溶胶-凝胶法及制备粉体
溶胶- 凝胶法制备 BaTiO 3 粉体材料

实验7 溶胶-凝胶法制备BaTiO 3粉体材料钛酸钡BaTiO 3是电子陶瓷领域应用最广的材料之一。
现代科技要求陶瓷粉体具有高纯、超细、粒径分布窄等特性,因为通过控制材料颗粒尺寸可有效的调控材料的物理性能。
溶液法是制备纳米(超细)粉体材料的一种重要方法,常用的溶液法包括沉淀法、溶胶-凝胶法、水热法和微乳法等。
本实验利用溶胶-凝胶法(Sol-Gel )制备BaTiO 3粉体材料。
一、实验目的(1)、了解溶胶-凝胶法的基本原理;(2)、利用溶胶-凝胶法制备BaTiO 3二、实验原理溶胶-凝胶法是指金属有机或无机化合物经过溶解、溶胶、凝胶而固化,再经热处理而成目标产物的方法。
无论所用原料为无机盐还是金属醇盐,其主要反应步骤是原料溶于溶剂(水或者有机溶剂)中形成均匀的溶液,溶质与溶剂发生水解或者醇解反应,形成溶胶粒子,溶胶粒子通过缩聚形成三维网络状的凝胶。
形成凝胶的过程中,反应复杂,产物结构多样。
本实验以钛酸丁酯Ti(OC 4H 9)4和醋酸钡为原料,通过溶胶-凝胶法制备BaTiO 3粉体材料,制备过程中最基本反应为:(a) 水解反应:494249449Ti(OC H ) + H O = Ti(OC H )(OH) + C H OH x x x x −在水解前如果把Ti(OC 4H 9)4溶解某种有机酸如冰醋酸中,可在水解之前(溶剂化)生成Ti(OC 4H 9)4-x (OCOCH 3)x ,这样可以减缓醇盐的水解速度。
水解反应可以延续到彻底水解如形成Ti(OH)4。
(b) 缩聚反应(失水或者失醇):Ti OH + OH i = i O i 2−−−Τ−−Τ−−Τ− + ΗΟ4949i OC H + OH i = i O i C H −Τ−−Τ−−Τ−−Τ− + ΟΗ由于不断发生水解、缩聚反应,溶液的粘度不断增加,最终形成具有“−金属−氧−金属−”网络结构的凝胶。
一般认为,反应过程中醋酸钡存在于凝胶的表面,通过后期热处理最后形成BaTiO 3。
溶胶凝胶法

溶胶—凝胶法制备粉体溶胶-凝胶法就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明胶溶体系,溶胶经陈化,胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。
凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。
此方法的化学过程首先是将原料分散在溶剂中,然后经过水解反应生成活性单体,活性单体进行聚合,开始成为溶胶,进而生成具有一定空间结构的凝胶,经过干燥和热处理制备出纳米粒子和所需要材料。
一、基本原理溶胶是指固体或胶体粒子均匀分散在溶液之中,固体粒子尺寸为1nm左右,含有103—109个原子,比表面积大。
胶体粒子受到布朗运动的作用可以稳定持久地悬浮在液相之中,此外粒子的表面电荷引起的双电荷层使固体粒子更加均匀的分布在溶液之中。
凝胶是随着水分的蒸发,溶胶中固体粒子间聚合能量加强,逐渐失去流动而变成的半固态物质。
分散在溶液中的固体粒子间吸引力与排斥力相当,使得凝胶中固态、液态都存在的高分散状态。
溶胶-凝胶法是以无机聚合反应为基础,以金属醇盐或无机金属盐作为前驱物,用水作为水解剂,有醇为溶剂来制备高分子化合物。
在溶液中前驱物进行水解、缩合反应,形成凝胶。
传统的溶胶-凝胶体系中,反应物通常是金属醇盐,通过醇盐缩水而得到溶胶。
但由于稀土金属的醇盐易水解、成本高等问题,限制了溶胶—凝胶法在更多领域的应用。
因此在很多领域中应用较多的是络合溶胶-凝胶法。
该法在制备前驱液时添加强络合剂,通过可溶性络合物的形成减少前驱液中的自由离子,控制一系列实验条件,移去溶剂后得到凝胶,最后再通过分解的方法除去有机配体而得到粉体颗粒。
溶胶-凝胶过程具体包括以下两个反应过程:1.水解反应是把阴离子取代成羟基,诱发综合反应,形成链状或网状交联的聚合物,金属盐类水解:ML + nH2O →M(OH2)z+n + L z-M(OH2)z+n→M(OH)(OH)(z-1)+n-1 + H+2.缩聚反应是把OR或L和OH换去,转换成氧化态:M-OH + M-OH →M-O-M + H2OM-OH + M-OH →M-O-M + ROH聚合程度决定于原颗粒的大小,而聚合速度取决于水解速率。
溶胶——凝胶法制备

溶胶—凝胶法制备Y3Al5O12:Ce荧光粉一、实验目的1. 了解溶胶—凝胶法制备粉体的基本原理。
2. 掌握Y3Al5O12:Ce荧光粉等发光材料的合成方法。
3. 掌握材料的物相组成、显微结构、发光性能等表征技术。
二、实验原理自1994年日本科学家Shuji Nakamura在GaN基材料上研制出第一只蓝光LED以来, 半导体照明技术逐渐成为业界的研究热点。
因具有省电、体积小、发热量低、寿命长、响应快、抗震耐冲、可回收、无污染、可平面封装、易开发成轻薄短小产品等优点,使白光LED 正成为新一代照明光源的发展方向。
目前,白光LED工艺主要是采用蓝光LED芯片来激发黄色荧光粉YAG:Ce,其产品已获得工业化应用。
现行制备YAG:Ce的主要方法是固相烧结法,但其合成温度高、荧光粉形状不规则、粒径偏大、粉碎导致光损失,严重影响其使用性能。
溶胶—凝胶(Sol—gel)法就是将金属氧化物或氢氧化物的浓溶液变为凝胶,再将凝胶干燥后进行煅烧,然后制得氧化物超微细粉的方法。
这种方法适用于能形成溶胶且溶胶可以转化为凝胶的氧化物系。
溶胶—凝胶法作为当前制备各种功能材料和结构材料的重要方法,其反应物以分子(离子)形式相互溶合,可以直接进行分子量级的化学反应,从而大大降低了材料的合成温度,这就为较低温合成粉体材料提供了可行途径。
三、实验原料、仪器设备1. 实验原料:氧化钇,九水硝酸铝,六水硝酸铈,柠檬酸,硝酸,氨水,去离子水,无水乙醇2. 仪器设备:磁力搅拌器,烧杯,量筒,研钵,药勺,陶瓷坩埚,pH计,电子天平,胶头滴管,毛刷,水浴箱,离心机,真空干燥箱,马弗炉,X-射线衍射仪四、实验步骤1. 称取0.559g氧化钇粉体,倒入100mL烧杯中,再加入适量的硝酸,在磁力加热搅拌器上溶解氧化钇,控制处理温度为50℃,搅拌至获得无色透明的溶液。
2. 将步骤1得到的硝酸钇溶液加热至干燥状态,使多余的硝酸挥发掉。
3. 称量3.145g九水硝酸铝、0.0364g六水硝酸铈、2.819g柠檬酸,将这些试剂倒入步骤1的烧杯中。
溶胶凝胶法

溶胶—凝胶法制备粉体溶胶-凝胶法就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明胶溶体系,溶胶经陈化,胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。
凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。
此方法的化学过程首先是将原料分散在溶剂中,然后经过水解反应生成活性单体,活性单体进行聚合,开始成为溶胶,进而生成具有一定空间结构的凝胶,经过干燥和热处理制备出纳米粒子和所需要材料。
一、基本原理溶胶是指固体或胶体粒子均匀分散在溶液之中,固体粒子尺寸为1nm左右,含有103—109个原子,比表面积大。
胶体粒子受到布朗运动的作用可以稳定持久地悬浮在液相之中,此外粒子的表面电荷引起的双电荷层使固体粒子更加均匀的分布在溶液之中。
凝胶是随着水分的蒸发,溶胶中固体粒子间聚合能量加强,逐渐失去流动而变成的半固态物质。
分散在溶液中的固体粒子间吸引力与排斥力相当,使得凝胶中固态、液态都存在的高分散状态。
溶胶-凝胶法是以无机聚合反应为基础,以金属醇盐或无机金属盐作为前驱物,用水作为水解剂,有醇为溶剂来制备高分子化合物。
在溶液中前驱物进行水解、缩合反应,形成凝胶。
传统的溶胶-凝胶体系中,反应物通常是金属醇盐,通过醇盐缩水而得到溶胶。
但由于稀土金属的醇盐易水解、成本高等问题,限制了溶胶—凝胶法在更多领域的应用。
因此在很多领域中应用较多的是络合溶胶-凝胶法。
该法在制备前驱液时添加强络合剂,通过可溶性络合物的形成减少前驱液中的自由离子,控制一系列实验条件,移去溶剂后得到凝胶,最后再通过分解的方法除去有机配体而得到粉体颗粒。
溶胶-凝胶过程具体包括以下两个反应过程:1.水解反应是把阴离子取代成羟基,诱发综合反应,形成链状或网状交联的聚合物,金属盐类水解:ML + nH2O →M(OH2)z+n + L z-M(OH2)z+n→M(OH)(OH)(z-1)+n-1 + H+2.缩聚反应是把OR或L和OH换去,转换成氧化态:M-OH + M-OH →M-O-M + H2OM-OH + M-OH →M-O-M + ROH聚合程度决定于原颗粒的大小,而聚合速度取决于水解速率。
溶胶-凝胶合成法

Y
Y(OC2H5)3
B
Ca
(OC2H5)2
溶胶-凝胶合成法
无机盐的水解-缩聚反应
水解反应:Mn+ +nH2O → M(OH)n + nH+ 凝胶化 脱水凝胶化 碱性凝胶化 胶粒脱水,扩散层中电解质浓 度增加,凝胶化能垒逐渐减小
xM(H2O)nz+ + yOH- + aA- → MxOu(OH)y-2u(H2O)nAa(xz-y-a)+ + (xn+u-n)H2O A- —— 凝胶过程中所加入的酸根离子。 当x=1时,形成单核聚合物; 在x>1时,形成多核聚合物。 Mz+可通过O2-、OH-、H2或A-与配体桥联。
气凝胶块体
气凝胶隔热
溶胶-凝胶
+
模板工艺
多孔材料
胶质晶态模板
结构性多孔复制品
3.纤维材料
溶胶-凝胶合成法
前驱体经反应形成类线性无机聚合物或络合物,当粘度达10~100Pa· s时,
通过挑丝或漏丝法可制成凝胶纤维,热处理后可转变成相应玻璃或陶瓷纤维 克服了传统直接熔融纺丝法因特种陶瓷难熔融而无法制成纤的困难,工艺 可以在低温下进行,纤维陶瓷均匀性好、纯度高
溶胶-凝胶合成法 (3)凝胶与溶胶是两种互有联系的状态。 1)乳胶冷却后即可得到凝胶;加电解质于悬胶后也可得到凝胶。 2)凝胶可能具有触变性:在振摇、超声波或其他能产生内应力 的特定作用下,凝胶能转化为溶胶。 3)溶胶向凝胶转变过程主要是溶胶粒子聚集成键的聚合过程。 4)上述作用一经停止,则凝胶又恢复原状,凝胶和溶胶也可共 存,组成一更为复杂的胶态体系。
5)溶胶是否向凝胶发展,决定于胶粒间的作用力是否能够克服 凝聚时的势垒作用。因此,增加胶粒的电荷量,利用位阻效应 和利用溶剂化效应等,都可以使溶胶更稳定,凝胶更困难;反 之,则更容易形成凝胶。
溶胶-凝胶法制备TiO2纳米粉

溶胶-凝胶法制备TiO2纳米粉姓名:郭霖班级:材料物理学号:110102030021前言:纳米材料是由极细晶粒组成、特征尺寸在纳米数量级(1~100nm)的固体材料。
由于这种材料粒子的粒径介于块状物体与原子、分子之间,其特性明显不同于本体物质和微观粒子,具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应,表现出许多优异的力学、热学、光学、磁学和电学等性质和新的规律。
当粉体的尺寸达到纳米级别时,其比表面积会迅速增加,同时由于表面效应、小尺寸效应以及量子效应,纳米粉体将表现出许多特殊性能。
TiO2是一种重要的功能材料,除广泛应用于精细化工领域外,还因其具有许多特异的功能应用于电子工业中。
纳米二氧化钛(TiO2)是一种光催化材料,而用作光催化剂的TiO2主要有两种晶相——锐钛矿相和金红石相。
由于纳米颗粒与微米颗粒相比,具有一些独特的性质,如量子效应、表面-界面效应等,一般在TiO2光催化反应中,都将TiO2制成纳米尺度的粉体[,而制备具有锐钛矿晶型结构的纳米TiO2粉体是提高、改进其各种功能的有效途径之一。
溶胶-凝胶法原理:溶胶-凝胶法制备纳米材料属于湿化学法(包括化学共沉淀法,水热法,微乳液法等)中的一种。
该法是指用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。
凝胶经过干燥、烧结固化制备出分子乃至纳米结构的材料。
制备纳米粉体材料的基本原理是,将前驱体(无机盐或金属醇盐)溶于溶剂水或有机溶剂中,形成均相溶液,溶质与溶剂产生水解或醇解反应,反应生成物聚集成1nm左右的粒子并组成溶胶,然后通过缩聚反应形成湿凝胶,最终经过干燥和后续热处理等过程得到纳米粉体材料。
制备优点:溶胶-凝胶法制备TiO2纳米粉体,采用溶胶-凝胶法具有设备投资少、易于控制、操作简单、颗粒大小均匀、纯度高、比表面积大、光催化活性高等优点。
综合实验-溶胶凝胶法制备

综合实验:溶胶-凝胶法制备纳米TiO2微粉1 实验目的:1. 用溶胶-凝胶法制备纳米TiO2微粉。
2.掌握溶胶-凝胶法制备纳米粒子的原理。
3.了解纳米粒子常用的表征手段。
2 实验原理自70年代初发现二氧化钛电极具有光照下分解水的功能以来,有关二氧化钛半导体光催化剂的研究成为环境领域的一个热点。
用半导体光催化分解毒性有机物有两个优点:第一,适当选择催化剂,可以利用太阳能处理毒物,节约能源;第二,一些半导体的光生空穴具有很强的氧化能力,能彻底降解绝大多数有机物质,而且能将它们最后分解为二氧化碳、水和无机物,避免了用化学方法处理带来的二次污染。
制备纳米粒子的方法很多,如化学沉淀法、溶胶-凝胶法、水热法、微乳液法、反相胶团法、气相法等。
溶胶-凝胶法(Sol-Gel法)是指无机物或金属醇盐经过溶液、溶胶、凝胶而固化,再经热处理而成的氧化物或其它化合物固体的方法。
溶胶是指微小的固体颗粒悬浮分散在液相中,并且不停的进行布朗运动的体系。
根据粒子与溶剂间相互作用的强弱,通常将溶胶分为亲液型和憎液型两类。
由于界面原子的Gibbs自由能比内部原子高,溶胶是热力学不稳定体系。
凝胶是指胶体颗粒或高聚物分子互相交联,形成空间网状结构,在网状结构的孔隙中充满了液体(在干凝胶中的分散介质也可以是气体)的分散体系。
并非所有的溶胶都能转变为凝胶,凝胶能否形成的关键在于胶粒间的相互作用力是否足够强,以致克服胶粒-溶剂间的相互作用力。
对于热力学不稳定的溶胶,增加体系中粒子间结合所须克服的能垒可使之在动力学上稳定。
因此,胶粒间相互靠近或吸附聚合时,可降低体系的能量,并趋于稳定,进而形成凝胶。
该方法的优点是:(1)反应温度低,反应过程易于控制;(2)制品的均匀度和纯度高、均匀性可达分子或原子水平;(3)化学计量准确,易于改性,掺杂的范围宽(包括掺杂的量和种类);(4)从同一种原料出发,改变工艺过程即可获得不同的产品如粉料、薄膜、纤维等;(5)工艺简单,不需要昂贵的设备。
第八章 溶胶-凝胶法制备纳米粉体

• 5 陈化时间的影响 凝胶在陈化的过程中, 凝胶在陈化的过程中,由于粒子接触时的曲率半径不 导致它们的溶解度产生区别。另外, 同,导致它们的溶解度产生区别。另外,在陈化过程中凝 胶还会发生Ostward熟化,即大小粒子因溶解度的不同而 熟化, 胶还会发生 熟化 造成的平均粒径的增加。陈化时间过短, 造成的平均粒径的增加。陈化时间过短,颗粒尺寸分布不 均匀;时间过长,粒子长大、团聚,不易形成超细结构, 均匀;时间过长,粒子长大、团聚,不易形成超细结构, 因此陈化时间的选择对粉体的微观结构非常重要。 因此陈化时间的选择对粉体的微观结构非常重要。随陈化 时间的增加,在一段时间以内,粒子缓慢生长, 时间的增加,在一段时间以内,粒子缓慢生长,随陈化时 间的延长,粉体的粒径显著增大。 间的延长,粉体的粒径显著增大。 • 6 凝胶干燥条件的影响 凝胶经过干燥才能够得到所需的颗粒粉体。 凝胶经过干燥才能够得到所需的颗粒粉体。与普通粉 体干燥有所不同的是Gel干燥阶段体积收缩会导致组织结 体干燥有所不同的是 干燥阶段体积收缩会导致组织结 构损坏并影响超细颗粒的性能。 构损坏并影响超细颗粒的性能。
粉体名称 SiO2, Al2O3 TiO2, ZrO2 BaTiO3, LiNbO3, SnO2 α-Fe2O3 ZnO SiC 羟基磷灰石(HAP) 羟基磷灰石 YBa2Cu3O7-δ LaCoO3 3A12O3·2SiO2 La0 .8 Sr0 .2 FeO3 ZnS, CdS , (Pb,La) (Zr,Ti)O3 , , 主要用途 光纤、陶瓷、玻璃、 光纤、陶瓷、玻璃、催化剂载体等 陶瓷、光纤、 陶瓷、光纤、催化剂等 电容器、 电容器、铁电材料等 气敏材料 磁粉 导电材料、 导电材料、发光材料 耐火材料, 耐火材料,磨具等 陶瓷粉体, 陶瓷粉体,生物活性材料 高临界温度超导材料 气敏材料, 气敏材料,催化剂 耐火材料, 耐火材料,添加剂 气敏材料 半导体 光敏阀门, 光敏阀门,光电显示器
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、凝胶-溶胶(Sol-gel)技术
溶胶(Sol):是具有液体特征的胶体体系,分散介质 为液体,分散相是固体粒子,分散的粒子大小在1~ 100nm之间 凝胶(Gel)是指胶体胶凝,具有固体特征的胶体 体系,被分散的物质形成连续的刚性网状骨架,网 络间具有亚微米级的孔隙,骨架空隙(亚微米级)中 充有液体或气体,凝胶聚合物链的平均长度大于一 微米,如果冻等。大多数凝胶是无定形的 溶胶凝胶法是指先制成溶胶,再使之胶凝、干燥、 热 分解(烧成),而得到所需材料的方法。 “溶胶-凝胶法”中的“溶胶”,一般是指液-固溶
溶胶凝胶法制备钛酸钡的工艺流程图
钛酸丁酯(亦称丁醇钛)是一种非常活泼的醇 盐,遇水会发生剧烈的水解反应,如果有足 够的水参与反应,一般将生成性能稳定的氢 氧钛。
在Sol—Gel工艺中,必须严格地控制水的 掺量,甚至不掺水,而让溶液系统暴露在 空气中从空气中吸收水分,使水解反应不 充分(或不完全),其反应式可表示为
3)络和物法
使金属离子和含羟基的羧酸形成螯合物,适 当温度下缩合(使发生脂化反应)形成溶胶(Sol), 进一步蒸馏,除去生成的过量水,即进一步聚 脂化反应、缩合,形成凝胶(gel)
三种方法比较
Sol-Gel 过程类型
化学特征
调整pH值或加入电 解质使粒子表面电荷 中和,蒸发溶剂使粒 子形成凝胶
凝胶
1.密集的粒子形成凝胶网络 2.凝胶中固相含量较高 3.凝胶透明,强度较弱 1.由前驱体得到的无机聚合物构 成的凝胶网络 2.刚形成的凝胶体积与前驱体溶 液体积完全一样 3.证明凝胶形成的参数-凝胶时 间随着过程中的其它参数变化而 变化 4.凝胶透明
1.由氢键连接的络合物构成凝胶 网络 2.凝胶在湿气中可能会溶解 3.凝胶透明
或金属烷氧基化合物与过量的水反应得到凝胶状 的氢氧化物沉淀,然后用电解质(常用酸)通过 胶溶作用生成稳定的胶体。溶胶中微粒的大小依 赖于过程的各种参数
2)化学法:又可称为聚合物溶胶法(有机聚合 物胶、化学胶) 以金属醇盐为前驱物,同样,必须将醇盐溶于 相应的有机溶剂中,然后控制加水量,使醇盐 发生部分水解,接着进行聚合反应而形成溶胶。 其制备过程称为PMU路线(Polymerization of Molecular Units) 溶胶-凝胶转变是以簇为单位通过缩合反应长 大,直到这些胶体簇生成凝胶。该路线可以得 到比粒子胶更小的颗粒尺寸和更精细的结构
如本实验可能发生典型的聚合反应的结构反应式 为
实验中的水解及聚合反应在缓慢吸收空气 中水分的过程中不断地进行着,实际上是 金属有机化合物经过脱酸脱醇反应,金属 Ti4+和Ba2+通过桥氧键聚合成了有机大分子 团链,随着这种分子团链聚合度的增大, 溶液粘度增加,溶胶特征明显,经过一定 时间就会变成半固体透明的凝胶。凝胶经 过烘干,煅烧得到钛酸钡粉末。
溶胶-凝胶法
1846年 Ebelmen 发现凝胶
一、溶胶凝胶的历史
1853 Farady, 实验室Gold sol, oldest sol, still stable now days;
1861 Thomas Graham, 胶体化学作为一门学说; colloid 胶体, sol溶胶, gel凝胶, peptization胶溶, dialysis渗析, syneresis离浆
前驱体
前驱体溶胶是由 金属无机化合物 与添加剂之间的 反应形成的密集 粒子
应用
胶体型
粉末 薄膜
无机 聚合物型
前驱体水解和聚合
主要是金属烃氧 化物
薄膜 块体 纤维 粉末
络合物型
络合反应导致较大混 合配合体的络合物的 形成
金属醇盐、硝酸 盐或醋酸盐
薄膜 粉末 纤维
3、溶胶凝胶的工艺步骤
以 醇 盐 如 Al(OC3H7)3、Al(OC4H9)3、Ti(i-OC3H7)4、 Zr(i-OC3H7)4、Si(OC2H5)4、Si(OCH3)4或金属无机盐如 AlCl3为起始原料溶于溶剂中,制成溶液, 在一定的条件 下通过水解-聚合,形成稳定的溶胶,通过胶凝作用转 化成凝胶,再经干燥、热处理和烧结最终得到特定无机 材料。整个过程的主要阶段为: 溶胶的制备:溶剂化作用,水解与聚合 溶胶向凝胶的转变:胶凝作用,胶凝点 凝胶向特定无机材料的转变。
缩合产物不断发生水解、缩聚反应,溶液 的粘度不断增加。最终形成凝胶——含金 属—氧—金属键网络结构的无机聚合物。 正是由于金属—氧—金属键的形成,使 Sol—Gel法能在低温下合成材料。 Sol—Gel技术关键就在控制条件发生水解、 缩聚反应形成溶胶、凝胶。
2、溶胶凝胶法分类
按其产生溶胶及溶胶向凝胶演变的过程机 制可以分为:胶体粒子路线、有机聚合物 路线和络合物法。 1)胶体粒子路线:溶胶称粒子溶胶或物理胶, 其制备过程称为DCS路线(Destabilization of Colloidal Solutions)。 · 采用无机盐或金属烷氧基化合物为前驱物,将盐
Ti(OR)4 +χH2O = Ti(OR)4 -χOHχ + χROH (1)
式中, R=C4H9为丁烷基,RO或OR为丁烷氧基。
未完全水解反应的生成物Ti(R)4- χ (OH) χ 中的(OH)-极易与丁烷基(R)或乙羰基 (R´=CH3CO)结合,生成丁醇或乙酸,而使金 属有机基团通过桥氧聚合成有机大分子。
1971年,德国H.Dislich 成功地制备出SiO2-B2OAl2O3-Na2O-K2O多组分玻璃, 80年代后,玻璃、氧化物涂层、功能陶瓷粉料、复合 氧化物陶瓷材料(粉体、薄膜、纤维、晶须、块体)
1994年7月在美国加利福尼亚的圣地亚哥举 行的关于Sol-Gel光子学的会议上,展示了 三种很有前途的产品: 1. 西班牙的D.Levy小组演示了液晶显示器。 2. 爱尔兰的B.D.MacCraith发明的光纤传感器。 3. 法国的J.Livage制备的生物寄生检测器
溶胶-凝胶工艺参数
溶胶凝胶 溶胶-凝胶 前驱体选择 反应配比 反应时间 溶液pH值 反应时间 金属离子半径 络合剂 催化剂 静 止 老 化 凝胶处理 老化方式 加 入 老 化 液 老化时间 常 压 干 燥 干燥及热处理 干燥方法 冷 冻 干 燥 超 临 界 干 燥 热处理工艺
溶胶凝胶法制备超细粉体的优点: 温和的制备反应条件; 纯度高; 颗粒细,易于制备纳米尺度的粉体,粒径分 布窄; 分散性好,活性高,烧结温度比高温固相反 应温度低得多; 化学组成与相组成均匀,尤其对多组分体系 以此粉体为前驱物,所得的功能材料性质优 异
定义
是指金属有机或无机化合物经过溶液、溶胶、 凝胶而固化、再经过热处理而成氧化物或其 它化合物固体的方法。
溶解 前驱体
水解
缩聚
老化
溶液
溶胶Байду номын сангаас
凝胶
凝胶
1、溶胶-凝胶法的基本原理
1)水解反应:
M(OR)4 + χ H2O = M(OR)4-OH + χ ROH
2)缩合-聚合反应: 失水缩合 -M-OH + OH-M- =-M-O-M- +H2O 失醇缩合 -M-OR + OH-M-=-M-O-M- +ROH
4. 溶胶-凝胶法应用
1) 粉体材料 2) 块体或多孔材料 3) 纤维材料 4) 薄膜及涂层材料 5) 气凝胶
以制备陶瓷粉体为例
钛酸钡(BaTiO3)具有良好的介电性,是电子陶瓷 领域应用最广的材料之一。传统的BaTiO3制备方 法是固相合成,这种方法生成的粉末颗粒粗且硬, 不能满足高科技应用的要求。现代科技要求陶瓷 粉体具有高纯、超细、粒径分布窄等特性,纳米 材料与粗晶材料相比在物理和机械性能方面有极 大的差别。由于颗粒尺寸减小引起材料物理性能 的变化主要表现在:熔点降低,烧结温度降低、 荧光谱峰向低波长移动、铁电和铁磁性能消失、 电导增强等。溶液化学法是制备超细粉体的一种 重要方法,其中以溶胶-凝胶法最为常用。