了含有超微粉的 表面涂层材料(Ultra-Fine Powder Coating)。
超细粉末涂层材料包括金属、无机非金属、高分子 材料和复合材料等,经过沉积、喷涂和镀覆等手段 实施,可以将不同性质、不同尺度的材料组合起来, 使其表面机械、物理和化学性能得到提高,赋予基 体表面新的力学、热学、光学、电磁学和催化敏感 等功能,达到表面改性与功能化的目标。
第八章 纳米薄膜(nanofilm)的制备
纳米薄膜分两类,一是由纳米粒子组成 的(或堆砌而成的薄膜),另一类薄膜是指 纳米粒子镶嵌(embedded)在另一种基体材 料中的颗粒膜,即在纳米粒子间有较多 的孔隙或无序原子或其它类材料.
纳米薄膜在光学、电学、催化、气敏等 方面具有很多特性,因此具有广阔的应 用前景.
表 9-2 金属颗粒的有机复合膜中粒径 与金属体积分数的关系
金属体积 分数(%)
Au(fcc)粒子的 平均粒径 d(nm)
10
3.5
20
6.0
30
8.5
40
15
Co(hcp)粒子的 平均粒径 d(nm)
1.0 1.0 1.7 4.0
(Ⅱ)铜-高聚物纳米镶嵌膜的制备
这种镶嵌膜(embadded film)是把金属纳米粒 子镶嵌在高聚物的基 体中.
溶胶-凝胶法制备ZnO薄膜

(AZO)thin films are emerging as an altemative potential candidate for ITO (Sn.doped In203)flims recently not only because of their comparable optical and electrical properties to ITO films,but also because of their higher thermal and chemical stability under the exposure to hydrogen plasma than ITO.
电子科技大学硕士学位论文
Abstract
Zinc oxide(ZnO)as a wide band-gap(3.3eV)compound semiconductor with
wurtzite crystal structure.is gaining importance for the possible application aS a semiconductor laser,due to its high exciton binding energy of 60 meV.A1·doped ZnO
溶胶—凝胶法制备ZnO薄膜

溶胶—凝胶法制备ZnO薄膜一、本文概述本文旨在探讨溶胶-凝胶法制备ZnO薄膜的工艺及其相关特性。
ZnO薄膜作为一种重要的半导体材料,在光电子器件、太阳能电池、气体传感器等领域具有广泛的应用前景。
溶胶-凝胶法作为一种制备薄膜材料的常用技术,具有工艺简单、成本低廉、易于控制等优点,因此受到广大研究者的关注。
本文将首先介绍溶胶-凝胶法的基本原理和步骤,然后详细阐述制备ZnO薄膜的具体过程,包括前驱体溶液的配制、溶胶的制备、凝胶的形成以及薄膜的成膜过程。
接着,我们将讨论制备过程中可能影响薄膜性能的因素,如溶胶浓度、凝胶温度、退火条件等,并通过实验验证这些因素的影响。
我们将对制备得到的ZnO薄膜进行表征和分析,包括其结构、形貌、光学性能和电学性能等方面。
通过对比不同制备条件下的薄膜性能,优化制备工艺参数,为实际应用提供指导。
本文的研究结果有望为ZnO薄膜的制备和应用提供有益的参考。
二、溶胶—凝胶法原理溶胶-凝胶法(Sol-Gel)是一种湿化学方法,用于制备无机材料,特别是氧化物薄膜。
该方法基于溶液中的化学反应,通过控制溶液中的化学反应条件,使溶液中的物质发生水解和缩聚反应,从而生成稳定的溶胶。
随着反应的进行,溶胶中的颗粒逐渐增大并相互连接,形成三维网络结构,最终转化为凝胶。
在制备ZnO薄膜的溶胶-凝胶法中,通常使用的起始原料是锌的盐类(如硝酸锌、醋酸锌等)和溶剂(如乙醇、水等)。
锌盐在溶剂中溶解形成溶液,然后通过加入水或其他催化剂引发水解反应。
水解产生的锌离子与溶剂中的羟基(OH-)结合,形成氢氧化锌(Zn(OH)2)的胶体颗粒。
这些胶体颗粒在溶液中均匀分散,形成溶胶。
随着反应的进行,溶胶中的氢氧化锌颗粒逐渐长大,并通过缩聚反应相互连接,形成三维的凝胶网络。
凝胶网络中的空隙被溶剂填充,形成湿凝胶。
湿凝胶经过陈化、干燥和热处理等步骤,去除溶剂和有机残留物,同时促进ZnO晶体的生长和结晶,最终得到ZnO薄膜。
溶胶凝胶法制备材料

溶胶-凝胶法制备材料摘 要:溶胶-凝胶法广泛应用于制备薄膜材料和粉体材料,其主要原理是将金属醇盐或无机盐经水解直接形成溶胶或经解凝形成溶胶,然后使溶质聚合凝胶化,再将凝胶干燥、焙烧去除有机成分,最后得到无机材料。
本文主要介绍了一些溶胶-凝胶法制备材料的发展历史,原理以及一些溶胶-凝胶法实际应用案例。
关键词:溶胶-凝胶法;纳米材料;陶瓷薄膜材料;掺杂;锂电池;包覆材料 溶胶-凝胶法发展过程:1846年法国化学家J.J.Ebelmen 用SiCl 4与乙醇混合后,发现在湿空气中发生水解并形成了凝胶。
20世纪30年代W.Geffcken 证实用金属醇盐的水解和凝胶化可以制备氧化物薄膜。
1971年德国H.Dislich 报道了通过金属醇盐水解制备了SiO 2-B 2O-Al 2O 3-Na 2O-K 2O 多组分玻璃。
1975年B.E.Yoldas 和M.Yamane 制得整块陶瓷材料及多孔透明氧化铝薄膜。
80年代以来,在玻璃、氧化物涂层、功能陶瓷粉料以及传统方法难以制得的复合氧化物材料得到成功应用。
分类:溶胶-凝胶法按产生溶胶凝胶过程机制主要分成三种类型: (1)传统胶体型:通过控制溶液中金属离子的沉淀过程,使形成的颗粒不团聚成大颗粒而沉淀得到稳定均匀的溶胶,再经过蒸发得到凝胶。
(2)无机聚合物型:通过可溶性聚合物在水中或有机相中的溶胶过程,使金属离子均匀分散到其凝胶中。
常用的聚合物有聚乙烯醇、硬脂酸等。
(3)络合物型:通过络合剂将金属离子形成络合物,再经过溶胶,凝胶过程成络合物凝胶。
制备方法及原理:溶胶一凝胶科学技术是以金属醇盐为原料制作玻璃、玻璃陶瓷、陶瓷以及其它功能无机材料的一种新工艺方法。
溶胶-凝胶法制备材料的方法属于化学制备方法,溶胶-凝胶体的制备有3种途径:(1)溶胶溶液的凝胶化;(2)醇盐或硝酸盐前驱体的水解聚合,继之超临界干燥凝胶;(3)醇盐前驱体的水解聚合。
溶胶-凝胶法的化学过程首先是将原料分散在溶剂中,然后经水解反应生成活性单体,活性单体进行聚合,开始成为溶胶,进而生成具有一定空间结构的凝胶,经过干燥和热处理制备出纳米粒子和所需材料。
溶胶凝胶法制备铁掺杂纳米TiO2薄膜与其性能研究

催 化 剂 , 由于 它 具 有 氧 化 能 力 强 、无 选 择 性 、能
宽 ( 约3 . 2 e V) ,只 能 在 紫 外 区 显 示 光 化 学 活 性 , 对太 阳能 的利 用 率 小 于 1 O 。因 此 如 何 提 高 其 光 催化 活 性 是 制 约 二 氧 化 钛 光 催 化 技 术 实 用 的 关 键 。不 少 研 究 者 。 发 现 ,通 过 与 其 它 半 导 体 复
都 可 以提 高 二 氧 化 钛 光 响 应 范 围 。本 文 制 备 了 不 同掺 杂铁 量 的二 氧 化 钛 薄 膜 ,通 过 不 同 因 素 的 对
比研究 ,发现微量 掺杂 时,水 浴处 理并添加适 量 的P E G,比没有掺杂铁 ,不加 P E G 的效果有 明显
收稿 日期 : 2 0 1 3 —0 3—1 i
0 . 0 7 5 9 / 6 ,0 . 1 ,0 . 1 5 ,0 . 2 9 / 5 Ti O 2 粉 末 的
凝胶法_ 6 ] ,制备得到纳米二氧化钛胶体 ,并用旋转
涂膜 工 艺 在玻 璃 基 片 上 进 行 镀 膜 ,并 把 胶 体 与 镀
信憩记录材料 2 0 1 3 年 簿' 4 卷 第 2 瀚
研 究 与 开 发
膜玻璃 片 在 不 同温 度 下 退 火 ,得 到 所 需 样 品 ,并 利用 X RD,紫外 可见 光 谱 ( UV/ v i s ) 和 扫描 电镜
摘
要 :以钛酸丁酯 Ti( OC 4 H。 ) 、冰 醋酸 、去离子水和 无水 乙醇、含水硝 酸铁等 为原料,采用溶胶一 凝 胶
溶胶凝胶法制备薄膜及涂层材料

(6)玻璃表面的平整度及光散乱 玻璃表面,由于是所谓火抛光(fire polish), 平整度在6~10nm。如果要求玻璃表面更平滑或 大面积范围的平滑,必须进行研磨。先用SiC或 Al2O3粗磨,然后用红粉(Fe2O3)或CeO2抛光。
玻璃表面如果呈波纹状,凸起的顶部或峰顶 与凹下的底面上的反射光之间存在光程差, △=2hcos,为入射角。如果2h小于λ/8,则看 不到光散乱。
表7-1 反应体系的组成
材料 Al2O3 La2O3-Al2O3 ZrO2(Y2O3)-Al2O3 MgO-ZrO2 Y2O3-ZrO2 MgAl2O4 MgFe2O4 Mg (Fe,Al)O4 主盐 Al(NO3)3、La(NO3)3、 Al(NO3)3 、ZrOCl2、Y(NO3)3 ZrOCl2 、Mg(NO3)2、 Y(NO3)3 Mg (NO3)2 、Al (NO3)3、 Fe(NO3)3 沉淀剂 NH4OH H2C2O4 NH4OH (NH4)2CO3 成膜促进剂 聚乙烯醇(PVA) 聚乙烯醇(PVA)、 阴离子表面活性 剂 阴离子表面活性剂 聚乙二醇、甘油
SrTiO3
Li2B4O7 Al2O3-SiO2 (如莫来石等) CeO2-TiO2
7.1.2.2影响成膜性和膜结构的主要因素 采用醇盐法制备薄膜时,影响成膜性和膜 结构的主要因素仍然是溶胶的配比、溶胶 的稳定性、干燥制度、烧结制度和基体的 选择等,具体情况与7.1.1.3节讨论的相同。 此处需要强调的是溶胶的稳定性是可以工 业化最关键的前提条件。
胶粒 H2O NH4+或者NO3成膜促进剂 稳定的均匀溶胶 H2O CO2
NO3- H2O
NH3
干燥初期
快升温
慢升温
图7-1 无机前驱体Sol-Gel膜的成膜机制示意图
溶胶凝胶法的原理

溶胶凝胶法的原理
溶胶凝胶法是一种用于制备纳米材料、薄膜以及复合材料的常用方法,其原理主要包括溶胶的制备、凝胶的形成和凝胶体的处理过程。
首先,溶胶的制备是指将所需的材料按照一定的配比加入到有机溶剂或水中进行充分搅拌,形成均匀溶胶体系。
通常会使用超声波或机械搅拌等方法来加速混合过程,以确保溶胶中各种组分能够均匀分散。
接下来,凝胶的形成是指在溶胶中引入适当的引发剂或调节剂,通过热处理、光照等方式引发胶束或聚合物的形成。
在这一过程中,溶胶中的分子或聚合物会逐渐聚集形成三维网络结构,从而形成凝胶体。
最后,凝胶体的处理是指对凝胶体进行干燥、烧结或热处理等后续工艺,使其形成所需的纳米材料、薄膜或复合材料。
通过适当的处理方式,可以控制材料的形貌、成分和性能。
总的来说,溶胶凝胶法通过溶胶的制备、凝胶的形成和凝胶体的处理,实现了纳米材料的制备。
这种方法具有成本低、操作简便以及对材料成分、形貌和性能的可控性高等优点,在材料科学和工程领域有着广泛的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验名称:溶胶-凝胶法制备TiO2薄膜材料
纳米TiO2具有许多特殊功能,如良好的抗紫外线性能、耐化学腐蚀性能和耐热性、白度好、可见光透射性好以及化学活性高等。
TiO2纳米材料还具有净化空气、杀菌、除臭、超亲水性等功能,已广泛应用于抗菌陶瓷,空气净化器、不用擦拭的汽车后视镜等领域,20世纪80年代末纳米发展起来成为主要的纳米材料之一。
研究表明,紫外线过量照射人体,会使人的记忆力减退、反应迟钝、视力下降、易失眠等影响。
在玻璃上负载TiO2膜可以有效地吸收紫线。
本次实验利用溶胶凝胶法制备TiO2纳米薄膜材料,在一定程度上是对TiO2在实际生活中应用的尝试。
一.实验目的
1.了解溶胶-凝胶法制备纳米薄膜材料的应用。
2.掌握溶胶-凝胶法制备纳米薄膜材料的原理以及实际应用。
3.掌握XRD颜射原理以及实际操作技能。
4.掌握根据X-射线衍射图分析晶体的基本方法。
二.实验原理
溶胶.凝胶法(S01.Gel法,简称S.G法)就是以无机物或金属醇盐作前驱体,在液相将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化,胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。
凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。
溶胶.凝胶法就是将含高化学活性组分的化合物经过溶液、溶胶、凝胶而固化,再经热处理而成的氧化物或其它化合物固体。
其基本反应如下:
(l)水解反应:M(OR)n + H2O → M (OH) x (OR) n-x + xROH
(2) 聚合反应:
-M-OH + HO-M-→ -M-O-M-+H2O
-M-OR + HO-M-→ -M-O-M-+ROH
三.实验试剂与实验仪器
实验仪器:
移液管(10ml)1只
量筒(50ml)1只
吸量管(5ml)2只
小烧杯(100ml ) 2只
载玻片若干
滴管2只
恒温磁力搅拌器1台
恒温干燥箱1台
原子吸光光度计1台
X-射线衍射仪1台
马弗炉1台
实验试剂
三乙醇胺(AR)
乙醇(AR)
钛酸丁酯(AR)
四.实验步骤
1.取载玻片若干片(一般4-5)片,先用丙酮清洗,再用去离子水清洗,放在烘箱中烘干编号备用。
2.配制溶胶:
用大量筒取40ml的无水乙醇放到100ml烧杯中,用吸量管取3ml的三乙醇胺溶于乙醇中,放在恒温磁力搅拌器上搅拌均匀。
用移液管取10ml钛酸四丁酯逐滴滴加到混合液中,搅拌十
溶胶。
分钟后,用滴管滴加0.5ml去离子水。
继续搅拌1h,即可得到均匀,透明的淡黄色TiO
2
3.制备薄膜:
溶胶中,浸泡10s后,以1.98mm/s的速度缓慢提拉载玻将烘干备用的载玻片浸入到TiO
2
片,在空气中干燥1min,溶胶在载玻片上发生水解反应、缩聚反应,在玻片上形成凝胶。
重复上述步骤八次,制备多层薄膜。
重复操作,在2-5号载玻片上镀膜。
将上述镀膜的载玻片立即放在100℃的烘箱中干燥30min后,取出样品,用原子吸光光
度计测量吸光度。
取吸光度良好的样品在马弗炉中以3℃,min一℃/min速度升温至540℃,保温2h。
在炉内自然冷却至室温,即可得到锐钛矿相Ti02纳米薄膜。
4.性能表征
对所的样品进行XRD 性能表征。
五.实验现象记录与分析
1.当载玻片镀八层薄膜是其TiO 2薄膜在不同光波照射下的透射率如下图所示:
0.0
0.2
0.40.60.8
1.0
T bochang/nm
透射率--波长
2.样品X-射线衍射图谱如下图所示:
XRD衍射图与其PDF图像对照图
该TiO2薄膜XRD衍射图中最高峰出现在2θ=25.281°处,其晶面指数为(1,0,1)。
六.思考题
1.简述溶胶凝胶法制备薄膜的原理?
答:溶胶.凝胶法(S01.Gel法,简称S.G法)就是以无机物或金属醇盐作前驱体,在液相将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化,胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。
凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。
溶胶.凝胶法就是将含高化学活性组分的化合物经过溶液、溶胶、凝胶而固化,再经热处理而成的氧化物或其它化合物固体。