溶胶凝胶方法

合集下载

溶胶凝胶技术

溶胶凝胶技术

溶胶凝胶技术是一种重要的材料制备方法,广泛应用于纳米材料、催化剂、电子器件、药物传递和生物传感等领域。

本文将从定义、原理、制备方法、应用以及未来发展等方面进行详细介绍。

一、定义溶胶凝胶技术是一种通过溶胶形成凝胶的过程,其中溶胶指的是由固体颗粒或分子均匀分散在液体介质中的胶体体系。

凝胶则是指溶胶在特定条件下形成的三维网络结构,具有高度孔隙度和大比表面积的材料。

二、原理溶胶凝胶技术基于凝胶形成的原理,主要涉及两个关键步骤:溶胶形成和凝胶固化。

首先,在适当的条件下,将固体颗粒或分子分散在液体介质中,形成均匀的溶胶体系。

然后,通过物理或化学手段,使溶胶体系发生相互作用,形成三维网络结构,最终形成凝胶。

三、制备方法1. 溶胶凝胶法:通过在液体介质中分散固体颗粒或分子,形成溶胶,然后利用物理或化学方法使其凝胶化。

常见的溶胶凝胶方法包括溶胶聚合、溶胶沉淀和溶胶冻干等。

2. 模板法:利用模板分子或颗粒来引导溶胶的凝胶过程,从而得到特定形状和结构的凝胶材料。

模板法可以实现对孔结构和孔径的精确控制。

3. 气相凝胶法:通过在气相条件下使溶胶体系发生凝胶化反应,得到具有纳米尺寸孔隙结构和高比表面积的材料。

气相凝胶法适用于制备非常细微的凝胶材料。

四、应用1. 纳米材料:溶胶凝胶技术可以制备出具有高度孔隙度和大比表面积的纳米材料,用于催化剂、传感器、能源存储等领域。

2. 催化剂:溶胶凝胶法可以制备出高活性和选择性的催化剂,用于化学反应、环境治理等领域。

3. 电子器件:溶胶凝胶技术可以制备出具有高度孔隙度和导电性的材料,用于电池、超级电容器、传感器等领域。

4. 药物传递:溶胶凝胶技术可以制备出载药微球或凝胶体系,用于药物缓释和靶向传递。

5. 生物传感:溶胶凝胶技术可以制备出具有大比表面积和生物相容性的材料,用于生物传感器、生物成像等领域。

五、未来发展溶胶凝胶技术在材料科学和工程领域有着广阔的应用前景。

未来的研究方向主要包括以下几个方面:1. 制备方法的改进:进一步提高溶胶凝胶制备方法的效率和控制性,实现更精确和可控的结构和性能调控。

溶胶凝胶法

溶胶凝胶法

溶胶—凝胶法制备粉体溶胶-凝胶法就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明胶溶体系,溶胶经陈化,胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。

凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。

此方法的化学过程首先是将原料分散在溶剂中,然后经过水解反应生成活性单体,活性单体进行聚合,开始成为溶胶,进而生成具有一定空间结构的凝胶,经过干燥和热处理制备出纳米粒子和所需要材料。

一、基本原理溶胶是指固体或胶体粒子均匀分散在溶液之中,固体粒子尺寸为1nm左右,含有103—109个原子,比表面积大。

胶体粒子受到布朗运动的作用可以稳定持久地悬浮在液相之中,此外粒子的表面电荷引起的双电荷层使固体粒子更加均匀的分布在溶液之中。

凝胶是随着水分的蒸发,溶胶中固体粒子间聚合能量加强,逐渐失去流动而变成的半固态物质。

分散在溶液中的固体粒子间吸引力与排斥力相当,使得凝胶中固态、液态都存在的高分散状态。

溶胶-凝胶法是以无机聚合反应为基础,以金属醇盐或无机金属盐作为前驱物,用水作为水解剂,有醇为溶剂来制备高分子化合物。

在溶液中前驱物进行水解、缩合反应,形成凝胶。

传统的溶胶-凝胶体系中,反应物通常是金属醇盐,通过醇盐缩水而得到溶胶。

但由于稀土金属的醇盐易水解、成本高等问题,限制了溶胶—凝胶法在更多领域的应用。

因此在很多领域中应用较多的是络合溶胶-凝胶法。

该法在制备前驱液时添加强络合剂,通过可溶性络合物的形成减少前驱液中的自由离子,控制一系列实验条件,移去溶剂后得到凝胶,最后再通过分解的方法除去有机配体而得到粉体颗粒。

溶胶-凝胶过程具体包括以下两个反应过程:1.水解反应是把阴离子取代成羟基,诱发综合反应,形成链状或网状交联的聚合物,金属盐类水解:ML + nH2O →M(OH2)z+n + L z-M(OH2)z+n→M(OH)(OH)(z-1)+n-1 + H+2.缩聚反应是把OR或L和OH换去,转换成氧化态:M-OH + M-OH →M-O-M + H2OM-OH + M-OH →M-O-M + ROH聚合程度决定于原颗粒的大小,而聚合速度取决于水解速率。

溶胶凝胶法

溶胶凝胶法

溶胶—凝胶法制备粉体溶胶-凝胶法就是用含高化学活性组分的化合物作前驱体,在液相下将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明胶溶体系,溶胶经陈化,胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。

凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。

此方法的化学过程首先是将原料分散在溶剂中,然后经过水解反应生成活性单体,活性单体进行聚合,开始成为溶胶,进而生成具有一定空间结构的凝胶,经过干燥和热处理制备出纳米粒子和所需要材料。

一、基本原理溶胶是指固体或胶体粒子均匀分散在溶液之中,固体粒子尺寸为1nm左右,含有103—109个原子,比表面积大。

胶体粒子受到布朗运动的作用可以稳定持久地悬浮在液相之中,此外粒子的表面电荷引起的双电荷层使固体粒子更加均匀的分布在溶液之中。

凝胶是随着水分的蒸发,溶胶中固体粒子间聚合能量加强,逐渐失去流动而变成的半固态物质。

分散在溶液中的固体粒子间吸引力与排斥力相当,使得凝胶中固态、液态都存在的高分散状态。

溶胶-凝胶法是以无机聚合反应为基础,以金属醇盐或无机金属盐作为前驱物,用水作为水解剂,有醇为溶剂来制备高分子化合物。

在溶液中前驱物进行水解、缩合反应,形成凝胶。

传统的溶胶-凝胶体系中,反应物通常是金属醇盐,通过醇盐缩水而得到溶胶。

但由于稀土金属的醇盐易水解、成本高等问题,限制了溶胶—凝胶法在更多领域的应用。

因此在很多领域中应用较多的是络合溶胶-凝胶法。

该法在制备前驱液时添加强络合剂,通过可溶性络合物的形成减少前驱液中的自由离子,控制一系列实验条件,移去溶剂后得到凝胶,最后再通过分解的方法除去有机配体而得到粉体颗粒。

溶胶-凝胶过程具体包括以下两个反应过程:1.水解反应是把阴离子取代成羟基,诱发综合反应,形成链状或网状交联的聚合物,金属盐类水解:ML + nH2O →M(OH2)z+n + L z-M(OH2)z+n→M(OH)(OH)(z-1)+n-1 + H+2.缩聚反应是把OR或L和OH换去,转换成氧化态:M-OH + M-OH →M-O-M + H2OM-OH + M-OH →M-O-M + ROH聚合程度决定于原颗粒的大小,而聚合速度取决于水解速率。

材料合成与制备 第1章 溶胶-凝胶法

材料合成与制备 第1章 溶胶-凝胶法

溶胶凝胶化目前主要分为脱水凝胶化和碱性凝胶化两类。
脱水凝胶化过程中(加入强亲水性物质,例已醇),胶粒脱水,扩 散层中电解质溶解质浓度增加,凝胶化能垒降低。
碱性凝胶化过程中, Mn+ 可通过O2-、OH- 或An-(酸根离子)与配 体 简桥言联之,。体影系响加因入素有OHp-H,值胶、粒温表度面、正A电n-荷的减性少质,、能M(垒H2高O度)n+降的低浓。度等。
(3)溶剂化作用也能稳定溶胶。破坏胶粒之间的有序溶剂层, 使胶粒表层脱除溶剂并相互接触需要一定的溶剂化能量。这种 效应对于亲液溶胶更加明显。
反之,由溶胶制备凝胶的具体方法有以下几种: (1)使水、醇等分散介质挥发或冷却溶胶,使其成为过饱和 液,而形成冻胶。 (2)加入非溶剂,如在果胶水溶液中加入适量酒精后,即形 成凝胶。 (3)将适量的电解质加入胶粒亲水性较强的憎液型溶胶,即 可形成凝胶。 (4)利用化学反应产生不溶物,并控制反应条件可得凝胶。
前驱物溶液(溶 胶)由金属无机 化合物与添加剂 之间的反应形成
密集的粒子
粉末、薄 膜
有机聚合物 型Sol-Gel
过程
前驱物的控制 水解和缩聚
1.由前驱物得到的无机聚合物构 成凝胶网络 2.刚形成的凝胶体 积与前驱物溶液体积完全一样 3. 凝胶形成的参数--胶凝时间随着 过程中其它参数的变化 而变化 4.凝胶透明
3、 20纪80年代以后,广泛应用于功能材料、特种陶瓷材料、晶 体、薄膜材料 、超微粉体、有机-无机杂化材料的制备和应用。从 1981年开始,每二年举办一次溶胶-凝胶科学技术国际会议。溶胶-凝 胶科学已经成为材料科学与工程研究领域的一个重要分支。
三、溶胶-凝胶合成方法的原理
现代溶胶-凝胶技术一般是以金属有机醇盐或无机盐为原料, 溶解于一定的溶剂中形成金属化合物的溶液,然后进行水解、聚合 形成溶胶、凝胶。

溶胶凝胶法的基本原理、发展及应用现状

溶胶凝胶法的基本原理、发展及应用现状

溶胶凝胶法的基本原理、发展及应用现状一、本文概述溶胶凝胶法(Sol-Gel Method)是一种重要的材料制备技术,广泛应用于陶瓷、玻璃、金属氧化物、复合材料等多个领域。

本文旨在全面阐述溶胶凝胶法的基本原理、发展历程以及应用现状。

我们将深入探讨溶胶凝胶法的基本原理,包括溶胶的形成、凝胶化过程以及材料的微观结构和性能调控。

我们将回顾溶胶凝胶法的发展历程,从早期的探索阶段到如今的成熟应用,分析其技术进步和主要成就。

我们将重点关注溶胶凝胶法的应用现状,涉及领域广泛,如能源、环境、生物医学等,展望其未来的发展趋势和潜在应用。

通过本文的阐述,我们期望为读者提供一个全面、深入的溶胶凝胶法知识体系,为相关领域的研究和应用提供有益的参考。

二、溶胶凝胶法的基本原理溶胶凝胶法(Sol-Gel Method)是一种在湿化学领域广泛应用的材料制备技术,其基本原理涉及胶体化学和物理化学的基本原理。

该方法通过控制溶液中的化学反应,使溶液中的溶质原子或离子在液相中形成稳定的溶胶体系,随后经过凝胶化过程转化为固态凝胶,最后经过热处理等步骤得到所需材料。

在溶胶凝胶法的过程中,溶胶的形成是关键。

溶胶是由固体颗粒(通常为纳米尺度)分散在液体介质中形成的胶体分散体系。

这些固体颗粒可以通过水解和缩聚等化学反应从溶液中的前驱体(如金属盐或金属醇盐)中生成。

水解反应是指前驱体与水反应,生成相应的氢氧化物或氧化物,同时释放出水分子。

缩聚反应则是指这些氢氧化物或氧化物之间进一步发生化学反应,形成网络状的结构,从而使溶液转化为溶胶。

凝胶化过程是溶胶凝胶法的另一个重要阶段。

随着溶胶中固体颗粒的不断生成和长大,颗粒之间的相互作用逐渐增强,形成三维网络结构,使溶胶失去流动性,转变为固态的凝胶。

这一过程中,颗粒之间的相互作用力(如范德华力、氢键等)以及颗粒表面的电荷状态等因素起着重要作用。

通过热处理等步骤,可以去除凝胶中的残余水分和有机溶剂,同时使凝胶中的无机物发生结晶或相变,从而得到所需的材料。

溶胶凝胶法

溶胶凝胶法

溶胶凝胶法1 溶胶,凝胶法溶胶,凝胶(Sol-Gel)技术是指金属有机或无机化合物经过溶胶,凝胶化和热处理形成氧化物或其他固体化合物的方法。

其过程:用液体化学试剂(或粉状试剂溶于溶剂)或溶胶为原料,而不是用传统的粉状物为反应物,在液相中均匀混合并进行反应,生成稳定且无沉淀的溶胶体系,放置一定时间后转变为凝胶,经脱水处理,在溶胶或凝胶状态下成型为制品,再在略低于传统的温度下烧结。

2 溶胶凝胶法基本原理溶胶,凝胶法的主要步骤为将酯类化合物或金属醇盐溶于有机溶剂中,形成均匀的溶液,然后加入其他组分,在一定温度下反应形成凝胶,最后经干燥处理制成产品。

2.1 水解反应金属盐在水中的性质受金属离子半径,电负性,配位数等因素影响,如Si、Al 盐,它们溶解于纯水中常电离出Mn+,并溶剂化[3]。

水解反应平衡关系随溶液的酸度,相应的电荷转移量等条件的不同而不同。

有时电离析出的Mn+又可以形成氢氧桥键合。

水解反应是可逆反应,如果在反应时排除掉水和醇的共沸物,则可以阻止逆反应进行,如果溶剂的烷基不同于醇盐的烷剂,则会产生转移酯化反应,这些反应对合成多组分氧化物是非常重要的。

2.2 聚合反应硅、磷、硼以及许多金属元素,如铝、钛、铁等的醇盐或无机盐在水解的同时均会发生聚合反应,如失水、失醇、缩聚、醇氧化、氧化、氢氧桥键合等都属于聚合反应,性质上都属于取代反应或加成反应。

主要反应:,M,OH ,HO,M, ? ,M,O,M,+H2O ;,M,OR + HO,M, ? ,M,O,M,+ROH 等。

Okkerse等提出硅酸在碱性条件聚合成六配位过渡态,Swain等则提出形成稳定的五配位的过渡态,由于硅酸盐的水解和聚合作用几乎同时进行,它的总反应过程动力学将决定于3个反应速率常数,使得在最临近的尺度范围内,中心Si原子可以有15种不同的化学环境,R.A.Assink等曾描述了这15种配位方式的关系。

可见聚合后的状态是很复杂的[4-6]。

【Sol-Gel】溶胶凝胶法应用大全,赶紧来收藏吧!

【Sol-Gel】溶胶凝胶法应用大全,赶紧来收藏吧!

【Sol-Gel】溶胶凝胶法应用大全,赶紧来收藏吧!光学薄膜前沿,Frontiers of Optical Coatings光学薄膜新材料领域的行业门户+媒体+智库技术交流、产业合作、人才交流、企业宣传新媒体、新行业、新材料、新工艺、新商业科普目录一、溶胶凝胶技术简介及发展二、在制备纳米粉体中的应用三、在制备纳米薄膜中的应用四、在制备纳米结构纤维材料中的应用五、总结及展望1目录一溶胶凝胶技术简介及发展溶胶(Sol)又称胶体溶液是具有液体特征的胶体体系分散的是固体或者大分子分散的粒子大小在1-100nm之间溶胶不是物质而是一种「状态」凝胶(Gel)亦称冻胶是溶胶失去流动性后一种富含液态的半固态物质其中液体含量有时可高达99.5%固体粒子(胶体颗粒或者高聚物分子)相互交联形成连续不断的空间网络状结构溶胶-凝胶(Sol-Gel)技术溶胶凝胶是一种由金属有机化合物、金属无机化合物或者上述两者混合物经过水解缩聚过程逐渐凝胶化及相应的后处理而获得的氧化物或其他化合物的工艺溶胶-凝胶(Sol-Gel)技术的发展1984年1939年1971年20世纪80年代至今溶胶-凝胶(Sol-Gel)法是制备材料的化学方法中一种重要方法包括化学沉淀法、水热法、微乳液法等也被称为制备固体材料的四种主要方法之一溶胶-凝胶(Sol-Gel)技术工艺流程水热法合成 IBN-9在45°下将0.067g CTAB 溶解于32 ml 的氨水溶液随后加入0.9 ml 的正丁醇静态状态下逐滴滴加0.312g TEOS改混合物在45°陈化24小时反应釜中100摄氏度下再处理24小时抽滤、洗涤得到固体粉末550摄氏度、空气中煅烧6小时得到最后的产物2目录二在制备纳米粉体中的应用基本类型分类标准:原料和机理的不同划分传统胶体溶胶-凝胶法先将胶质颗粒(直径一般为1-100nm)分散在液体介质中形成溶胶然后通过蒸发转化为凝胶凝胶化作用由溶胶中的胶质颗粒之间的静电或空间相互作用控制静电作用溶胶体系中由于静电引力的存在会使溶液中的反离子向颗粒表面靠拢,并排斥同离子固体表面电荷与溶液中反电荷形成了双电层结构被吸附的离子与固体表面结合牢固固体和液体相对运动时固体带动部分反离子一起滑动金属有机化合物聚合凝胶法1、金属醇盐水解法金属有机化合物溶解在合适的溶剂中发生一系列化学反应如水解、缩聚和聚合形成连续的无机网络凝胶是目前溶胶凝胶技术最为常用的方法2、金属螯合凝胶法通过可溶性螯合物的形成减少前驱液中的自由离子在制备前驱液时添加强螯合剂例如,柠檬酸和 EDTA再通过控制一系列实验条件如,溶液的 PH 值、温度和浓度等移去溶剂将发生凝胶化有机聚合玻璃凝胶法1、原位聚合法有机单体聚合形成不断生长的刚性有机聚合网络包围稳定的金属螯合物从而减弱各不同金属离子的差异性减少各金属在高温分解过程中的偏析典型代表 Pechini 法的基本原理是羧酸和醇的酯化由金属螯合物之间利用a-羟基羧酸和多羟基醇的聚酯作用形成聚合物2、聚合物前驱液法首先在含水的金属盐溶液中加入水溶性聚合物最常用的是聚乙烯醇(PVA)聚丙烯酸(PAA)、聚乙烯亚胺(PEI)它们都是阳离子的配位有机聚合物将大大改变原含水前驱液的流变性能而后金属离子将充当聚合物之间的交联剂聚合链间的随机交联把水围在生长着的三维网络中使系统转变为凝胶工艺制备过程3目录三在制备纳米薄膜中的应用优点1、用基片浸渍溶胶后热处理的简单方法即可制备薄膜,设备简单2、反应在溶液中进行,均匀度高多组分均匀度可达分子或原子级3、对衬底的大小和形状要求较低4、后处理温度低,在远低于陶瓷烧结或玻璃融化的温度下进行热处理即可获得5、对多元组分薄膜,几种有机物互溶性好溶胶-凝胶法制备方法1、醇盐法制备薄膜反应体系包含金属醇盐、溶剂(甲醇、乙醇等)、水催化剂(酸、弱碱)水解速度控制剂(乙酰丙酮等)成膜控制剂(PVA、DMF 及聚乙二醇等)2、非醇盐法制备薄膜反应体系的确定主要考虑以下几个因素以烧结陶瓷主成分为依据选择相应的无机前驱体合成初期的化学现象具有代表性涉及单组分和多组分氧化物工艺流程图应用常用薄膜涂覆工艺浸渍提拉法旋转涂覆法流动涂膜技术滚动/照相凹版涂镀技术4目录四在制备纳米结构纤维材料中的应用纳米纤维广义上指材料在空间两个维度上尺寸为纳米尺度如,纳米丝、纳米棒、纳米管等纳米纤维制备方法拉伸、模板聚合、相分离、自组织海岛型双组分复合纺丝、静电纺丝分子喷丝板纺丝法等其中静电纺丝技术是最成熟、能够直接、连续制备聚合物纳米纤维静电纺丝技术聚合物溶液或者溶体在强电场中进行喷射最终固化成纤维相对于常规技术的织物由静电纺纤维构成的无纺织物具有大的比表面积以及纤维表面具有小孔等特殊形态这样的特性使得该纤维在组织工程、过滤、超敏感传感器等方面有很大的潜在应用前景工艺流程纳米纤维应用由于具有低密度、高孔隙度、大的比表面积柔顺性好、力学性能优良等等特点在防护服、仿生材料、光电材料、声学材料、细胞载体和航天航空等领域有着巨大的应用潜力5目录五总结和展望前景溶胶-凝胶技术以其多种优点及高度灵活性从而在膜的制备、色分析、光分析电分析、纳米材料的制备生物杂化材料及复材料的制备等领域有广泛的应用前景不足原料价格较高工艺时间较长等展望整体上来说此领域尚属起步阶段研究不够深入许多基础理论应用方面尚待进一步完善随着各种性能应用技术的研究日益深入溶胶-凝胶技术必将在各个领域中发挥它越来越大的作用来源:光学薄膜前沿。

溶胶凝胶法

溶胶凝胶法

溶胶-凝胶法溶胶-凝胶法(Sol-Gel法,简称S-G法)就是以无机物或金属醇盐作前驱体,在液相将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化,胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。

凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。

溶胶-凝胶法由于其前驱物及其反映条件的不同可以分为以下几种制备方法。

l、金属醇盐水解法该方法的基本过程是将醇盐溶于有机溶剂,然后在搅拌的同时缓慢加入蒸馏水的醇溶液,控制一定的pH值,经反应一定时间即可得到溶胶。

溶胶的化学均匀程度一方面受到前驱液中各醇盐混合水平的影响,这与醇盐之间的化学反应情况密切相关;另一方面,每种醇盐对水的活性也有很大的差异。

当金属醇盐之间不发生反应时,各种金属醇盐对水的活性起决定作用,反应活性的不同导致溶胶不均匀。

添加有机络合剂是克服这些问题切实可行的办法,常用的络合剂有羧酸或β-二酮等添加剂。

2、强制水解法该方法的基本过程是将将所要制备的金属氯化物加到氯化氢的水溶液中,将其加热到沸腾反应一段时间即得到对应的溶胶。

这种方法在制备氧化物在氧化物阳极材料的制备中也得到了较为广泛的应用。

3.金属醇盐氨解法4、原位聚合法及聚合螫合法这种方法的作用机理是有机单体聚合形成不断生长的刚性有机聚合网络,包围稳定的金属螫合物,从而减弱各种不同离子的差异性,减少各金属在高温分解中的偏析溶胶-凝胶法就是将含高化学活性组分的化合物经过溶液、溶胶、凝胶而固化,再经热处理而成的氧化物或其它化合物固体的方法。

⑴Sol-Gel法的基本原理及特点S01-Gel法的基本反应步骤如下:1)溶剂化:金属阳离子M z+吸引水分子形成溶剂单元M(H2O)nx+,为保持其配位数,具有强烈释放H+的趋势。

M(H2O)nx+→M(H2O)n-1(OH)(x-1)+H+2)水解反应:非电离式分子前驱物,如金属醇盐M(OR)n与水反应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录



基本概念 发展历程 基本原理和工艺过程 常用测试方法 应用举例 优势,缺陷 未来
溶胶-凝胶法的基本概念



胶体(colloid)是一种分散相粒径很小的 分散体系,分散相粒子的重力可以忽略, 粒子之间的相互作用主要是短程作用力。 溶胶(Sol)是具有液体特征的胶体体系, 分散的粒子是固体或者大分子,分散的粒 子大小在1~1000nm之间。 凝胶(Gel)是具有固体特征的胶体体系, 被分散的物质形成连续的网状骨架,骨架 空隙中充有液体或气体,凝胶中分散相的 含量很低,一般在1%~3%之间。
溶胶-凝胶法的缺陷



原料成本较高 存在残留小孔洞 存在残留的碳 较长的反应时间 有机溶剂对人体有一定的危害性
溶胶-凝胶法的未来
1994年7月在美国加利福尼亚的圣地亚哥举 行的关于Sol-Gel光子学的会议上,展示了 三种很有前途的产品: 1. 西班牙的D.Levy小组演示了液晶显示器。 2. 爱尔兰的B.D.MacCraith发明的光纤传感 器。 3. 法国的J.Livage制备的生物寄生检测器。
溶胶-凝胶法的应用
纳米颗粒 纤维 多孔材料
前驱体
溶胶
湿凝胶
气凝胶
涂层、薄膜
干凝胶
致密块体
溶胶-凝胶法应用(1)
—铝胶制备及化学机理

boehmite溶胶
将1M仲丁醇铝的仲丁醇溶液滴入温度高于80℃ 的去离子水中进行水解,生成boehmite沉淀, 加入适量1.6M HNO3,使沉淀胶溶,经老化形 成稳定的溶胶

溶胶-凝胶法应用
—铝胶制备及化学机理
铝盐溶液中,铝离子呈水合状态,即[Al(H2O)6]3+。由 于 铝离子的正电荷与配位水分子中氢离子相斥,使氢离子 释放出来—水解反应
[Al(H2O)6]3+ = [Al(OH)(H2O) 5]2+ + H+ + + H+ H+
[Al(OH)(H2O) 5]2+ = [Al(OH)2(H2O) 4]+ =
溶胶-凝胶法的基本概念
-溶胶与凝胶的结构比较
溶胶
无固定形状
固相粒子自由运动 固相粒子按一定网 架结构固定不能自 由移动
凝胶
固定形状
这种特殊的网架结构赋予凝胶很高的比表面
溶胶-凝胶法的发展历程




1846年法国化学家J.J.Ebelmen用SiCl4与乙醇混 合后,发现在湿空气中发生水解并形成了凝胶。 20世纪30年代W.Geffcken证实用金属醇盐的水 解和凝胶化可以制备氧化物薄膜。 1971年德国H.Dislich报道了通过金属醇盐水解制 备了SiO2-B2O-Al2O3-Na2O-K2O多组分玻璃。 1975年B.E.Yoldas和M.Yamane制得整块陶瓷材 料及多孔透明氧化铝薄膜。 80年代以来,在玻璃、氧化物涂层、功能陶瓷粉 料以及传统方法难以制得的复合氧化物材料得到 成功应用。
混合溶液
放置、脱水(室温~8 0%)
粘性溶胶
拉纤维(室温)
凝胶纤维
加热(10℃/h) 500℃ 1h,冷却至室温
铷玻璃纤维
溶胶-凝胶法的应用
-功能材料中制备膜材料
Nd(NO3)3.6H2O H2O,HCl C2H5OH C2H5OH Si(OCH3)4
混合溶液
保持2~4h,室温
粘性溶胶
包覆
包覆膜
加热1h
50~80℃
Fe(NO3)3溶液
柠檬酸
含La3+、Fe3+的溶胶
60~90℃
含La3+、Fe3+的凝胶
120℃
干凝胶 热处理 LaFeO3的超细粉末 10~100nm
溶胶-凝胶法的应用
-功能材料中制备纤维
Si(OCH3)4 C2H5OH H2O,HCl C2H5OH NdCl3.6H2O
搅拌(室温)
溶胶-凝胶法的基本概念
简单的讲,溶胶-凝胶法就是用含高化 学活性组分的化合物作前驱体,在液相下 将这些原料均匀混合,并进行水解、缩合 化学反应,在溶液中形成稳定的透明溶胶 体系,溶胶经陈化胶粒间缓慢聚合,形成 三维空间网络结构的凝胶,凝胶网络间充 满了失去流动性的溶剂,形成凝胶。凝胶 经过干燥、烧结固化制备出分子乃至纳米 亚结构的材料。
n [Al(OH)3(H2O) 3]0 + xHNO3 = { [Al(OH)3(H2O) 3]nHx}x+ + xNO3
胶溶反应中胶核呈正电性,外层吸附了电量相等的负电离 子。
溶胶-凝胶法的应用(2)
-功能材料中制备粉体材料
La2O3 La(NO3)3溶液 Fe(NO3)3.6H2O HNO3 La: Fe=1:1 La3+、Fe3+的柠檬酸溶液
谢 谢!!
溶胶-凝胶法的基本原理
溶剂化: M(H2O)nz+=M(H2O)n-1(OH)(z-1)+H+ 水解反应: ห้องสมุดไป่ตู้(OR)n+xH2O=M(OH)x(OR)n-x+xROH-----M(OH)n 缩聚反应 失水缩聚:-M-OH+HO-M-=-M-O-M-+H2O 失醇缩聚:-M-OR+HO-M-=-M-O-M-+ROH
[Al(OH)2(H2O) 4] + [Al(OH)3(H2O) 3]0
溶液的Ph值升高,水解程度增大
溶胶-凝胶法应用
—铝溶胶制备及化学机理

水解反应生成的沉淀[Al(OH)3(H2O) 3]0在溶液酸度提高 时,能够溶解,变成离子,形成沉淀-胶溶反应 (Precipitation-Peptization)
Nd.SiO2膜
溶胶-凝胶法的应用
-功能材料中制备单晶
溶胶-凝胶法的应用
-功能材料中制备复合材料
溶胶-凝胶法的应用(3)
-催化剂的制备及应用
溶胶-凝胶法的优势



起始原料是分子级的能制备较均匀的材料 较高的纯度 组成成分较好控制,尤其适合制备多组分 材料 可降低程序中的温度 具有流变特性,可用于不同用途产品的制 备 可以控制孔隙度 容易制备各种形状

溶胶-凝胶法的基本原理
-水解反应机理
溶胶-凝胶法的基本原理
-缩聚反应机理
溶胶-凝胶法的工艺过程
溶胶-凝胶法常用测试方法

测定前驱物金属醇盐的水解程度(化学定量分析 法) 测定溶胶的物理性质(粘度、浊度、电动电位) 胶粒尺寸大小(准弹性光散射法、电子显微镜观 察) 溶胶或凝胶在热处理过程中发生的物理化学变化 (XRD、中子衍射、DTA-TG) 反应中官能团及键性质的变化(红外分光光度计、 拉曼光谱仪) 溶胶、凝胶粒子中的结构(GC-MS) 固态物体的核磁共振谱测定M-O结构状态
相关文档
最新文档